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Insufficient physical activities but also the absence of needed 
help can lead to difficult-to-treat long-term effects.

The consequences are ...

… loss of self-confidence

… change in behavior to prevent issues 

… physical but also a psychological decline in health

… premature death
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Human Activity Recognition has been deeply investigated 
in the last decade.

many pervasive health care systems have been proposed

knowledge about the performed activities is a 
fundamental requirement

sensor miniaturization and wireless communications 
have paved the way

Our goal is to overcome this shortcomings and limitations!

effectiveness out of the lab is still limited

effective in controlled environments
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Interpreting sensor data or signals to determine the 
activity which initially triggered them

Sensor types

External sensors

Wearable sensors

motion, proximity, environmental, video, and physiological

carried by the user and are mostly used to recognize 
simpler activities like motions or postures

intelligent- or smart-homes are typical examples of 
external sensing and recognize fairly complex activities 
like taking medicine
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Physical Activities

Activities of Daily Living (ADL)

refers to people's daily self-care activities

As this suggests, the HAR research area is fragmented …

refers to walking, standing, sitting, running, …

usually recognized by sensors that are attached to certain 
body parts (wearable sensors)

usually recognized by sensors that are attached to 
preselected objects or locations (external sensors)
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… to recognize the daily routine

Recognizing activities enables …

… to learn the user's behavior 

… to optimize the course of the day 

… to verify predefined patterns like medical instructions 

State-of-the-art human activity recognition 
systems are far from being able to achieve this
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Activity 
Recognition

on-body
position

position
aware

cross-
subject

person-
alization

avoid
labeled 
datasets

handle 
diversity

online 
recogniti

on

person-
alization
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Activity Recognition with Wearable Devices
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Especially accelerometers were investigated for recognizing 
physical activities (mainly under laboratory conditions)

the user decides where to carry a wearable device

The step out of the lab leads to new unaddressed problems:

elderly or patients might not be able to collect data

movement patterns of a person could change

We aim to develop robust activity recognition methods 
that generate high quality results in a real world setting.
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Given a cross-subjects based activity recognition 
model, how can we adapt the model efficiently to the 
movement patterns of the user?

Is it possible to recognize automatically the on-body 
position of a wearable device by the device itself?

RQ1.1

RQ1.2 How does the information about the wearable device 
on-body position influence the physical activity 
recognition performance?

RQ1.3 Which technique can be used to build cross-
subjects based activity recognition systems?

RQ1.4
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… recognizing the on-body position …RQ1.1

RQ1.2 … position-aware physical activity recognition …
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• 15 subjects (8 males / 7 females)

• seven wearable devices / body positions

• chest, forearm, head, shin, thigh, upper arm,
waist

• acceleration, GPS, gyroscope, light, magnetic
field, and sound level

• climbing stairs up/down, jumping, lying,
standing, sitting, running, walking

• each subject performed each activity ≈10 minutes

Data Collection 

To address the mentioned problem it was necessary to create a 
new data set
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Data Collection 

• common objects and clothes to attach the devices

• subjects walked through downtown or jogged in a forest.

• each movement was recorded by a video camera

• We recorded for each position and axes 1065 minutes

We focused on realistic conditions 

complete, realistic, and transparent data set
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Feature Extraction

Methods

Time Correlation coefficient (Pearson), entropy (Shannon), 
gravity (roll, pitch), mean, mean absolute deviation, 
interquartile range (type R-5), kurtosis, median, standard 
deviation, variance

Frequency Energy (Fourier, Parseval), entropy (Fourier, Shannon), 
DC mean (Fourier)

• time and frequency-based features

• gravity-based features (low-pass filter)

• derive device orientation (roll, pitch)

So far, there is no agreed set of features …

… but splitting the recorded data into small overlapping segments 
has been shown to be the best setting.
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Position Detection

Scenario: Single User

lying, standing, and sitting lead to misclassification

static vs. dynamic activities

gravity provides useful information but …

Stratified sampling and 10-fold cross validation

… it is no indicator of the device position

Broad set of classifiers
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Position Detection

• RF outperforms the other 
classifier (89%)

• The training phase of RF was one
of the fastest

• k-NN (75%), ANN (77%), and 
SVM (78%) achieved reasonable
results
(parameter optimization was performed)
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Physical Activity Recognition

Feasibility: Used the results of the previous experiment (including    
all mistakes)

Again, we evaluated two approaches …

• position-independent activity recognition

• position-aware activity recognition

Set of individual classifiers for each position and subject

1) First decide if static or dynamic

2) Apply activity-level depended 
classifier (different feature sets)

3) Apply position-depended 
classifier
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Physical Activity Recognition
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To compare the results we also evaluated further classifiers

• RF achieved the highest 
recognition rate (84%) 

• All classifier performed worse in 
a position-independent scenario 

RF performed the best in 
all settings.

