

NECTAR: Knowledge-based Collaborative Active Learning for Activity Recognition

Gabriele Civitarese

Univ of Milano Italy

Claudio Bettini Univ of Milano Italy

Timo Sztyler Univ. of Mannheim Germany

Univ. of Cagliari Italy

Daniele Riboni Heiner Stuckenschmidt Univ. of Mannheim Germany

MOTIVATION

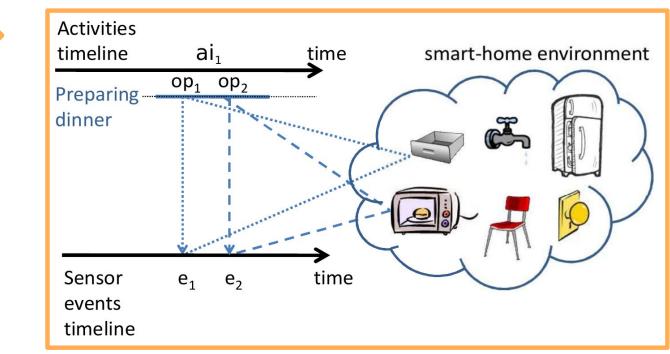
PerCom '18, Athens, Greece, March 21, 2018

Scenario

Recognizing activities of daily living in a smart-home

to support healthcare, home automation, a more independent life, ...

We rely on unobtrusive sensors ...



State of the Art and Open Issues

Most activity recognition systems rely on ...

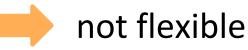
... supervised-based approaches:

acquire expensive labeled data sets

often user/environment-specific

... knowledge-based approaches:

require a significant effort in knowledge engineering



questionable if such models could cover different environments and modes of execution

Our solution: NECTAR

k<u>N</u>owledge-bas<u>E</u>d <u>C</u>ollaborative ac<u>T</u>ive learning for <u>A</u>ctivity <u>R</u>ecognition

It overcomes drawbacks of supervised-based approach not user/environment-specific, no expensive data set, ...

It relies on semantic correlations

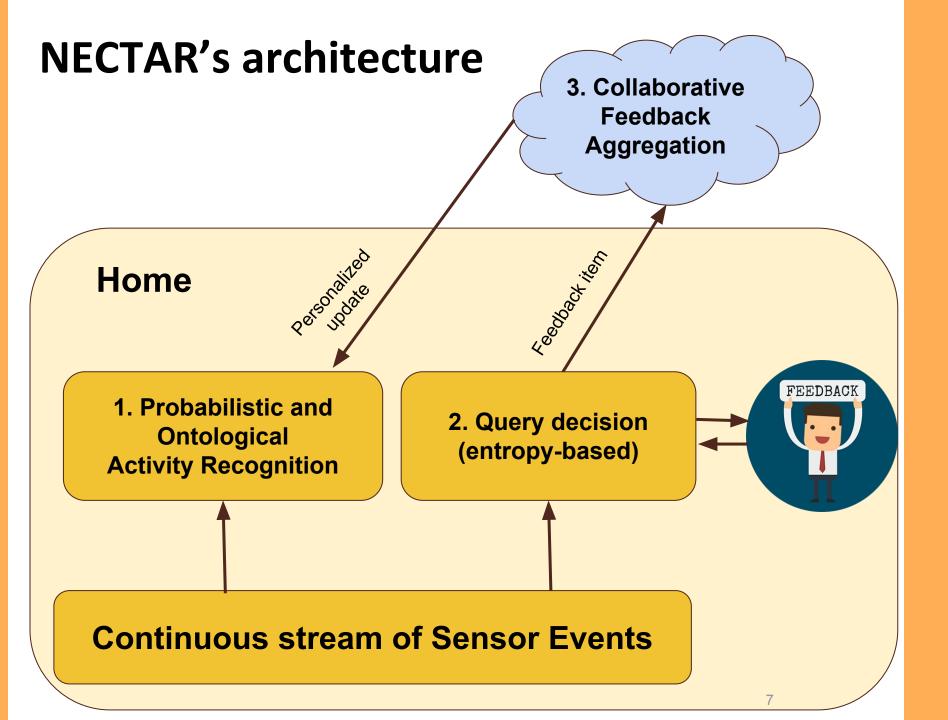
probabilistic dependencies (activities↔ events)

