

Heidelberg, Germany September 12-16

UBICOMP 2016

Unsupervised Recognition of Interleaved Activities of Daily Living through Ontological and Probabilistic Reasoning

Daniele Riboni Univ. of Cagliari Italy

Timo Sztyler Univ of Mannheim Germany

Univ. of Milano Italy

Gabriele Civitarese Heiner Stuckenschmidt Univ. of Mannheim Germany

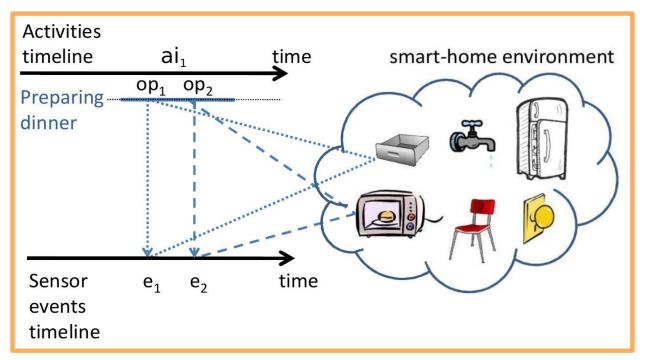
MOTIVATION

Scenario

Recognizing activities of daily living in a smart-home

to support healthcare, home automation, a more independent life, ...

We rely on unobtrusive sensors ...



State of the Art and Open Issues

Most activity recognition systems rely on ...

... supervised-based approaches:

acquire expensive labeled data sets

often user/environment-specific

... knowledge-based approaches:

unfeasible to enumerate all activity patterns

We propose an unsupervised method to recognize complex/interleaved ADLs

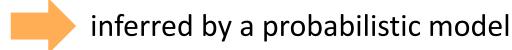
Based on hybrid ontological – probabilistic reasoning

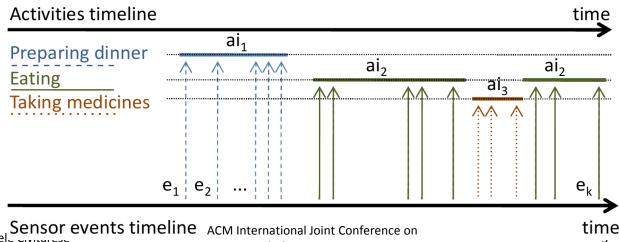
Our approach ...

... overcomes drawbacks of supervised-based approach

... relies on semantic relations (activities \leftrightarrow events)

... recognizes interleaved activities





MODEL AND SYSTEM

14.09.2016 6

System overview

Recognized activity instances

3. Markov Logic Network (MLN) / MAP Inference

MLN knowledge base

2. Statistical analysis of events

Event(se₁,et₁,t₁)

semantic correlations

Semantic integration layer

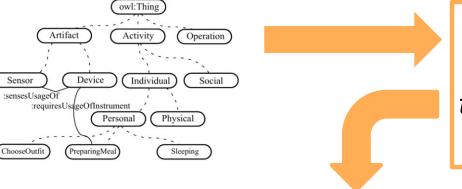
Semantic correlation reasoner

1. Semantic Correlation Reasoner

Why do we use Ontology (OWL2)?

to derive semantic correlations (event type \longleftrightarrow activity class)

Ontology / Axioms



OWL2 Reasoner infers

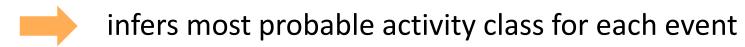
{turn on stove} is a predictive sensor event type for {Prepare hot meal} and {Prepare tea}

interact

prepare	PPM Matrix	stove	silverware_drawer	freezer
	Hot meal	0.5	0.33	0.5
	Cold meal	0.0	0.33	0.5
	Tea	0.5	0.33	0.0

2. Statistical Analysis of Events

Input: PPM matrix and temporally ordered events



allows to define activity boundaries (activity instance candidate)

activity
instance
candidate

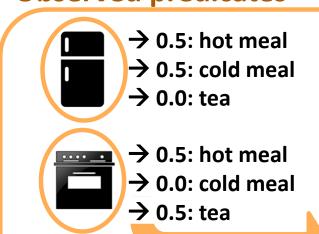
Temporal extension
of MLN (MLN_{NC})
Knowledge Base

Events

Our ontology is translated into the MLN_{NC} model

3. MLN / MAP Inference

Observed predicates



ADL

hot meal? cold meal? tea?