• k-NN (70%) and SVM (71%) 
performed almost equal but worse 
than ANN (75%) and DT (76%)
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… personalization of activity recognition models…

RQ1.3 … cross-subjects based activity recognition …

RQ1.4
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Online Random Forest

Considering online mode, the main differences are …

bagging (generation of subsamples)

growing of the individual trees

replace sample with replacement with Poisson(1)

Select thresholds and features randomly
(Extreme Randomized Forest)

Training 
Sample

Prediction
k=Poisson (1)

k=Poisson (1)

. . .
Tree #1

Tree #n

. . .

k-times
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Active Learning

Smoothing

classification 
result

Ask
User

aggregate uncertain 
recognitions

Online Learning

update

update
Body Sensor 

Network

Labeled data set 
for base model

New 
labeled 
data set

Updatable 
Model

Personalization: Online and Active Learning
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Personalization: Online and Active Learning

Smoothing

classification 
result

Online Learning

update

Updatable 
Model

Smoothing adjusts the classification result of a single 
window if it is surrounded by another activity

adjusted window is used to update the model

focuses on minor classification errors

i

i+1

i+2

i-1

i-2
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Personalization: Online and Active Learning

Active Learning

classification 
result

Ask
User

aggregate uncertain 
recognitions

Online Learning

update

New 
labeled 
data set

Updatable 
Model

User-Feedback queries the user regarding uncertain 
classification results

infeasible to ask for a specific window (1 sec)

focuses on major 
classification errors

specified a duration of uncertainty

query result is a 
new data set
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Personalization (Results)
Personalization is a continuous process …

especially dynamic activities improve significantly

most improvement in the first two time intervals

first iteration +4%, five iterations +8%

number of windows with a low confidence 
value decrease with each iteration
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Parameter
Considering different confidence thresholds …

Considering a different number of trees…

turning point  t=0.5

10 questions  +8%

10 trees vs. 100 trees

a smaller forest is more 
feasible concerning 
wearable devices
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Main Contributions
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• A new real world dataset for on-body position detection 
and position-aware physical activity recognition

• We show that our on-body position recognition method 
consistently improves the recognition of physical activities 
in a real world setting.

• We show that using labeled data of different people of the 
same gender and with a similar level of fitness and statue is 
feasible for cross-subjects activity recognition for people 
that are unable to collect required data.

• We present a physical activity recognition approach that 
personalize cross-subjects based recognition models by 
querying the user with a reasonable number of questions.
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… it says nothing about the actual situation

While the physical activity is a valuable information …

Sensors that are attached to items, furniture, or walls 
should overcome this problem.

Critical activities (Activities of Daily Living) are 
not recognized

An ADLs is more diverse than a physical activity.



State of the Art and Open Issues
Most ADL recognition systems rely on …

acquire expensive labeled data set

… supervised-based approaches:

enumerating all possible actions of an ADL

… knowledge-based approaches:

not flexible
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often user/environment-specific

questionable if such models could cover different 
environments and modes of execution
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Given a generic model of a smart environment, how 
can it be adapted to a certain environment and user at 
run-time?

Which method can be used to overcome the 
requirement of a large expensive labeled dataset of 
Activities of Daily Living?

RQ2.1

RQ2.2 Which type of recognition method is suitable for 
handling the diversity and complexity of Activities of 
Daily Living?

RQ2.3 How can external sensor events be exploited to 
recognize Activities of Daily Living in almost real-
time?

RQ2.4

09.05.2019
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… avoid large expensive labeled dataset …RQ2.1

RQ2.2 … method for handling the diversity of ADLs …
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Scenario
Recognizing activities of daily living in a smart-home

to support healthcare, home automation, a more 
independent life, …

We rely on unobtrusive sensors …
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Our approach …

… overcomes drawbacks of supervised-based approaches

… relies on semantic relations (activities↔ events) 

… recognizes interleaved activities

derived from ontological reasoning 

inferred by a probabilistic model

not user/environment-specific, no expensive data set, …
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System overview

1.

2.

3.

