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Scenario
Recognizing activities of daily living in a smart-home
to support healthcare, home automation, a

more independent life, ...

We rely on unobtrusive sensors ...
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State of the Art and Open Issues

Most activity recognition systems rely on ...

... supervised-based approaches:
acquire expensive labeled data sets

often user/environment-specific

... knowledge-based approaches:
unfeasible to enumerate all activity patterns

We propose an unsupervised method to recognize
complex/interleaved ADLs

Based on hybrid ontological — probabilistic reasoning
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Our approach ...

... overcomes drawbacks of supervised-based approach

not user/environment-specific, no expensive data set, ...

... relies on semantic relations (activities¢=> events)

derived from ontological reasoning

... recognizes interleaved activities

inferred by a probabilistic model
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Recognized
activity
instances

System overview

Markov Logic Network (MLN) / MAP Inference

MLN knowledge base

Statistical analysis of events

semantic

Event(se,,et,,t;) correlations

Semantic Semantic
integration correlation
layer reasoner
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1. Semantic Correlation Reasoner
Why do we use Ontology (OWL2)?

to derive semantic correlations (event type €= activity class)

Ontology / Axioms
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OWL2 Reasoner infers

{turn on stove}is a

predictive sensor event
type for {Prepare hot meal}
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2. Statistical Analysis of Events

Input: PPM matrix and temporally ordered events

infers most probable activity class for each event

allows to define activity boundaries
(activity instance candidate)

activity
instance
candidate Temporal extension
of MLN (MLN, )
Knowledge Base Qur ontology
is translated
Events into the

MLN,,- model
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3. MLN / MAP Inference

Observed predicates

1] = 0.5: hot meal
= 0.5: cold meal

= 0.0: tea ADL
pxxmen | = 0.5: hot meal hot meal?
ﬁ - 0.0: cold meal cold meal?
- 0.5: tea tea?

Hidden predicates

Sensor Event
Freezer

Sensor Event
Stove
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belong to ADL

i
Event 1: opens freezer (1:00pm)
Event 2: turns on stove (1:02pm)
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Data Sets

We consider two well-known data sets ...

1. CASAS (controlled environment)
* Interleaved ADLs of twenty-one subjects

* Sensors: movement, water, interaction, door, phone

* Activities: fill medications dispenser, watch DVD, water plants,
answer the phone, clean, choose outfit, ...

2. SmartFaber (uncontrolled environment)
* An elderly woman diagnosed with Mild Cognitive Impairment
* Sensors: magnetic, motion, presence, temperature

* Activities: taking medicines, cooking, ...
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* Our approach outperforms HMM e (Ontology)

: .. , B HMM (related work)
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SmartFaber (2/2)

MLN, . (Dataset)
* unsupervised and supervised-based MLN (Ontology)
results are comparable B Supervised / SmartFarber
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Discussion

Results with two large datasets of interleaved ADLs
were positive, but...

* ... knowledge engineering is required (build ontology)

existing smart-home ontologies can be reused

e ... itis questionable if one ontology can cover every home

adaptation/extension should be performed
(semi-) automatically
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Future Work

Extensive real-world experiments should show ...

... if and how the ontology has to be adapted

... what happens in a multi-user environment

Can active learning allow to ...

... fine-tune existing models? (user’s environment/habits)

. evolve the ontology according to the current context?
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Semantic Integration Layer

* collects events data from a sensor network

* applies preprocessing rules to detect operations

Example

fridge door sensor signaled “1”
9
the operation is “opening the fridge”

<Event(se,, ety, t;), ..., Event(se,,et,,t,)>
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MLN Model (detailed)

PPM Matrix
*PriorProbability

Statistical analysis of events
*InstanceCandidate / *Event

Observed predicates

Ontological constraints

time-aware inference
temporal
knowledge-based

*PriorProbability

(SenEvent, ADL, ActivClass, p)

(SenEvent, EventType, Time)

*Event

*InstanceCandidate
(ADL, Start, Stop)

\ 4

Hidden predicates

Occursin
(SenEvent, ADL)

InstanceClass
(ActivClass, ADL)
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