

Integrating Product Data from the Semantic Web using Deep Learning Techniques

Prof. Dr. Christian Bizer

Hello

- Prof. Dr. Christian Bizer
- Chair of Web-based Information Systems
 @ University of Mannheim
- Research Areas:
 - Large-scale data integration
 - Information extraction from semi-structured sources
 - Knowledge base construction
 - Analysis of the adoption of semantic web technologies
- eMail: christian.bizer@uni-mannheim.de

Integrating Product Data from the Semantic Web using Deep Learning Techniques

Use Cases

- 1. Price comparison in e-commerce
- 2. Complementing product knowledge graphs

Trends

- 1. Wide adoption of schema.org annotations on the Web
- 2. Success of deep learning techniques for entity matching

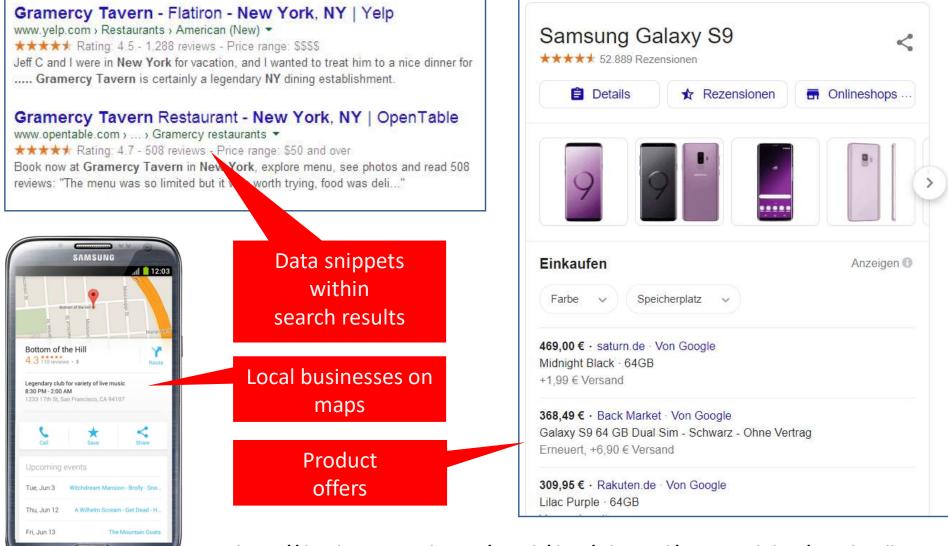
1. Product Data on the Semantic Web

Schema.org Annotations in HTML Pages

- ask website owners since 2011 to annotate data within pages for enriching search results
- 675 Types: Event, Place, Local
 Business, **Product**, Review, Person
- Encoding: Microdata, RDFa, JSON-LD

Schema.org Product Annotations within HTML using the Microdata Syntax

Usage of Schema.org Data @ Google



https://developers.google.com/search/docs/advanced/structured-data/search-gallery

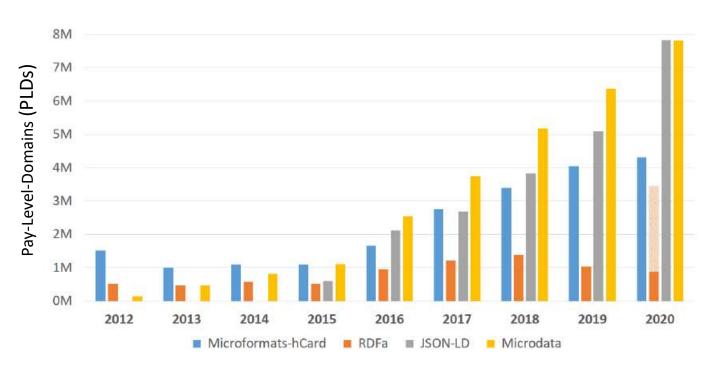
Common Crawl

Web Data Commons Project

- extracts all Microformat, Microdata,
 RDFa, JSON-LD data from the Common Crawl (CC)
- analyzes and provides the extracted data for download
- statistics of some extraction runs
 - 2010 CC Corpus: 2.8 billion HTML pages → 5.1 billion RDF triples
 - 2013 CC Corpus: 2.2 billion HTML pages → 17.2 billion RDF triples
 - 2017 CC Corpus: 3.1 billion HTML pages → 38.2 billion RDF triples
 - 2020 CC Corpus: 3.4 billion HTML pages → 86.3 billion RDF triples

Adoption of Semantic Annotations 2020

- 1.7 billion HTML pages out of the 3.4 billion pages provide semantic annotations (50.0%).
- 15.3 million pay-level-domains (PLDs) out of the 34.5 million
 PLDs (websites) provide semantic annotations (44.3%).