derived from a possibly incomplete ontology

It exploits collaborative active learning

...to refine rough correlations inferred by the ontology

MODEL AND SYSTEM

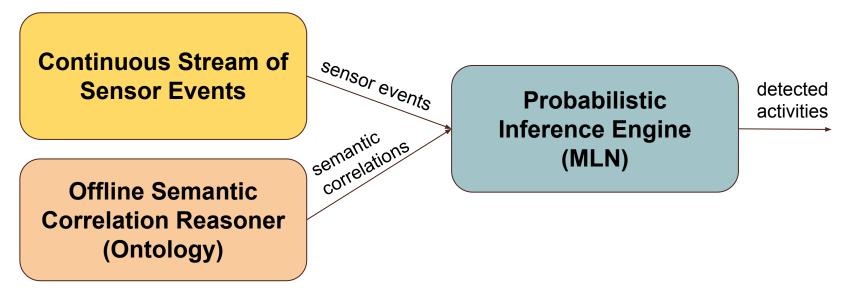


1. Probabilistic/ontological activity recognition

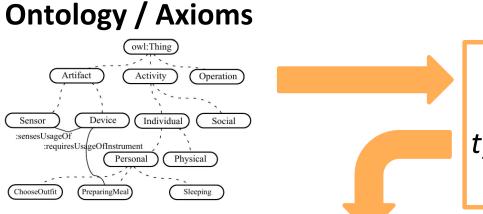
We rely on ontological reasoning to pre-compute in an *offline phase* semantic correlations

 they define probabilistic dependencies between home infrastructure and sensor events

A MLN combines those semantic correlations and sensor events to infer the most likely executed activities



Semantic Correlation Reasoner



OWL2 Reasoner infers

{turn on stove} is a predictive sensor event type for {Prepare hot meal} and {Prepare tea}

interact

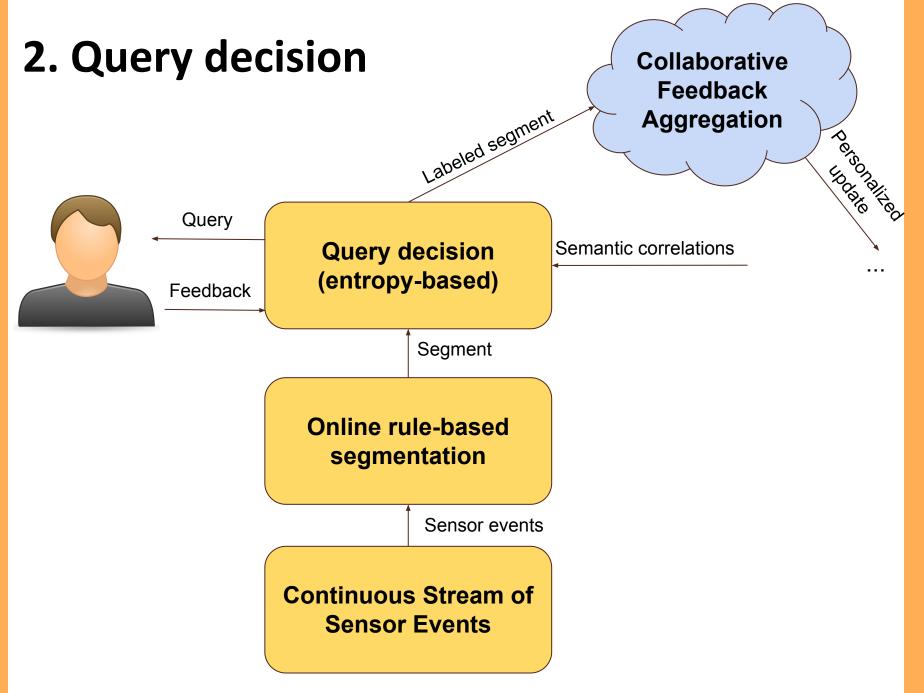
prepare	SC Matrix	stove	silverware_drawer	freezer
	Hot meal	0.5	0.33	0.5
	Cold meal	0.0	0.33	0.5
	Теа	0.5	0.33	0.0

Issues of this approach

Semantic correlations are computed based on an ontology written by knowledge engineers (humans)

- it is very likely that the ontology is incomplete
- it is hence questionable if it can cover different environments/mode of execution

Our goal is to refine and improve semantic correlations thanks to collaborative active learning!