Event 1: opens freezer (1:00pm) Event 2: turns on stove (1:02pm)

Hidden predicates

Sensor Event Freezer

Sensor Event Stove

Hot meal

EXPERIMENTS

Data Sets

We consider two well-known data sets ...

1. CASAS (controlled environment)

- Interleaved ADLs of twenty-one subjects
- Sensors: movement, water, interaction, door, phone
- Activities: fill medications dispenser, watch DVD, water plants, answer the phone, clean, choose outfit, ...

2. SmartFaber (uncontrolled environment)

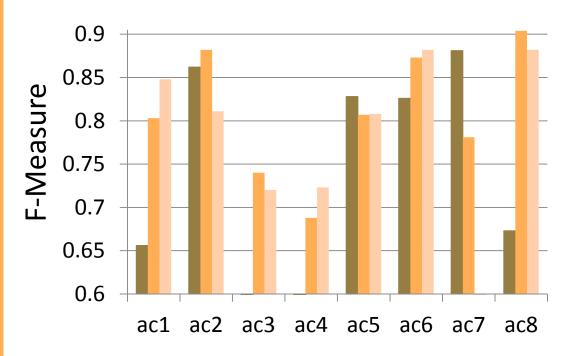
- An elderly woman diagnosed with Mild Cognitive Impairment
- Sensors: magnetic, motion, presence, temperature
- Activities: taking medicines, cooking, ...

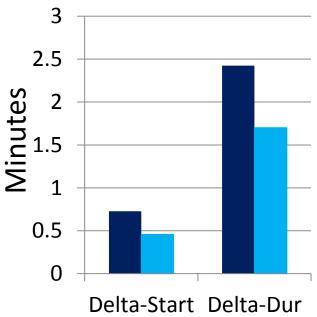
CASAS (1/2)

- Our approach outperforms HMM
- ontological reasoning is effective
- Refinement improves boundary precision

- MLN_{NC} (Ontology)
- HMM (related work)

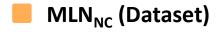
Refined



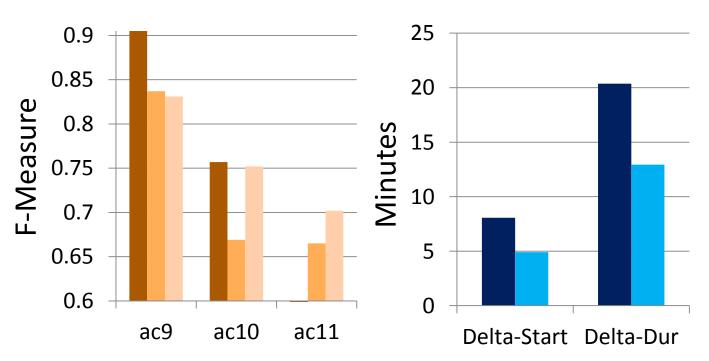


SmartFaber (2/2)

- unsupervised and supervised-based results are comparable
- results were penalized by a poor choice of sensors



- MLN_{NC} (Ontology)
- Supervised / SmartFarber



DISCUSSION / FUTURE WORK

Discussion

Results with two large datasets of interleaved ADLs were positive, but...

- ... knowledge engineering is required (build ontology)
- existing smart-home ontologies can be reused

- ... it is questionable if one ontology can cover every home
 - adaptation/extension should be performed (semi-) automatically

Future Work

Extensive real-world experiments should show ...

... if and how the ontology has to be adapted

... what happens in a multi-user environment

Can active learning allow to ...

... fine-tune existing models? (user's environment/habits)

... evolve the ontology according to the current context?

THANK YOU FOR YOUR ATTENTION

BACKUP SLIDES

Semantic Integration Layer

- collects events data from a sensor network
- applies preprocessing rules to detect operations

Example

fridge door sensor signaled "1"

the operation is "opening the fridge"

<Event(se₁, et₁, t₁), ..., Event(se_k,et_k,t_k)>

MLN Model (detailed)

PPM Matrix

*PriorProbability

Statistical analysis of events

*InstanceCandidate / *Event

Ontological constraints

time-aware inference temporal knowledge-based

Observed predicates

*PriorProbability (SenEvent, ADL, ActivClass, p)

*Event (SenEvent, EventType, Time)

*InstanceCandidate (ADL, Start, Stop)

Hidden predicates

Occursin (SenEvent, ADL)

InstanceClass (ActivClass, ADL)

Gabriele Civitarese