Semantic 
correlation 
reasoner

Semantic 
integration 

layer

Statistical analysis of events

Markov Logic Network (MLN) / MAP Inference

MLN knowledge base

Event(se1,et1,t1)
semantic 
correlations

Recognized 
activity 

instances
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1. Semantic Correlation Reasoner

Why do we use Ontology (OWL2)?

to derive semantic correlations (event type ↔ activity class)

stove silverware_drawer freezer

Hot meal 0.5 0.33 0.5

Cold meal 0.0 0.33 0.5

Tea 0.5 0.33 0.0p
re

p
ar

e

interact

{turn on stove} is a 
predictive sensor event

type for {Prepare hot meal} 
and {Prepare tea}

OWL2 Reasoner infers

PPM Matrix
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Issues of this approach

Our goal is to refine and improve semantic correlations 
thanks to collaborative active learning!
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Semantic correlations are computed based on an ontology 
written by knowledge engineers (humans)

it is very likely that the ontology is incomplete 

it is hence questionable if it can cover different 
environments/mode of execution



2. Statistical Analysis of Events

Input: PPM matrix and temporally ordered events

infers most probable activity class for each event 

allows to define activity boundaries
(activity instance candidate)

activity 
instance 

candidate

Events

Temporal extension 
of MLN (MLNNC ) 
Knowledge Base

Our ontology 
is translated 

into the 
MLNNC model
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3. MLN / MAP Inference

Hidden predicates

Observed predicates

Event 1: opens freezer (1:00pm)
Event 2: turns on stove (1:02pm)

hot meal?
cold meal?

tea?

ADL

Sensor Event
Stove

Hot meal

belong to ADL

 0.5: hot meal
 0.5: cold meal
 0.0: tea

Sensor Event 
Freezer

&

 0.5: hot meal
 0.0: cold meal
 0.5: tea
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Data Sets
We consider two well-known data sets …

1. CASAS (controlled environment)

2. SmartFABER (uncontrolled environment)

• Interleaved ADLs of twenty-one subjects

• Sensors: movement, water, interaction, door, phone

• Activities: fill medications dispenser, watch DVD, water plants,
answer the phone, clean, choose outfit, …

• An elderly woman diagnosed with Mild Cognitive Impairment

• Sensors: magnetic, motion, presence, temperature

• Activities: taking medicines, cooking, …
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CASAS (1/2)
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HMM  (related work)
• Our approach outperforms HMM

ontological reasoning is effective
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• Refinement improves boundary precision
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SmartFABER (2/2)
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• unsupervised and supervised-based 
results are comparable

• results were penalized by a poor 
choice of sensors
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… personalize model to a user and environment …

RQ2.3 … recognizing ADLs in almost real-time …

RQ2.4
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Architecture (Extension) 3. Collaborative 
Feedback 

Aggregation

Home

Continuous stream of Sensor Events

1. Probabilistic and 
Ontological 

Activity Recognition

2. Query decision
(entropy-based)
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2. Query decision

Continuous Stream of 
Sensor Events

Online rule-based 
segmentation

Query decision
(entropy-based)

Semantic 
correlations

Segment

Sensor events

Query

Feedback

3. Collaborative 
Feedback 

Aggregation

...
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Online rule-based segmentation
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We consider five aspects …

Object interaction

Change of context

Consistency likelihood

Time leap

Change of location

We introduced two metrics …

Purity of a segment

Number of generated segments (DS)

0,8 0,85 0,9 0,95

CASAS

SmartFABER

Purity (higher is better)

Naive Our Approach

0 10 20 30

CASAS

SmartFABER

DS (lower is better)

Naive Our Approach



3. Collaborative Feedback Aggregation
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Labeled segments are transmitted to a cloud service by 
the participating homes

it stores feedback items: correspondence 
between sensor event types and activities 

Periodically, a personalized update is transmitted to 
each home

it contains reliable feedback items provided 
by similar environments 



Semantic Correlation Updater
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Each home receives periodically a set of personalized 
feedback items

predictiveness is used to provide a semantic correlation 
to those event types for which the original ontology did 
not provide a starting correlation

estimated similarity is used to scale semantic 
correlations of an event type which were originally 
computed by the ontology 



Recognition results (F1 score)
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Entropy threshold vs. number of queries
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Main Contributions
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An unsupervised ADL recognition method that overcomes 
the main drawbacks of supervised- and specification-
based approaches.

A novel online segmentation algorithm that combines 
probabilistic and symbolic reasoning to divide on the fly 
a continuous stream of sensor events into high quality 
segments.

A new active learning approach to Activity of Daily 
Living recognition that addresses the main problems of 
current statistical and knowledge-based methods

…



Summary - Activity Recognition
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Motion
Sensors

Physiological 
Sensors

Proximity
Sensors

Environmental
Sensors

Physical 
Activities

(Emotional)  
Conditions

(Usage of)
Objects

Location /
Weather

Activities of Daily Living

Machine Learning (e.g. Trees, Networks)

Probabilistic Model (e.g. Markov Logic)

Analyzing the Daily Routine

Process Mining (e.g. Conformance Checking)
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