Online rule-based segmentation

We continuously segment the stream of sensor events

based on knowledge-base conditions (e.g., interaction with objects, time gaps, changes of room)

those conditions aim to generate segments which cover **at most** one activity instance

Query decision

For each segment we derive a probability distribution over activities by **mining semantic correlations**

segments with high entropy values are queried to the inhabitant

$$H(S) = \sum_{ac \in A} P(X = ac \mid S) \cdot log(\frac{1}{P(X = ac \mid S)})$$

When *H*(*S*) is over a certain threshold we ask to the inhabitant the actual label of the segment *S*

3. Collaborative Feedback Aggregation

Labeled segments are transmitted to a *cloud service* by the participating homes

it stores **feedback items**: correspondence between sensor event types and activities

Periodically, a **personalized update** is transmitted to each home

it contains reliable feedback items provided by similar environments

Personalized update

To include only reliable feedback items in an update, we consider only whose *support* is larger than a threshold

support is a value which indicates how many times the feedback was provided from different similar homes

We associate to each feedback item in an update:

its **predictiveness:** computed as the normalization of support values

its estimated similarity: the median value of similarity between origin/target environments

Semantic Correlation Updater

Each home receives periodically a set of **personalized** feedback items

predictiveness is used to provide a semantic correlation to those event types for which the original ontology did not provide a starting correlation

estimated similarity is used to scale semantic correlations of an event type which were originally computed by the ontology

EXPERIMENTS

PerCom '18, Athens, Greece, March 21, 2018

Data Set

We consider a well-known data set ...

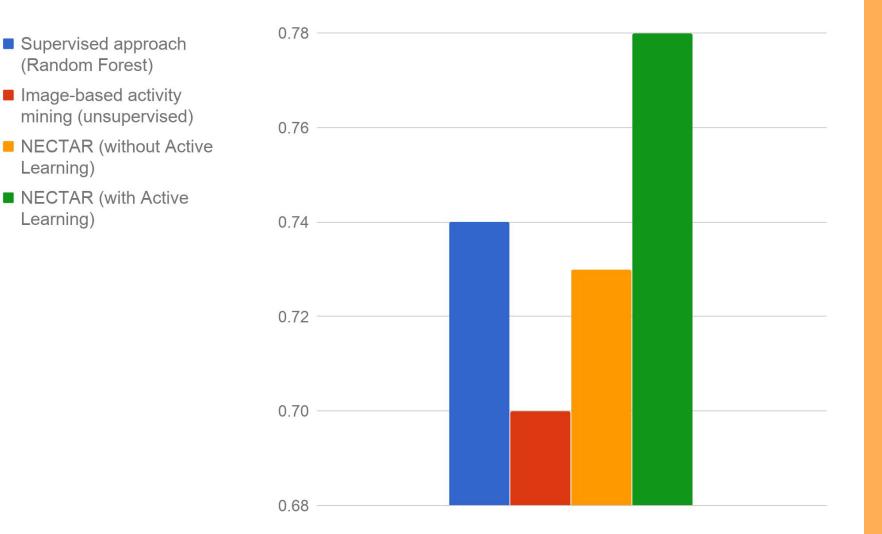
CASAS

- Interleaved ADLs of twenty-one subjects
- Sensors: movement, water, interaction, door, phone
- Activities: fill medications dispenser, watch DVD, water plants, answer the phone, clean, choose outfit, ...

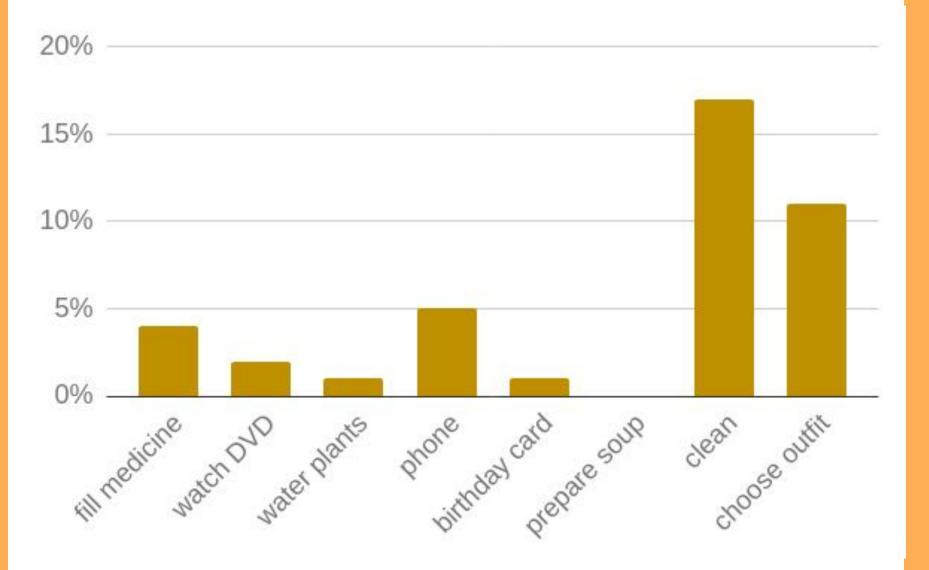
We apply *leave-one-subject-out* cross validation:

