

Online Personalization of Cross-Subjects based Activity Recognition Models on Wearable Devices

Timo Sztyler, Heiner Stuckenschmidt

15.03.2017

Content

- 1. Motivation
- 2. Data & Features
- 3. Methods
 - 1. Online Random Forest
 - 2. Cross-Subjects Activity Recognition
 - 3. Personalization: Online and Active Learning
- 4. Results
- 5. Conclusion / Future Work

1. Motivation

Timo Sztyler

Motivation

Most of the existing works target subject-specific activity recognition

- requires training data for each subject
- is not available immediately
- behavior changes are often not considered

Idea

- 1. Build a cross-subjects activity recognition model
- reduces data collection and training effort
- is available at hand
- focus on specific groups of people (child vs. elder)

- 2. Personalize the base model
- use online learning to avoid retraining or storing all data
- use active learning to query the user (uncertainty)

2. Data & Features

Data Set

- 15 subjects (8 males / 7 females)
- seven wearable devices / positions
- chest, forearm, head, shin, thigh, upper arm, waist
- acceleration, GPS, gyroscope, light, magnetic field, and sound level
- climbing stairs up/down, jumping, lying, standing, sitting, running, walking

■ each subject performed each activity ≈10 minutes

pitch

Feature Extraction

Previous experiments have shown ...

- time and frequency-based features
- gravity-based features (low-pass filter) x azi
 - derive device orientation (roll, pitch)

... splitting the recorded data into small overlapping segments has been shown to be the best setting.

	Methods
Time	Correlation coefficient (Pearson), entropy (Shannon), gravity (roll, pitch), mean, mean absolute deviation, interquartile range (type R-5), kurtosis, median, standard deviation, variance
Frequency	Energy (Fourier, Parseval), entropy (Fourier, Shannon), DC mean (Fourier)
	IEEE International Conference on Pervasive Computing and

3.1. Online Random Forest

Online Random Forest

Considering online mode, the main differences are ...

- bagging (generation of subsamples)
 - replace sample with replacement with Poisson(1)
 - growing of the individual trees
 - Select thresholds and features randomly (Extreme Randomized Forest)

Communications 2017

3.2. Cross-Subjects Activity Recognition

Timo Sztyler

Cross-Subjects Activity Recognition (1/2)

Recognition model relies on labeled data of several people expect target person

most common approach: leave-one-out

Problem: Children and elders walk differently

Model only covers most dominant behavior across all people

6

-13-

1,12

11

8,15

Cross-Subjects Activity Recognition (2/2)

We aim to build a model that considers physical characteristics

Rely only on specific people ...

- ... same/similar gender and physique (walking)
- ... similar fitness level (running)

fitness

14

◆2,4,7--

5

We follow a group-based approach ...

3.3. Personalization: Online and Active Learning

IEEE International Conference on Pervasive Computing and Communications 2017

Smoothing adjusts the classification result of a single window if it is surrounded by another activity

focuses on minor classification errors

i-2 i-1 i i+1 i+2

IEEE International Conference on Pervasive Computing and Communications 2017

User-Feedback queries the user regarding uncertain classification results

infeasible to ask for a specific window (1 sec)

specified a duration of uncertainty

query result is a new data set

focuses on major classification errors

4. Results

Timo Sztyler

Cross-Subject Activity Recognition

Inspecting the individual activities ...

- static and dynamic perform comparable (~78%)
- walking and climbing stairs have the lowest rates

Class	Randomly	Leave-one-out	Our approach
stairs up	0.62	0.66	0.69
stairs down	0.63	0.67	0.69
jumping	0.79	0.88	0.87
lying	0.81	0.83	0.86
standing	0.71	0.73	0.79
sitting	0.59	0.63	0.68
running	0.88	0.90	0.96
walking	0.60	0.67	0.70
avg.	0.69	0.74	0.78

IEEE International Conference on Pervasive Computing and

Personalization (1/3)

Using online and active learning ...

- online vs. offline learning \rightarrow lower recognition rate
- smoothing \rightarrow minor errors decrease rapidly

	Base	+ Smoothing	+ User-Feedback	+ Both
static	0.76	0.76	0.79	0.79
dynamic	0.76	0.80	0.86	0.87
w. avg.	0.76	0.78	0.83	0.84

Personalization (2/3)

Focusing on interesting combinations ...

offline mode: phone and (watch 69% or glasses 72%)

improved significantly, especially walking

	Watch & Phone			Glasses & Phone			
Class	Precision	Recall	F ₁	Precision	Recall	F ₁	
static	0.75	0.73	0.73	0.80	0.80	0.80	
dynamic	0.87	0.85	0.86	0.88	0.87	0.87	
w. avg.	0.81	0.80	0.80	0.84	0.84	0.84	

Personalization (3/3)

Personalization is a continuous process ...

- especially dynamic activities improve significantly
- most improvement in the first two time intervals
 - first iteration +4%, five iterations +8%
 - number of windows with a low confidence value decrease with each iteration

Timo Sztyler

IEEE International Conference on Pervasive Computing and Communications 2017

Parameter

Considering different confidence thresholds ...

- turning point \rightarrow t=0.5
- 10 questions \rightarrow +8%

Confidence (Threshold)

Considering a different number of trees...

- 10 trees vs. 100 trees
- a smaller forest is more feasible concerning wearable devices

Timo Sztyler

IEEE International Conference on Pervasive Computing and Communications 2017

5. Conclusion and Future Work

Conclusion

Our results show that ...

- Image: models in the second second
- ... personalized model achieves a recognition rate of 84%, for dynamic activities even 87%
- ... personalization is significantly less effort than creating a labeled data set (10 questions)

Future Work

• Data Set

We got access to a large data set (~150 people), including vital parameter.

• User Acceptance (Scenario)

error rate, emotional condition, environment

•HAR vs. ADL

physical activities are often insufficient

Thank you for your attention :)

Cross-Subject Activity Recognition

We trained a single classifier for each subject ...

- our group-based approach performs better
- at least a four-sensor setup is necessary

not feasible in a real world scenario

	1	2	3	4	5	6
Randomly	0.61	0.69	0.75	0.77	0.79	0.80
Leave-one-out	0.65	0.74	0.79	0.82	0.83	0.85
Our Method	0.68	0.78	0.82	0.85	0.87	0.88

Offline Random Forest

Considering offline mode, typically ...

- ... for each tree *sample with replacement* is applied
- ... at each node features are selected at random
- ... a quality measure is used to determine best split
- In after a split samples are propagated to child nodes
 - ... majority vote over the individual results is applied

Online learning enables ...

- ... to delete already seen/processed data/records
- ... to adapt a model to new behavior
- ... to weight new information higher (unlearn)

Active learning enables ...

... to gather the most informative unlabeled data