in each fold we collect feedback from 20 subjects to update semantic correlations for the remaining one

Recognition results (F1 score)

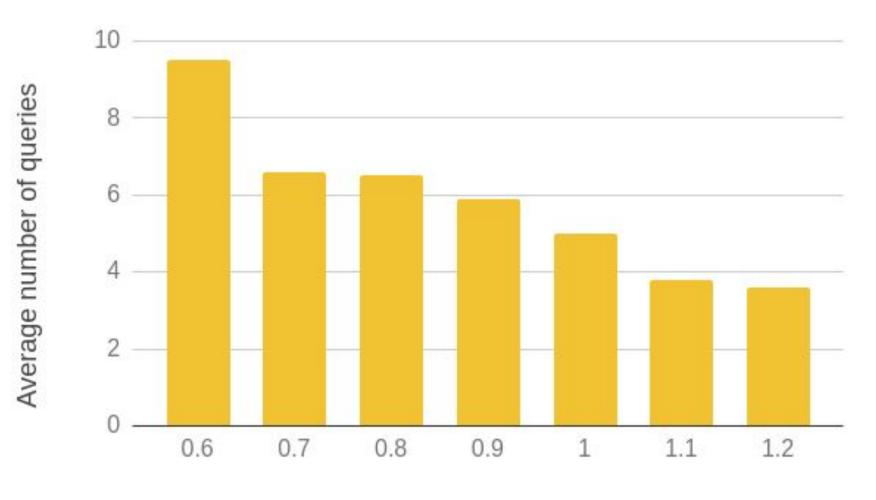


Improvement of collaborative active learning



PerCom '18, Athens, Greece, March 21, 2018

Entropy threshold VS number of queries



Entropy threshold

DISCUSSION / FUTURE WORK

Discussion

Results with a well-known dataset were positive, but...

- ... contextual aspects should be taken in account to evaluate whether to ask a feedback
 - e.g., number of queries already been asked, current mood, availability
 - •...user interfaces need to be designed
 - e.g., vocal interfaces
- ... knowledge engineering is still required (build starting ontology)

existing smart-home ontologies can be reused

Future Work

Data outsourced to the cloud service is sensitive ...

... we will investigate solutions based on homomorphic encryption or secure multi-party computation

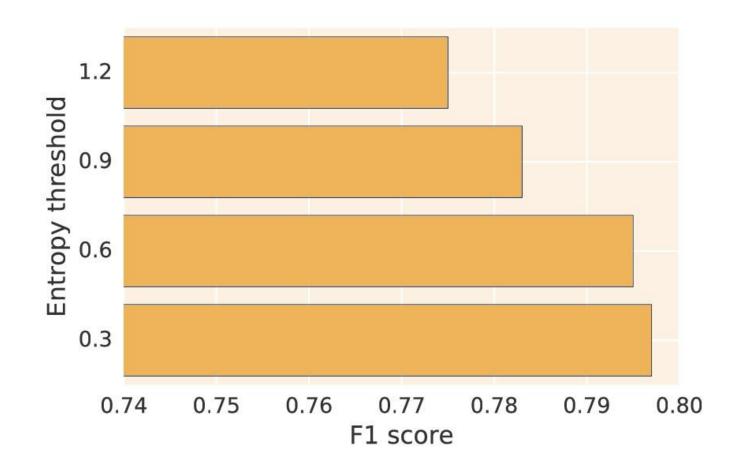
We also aim to extend our system ...

... learning semantic correlations also for *temporal patterns*

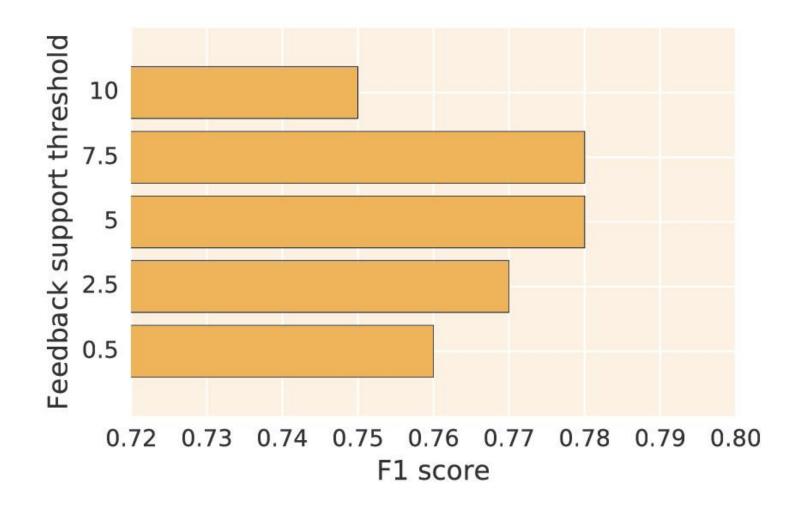
THANKS FOR YOUR ATTENTION!

BACKUP SLIDES

Entropy threshold VS F1 score

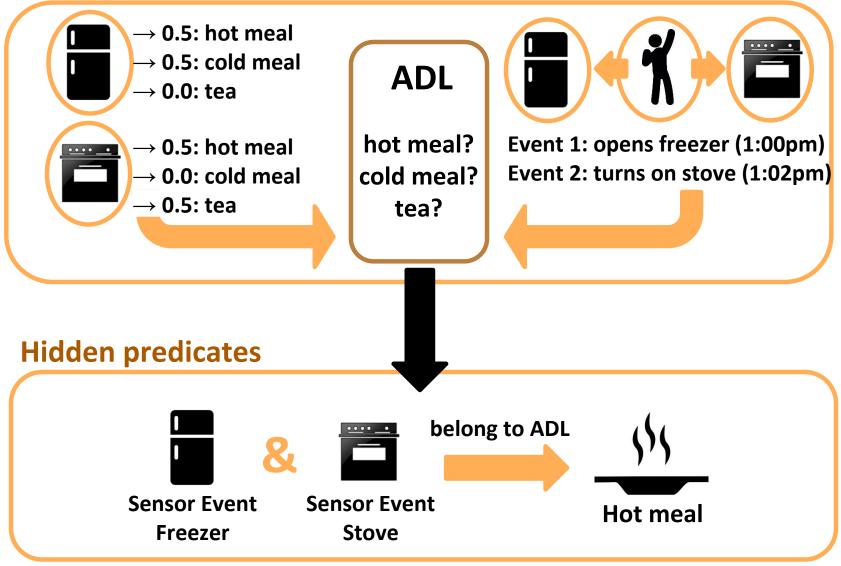


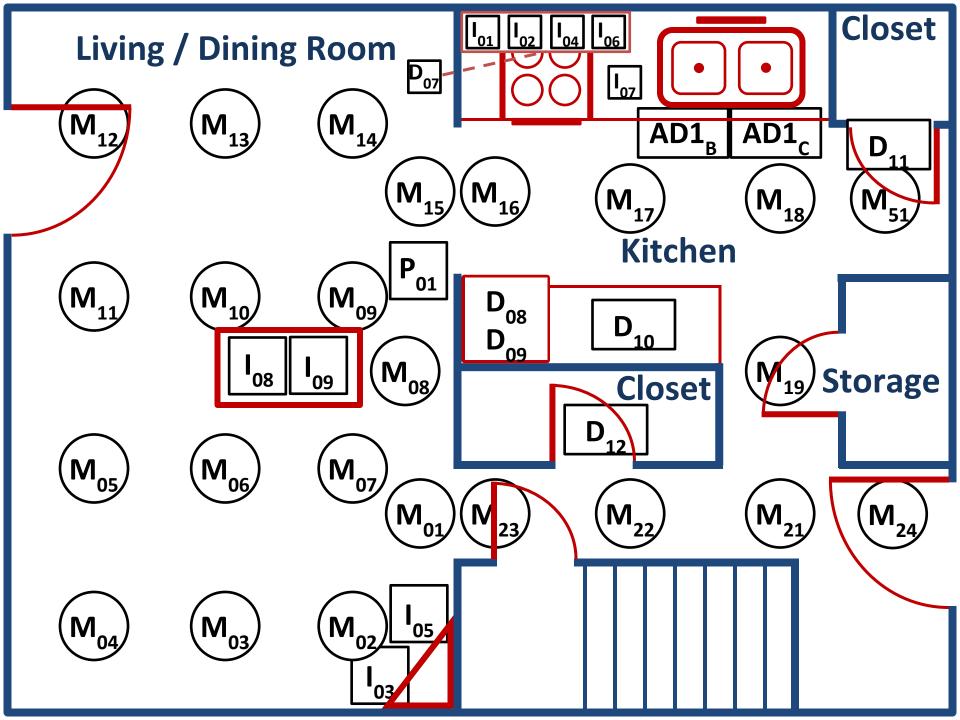
Feedback support threshold vs F1 score



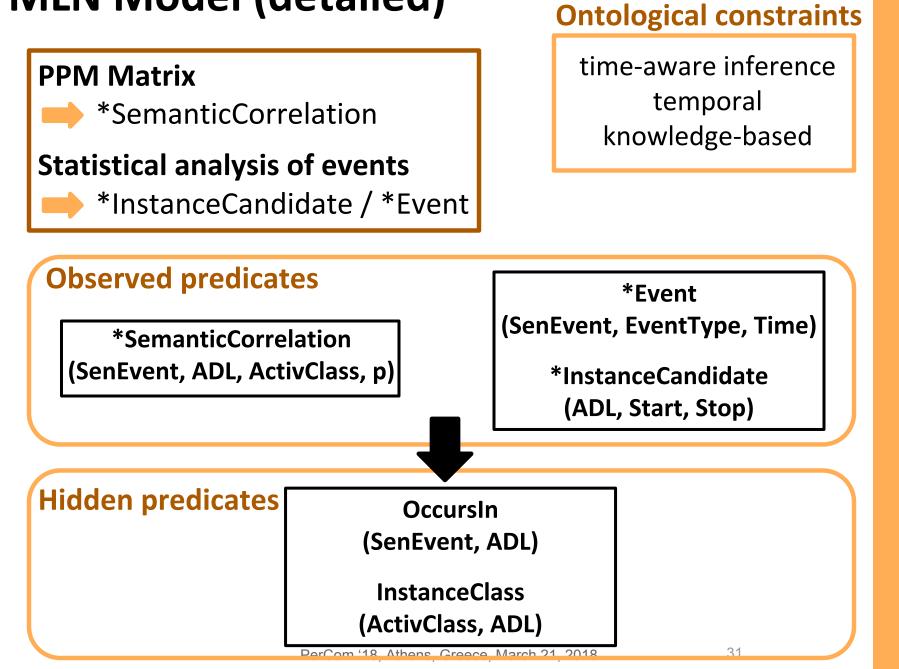
MLN / MAP Inference

Observed predicates



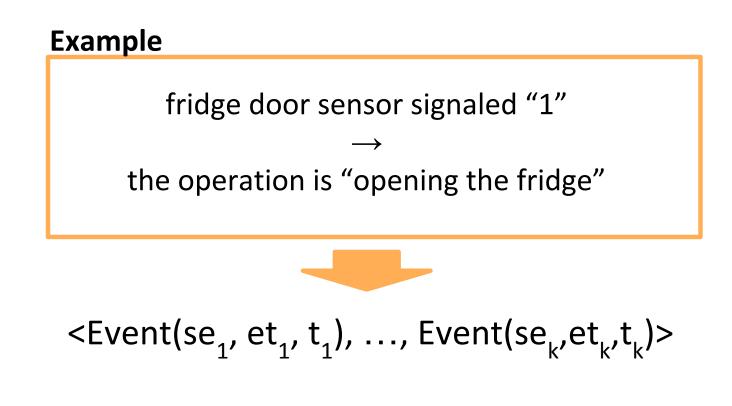


MLN Model (detailed)



Semantic Integration Layer

- collects events data from a sensor network
- applies preprocessing rules to detect operations



Statistical Analysis of Events

Input: PPM matrix and temporally ordered events

- infers most probable activity class for each event
 - allows to define activity boundaries (activity instance candidate)