http://webdatacommons.org/structureddata/2020-12/stats/stats.html

Frequently used Schema.org Classes

Top Classes	# Website	s (PLDs)
	JSON-LD	Microdata
schema:WebPage	4,484,026	1,339,999
schema:Person	3,151,809	514,990
schema:BreadcrumbList	1,688,820	924,991
schema:Article	1,327,578	627,303
schema:Product	1,234,972	1,059,149
schema:Offer	1,182,855	946,725
schema:PostalAddress	863,243	585,417
schema:BlogPosting	529,020	552,338
schema:LocalBusiness	363,843	280,338
schema:AggregateRating	432,014	315,253
schema:Place	255,139	93,124
schema:Event	194,115	77,722
schema:Review	181,097	158,333
schema:JobPosting	28,759	8,520

http://webdatacommons.org/structureddata/2020-12/stats/schema_org_subsets.html

Use Case 1: Price Comparison

Questions to answer for a price comparison portal:

- 1. Which vendors offer a specific product?
- 2. Which prices do the vendors charge for the product?
- 3. Which shipping conditions and charges apply?

Use Case 1: Price Comparison

```
<html><head>
 <script type="application/ld+ison">
                                                                  Product identifiers allow
 { "@context": "https://schema.org/",
                                                                  grouping offers for the
  "@type": "Product",
                                                                    same product from
  "sku": "23211",
                                                                      different shops
  "gtin13": "4049998402140",
  "name": "RYZEN 5 GAMING PC 6 x 4.10 GHz Turbo 16GB",
   "offers": {
      "@type": "Offer",
      "url": "https://americancomputers.al/shop/ryzen-5-gaming-pc/",
       "availability": "https://schema.org/InStock",
                                                                    Price information is
       "price": "749.00",
                                                                     available as part of
       "priceCurrency": "EUR",
                                                                       schema:offer
       "shippingDetails": { "@type": "OfferShippingDetails",
         "shippingRate": { "@type": "MonetaryAmount",
         "value": "3.49", "currency": "USD"},
                                                                     Shipping details are
          "shippingDestination": { "@type": "DefinedRegion",
                                                                     available as part of
          "addressCountry": "US" }
                                                                        schema:offer
   } } </script> </head></html>
```


Adoption of Schema.org Product Identifier Annotations

In 2020, over 60% of the e-commerce websites annotate product IDs

schema.org/	2013				2017			2020				
Product property	Marked entitie		PLD	S	Marked entitie		PLD	s	Marked entitie	*	PLD	s
¥ 0	# (in K)	%	# (in K)	%	# (in K)	%	# (in K)	%	# (in K)	%	# (in K)	%
gtin8	0.3	0.0	0.0	0.0	540.9	0.1	0.3	0.0	3,661.9	0.5	22.8	1.0
gtin12	0.3	0.0	0.0	0.0	507.6	0.1	0.6	0.1	4,052.6	0.5	24.5	1.0
gtin13	177.5	0.1	0.3	0.4	5,737.9	1.2	6.6	1.0	29,590.2	3.7	68.0	2.9
gtin14	10.9	0.0	0.0	0.0	578.1	0.1	0.8	0.1	2,784.0	0.3	18.0	0.8
identifier	273.4	0.2	0.2	0.2	425.3	0.1	0.6	0.1	4,197.5	0.5	14.1	0.6
productID	28,427.0	16.0	7.4	10.8	54,787.4	11.0	38.0	6.3	51,663.9	6.5	109.3	4.7
mpn	1,561.4	0.9	0.5	0.7	15,678.3	3.2	10.1	1.7	69,860.7	8.8	148.0	6.3
sku	14,513.1	8.2	1.3	1.9	49,732.8	10.0	150.4	25.3	241,700.5	30.4	1,291.1	56.2

sku often contains merchant independent identifiers

http://webdatacommons.org/structureddata/2020-12/stats/stats.html

Grouping Offers by Product Identifier

Croup size		# Occurrence	es
Group size	2013	2017	2020
1	4,492,158	41,538,284	100,464,424
[2-5]	2,084,117	10,676,183	36,033,295
[6-10]	409,380	1,234,244	5,254,722
[11-20]	285,232	634,551	2,576,139
[21-50]	180,727	310,188	1,182,615
[51-100]	54,480	95,664	295,704
[101-200]	23,863	40,512	123,900
[201-500]	17,408	16,411	65,008
[501-800]	4,082	3,049	16,205
[801-1000]	1,208	917	5,057
[1001-5000]	2,436	2,127	11,623
[5001-10000]	125	208	852
>10000	161	497	465

Group of offers sharing the same ID

The CC 2020 contains least two offers for over 45 million products

Workflow for Cleansing the Product Clusters

Removal of listing pages

Filtering by identifier value length (8-25)

Cluster creation based on identifier value co-occurrence

Split wrong clusters due to category IDs

58M offers out of 121M (2017)

26M offers

16.4M clusters

16.6M clusters

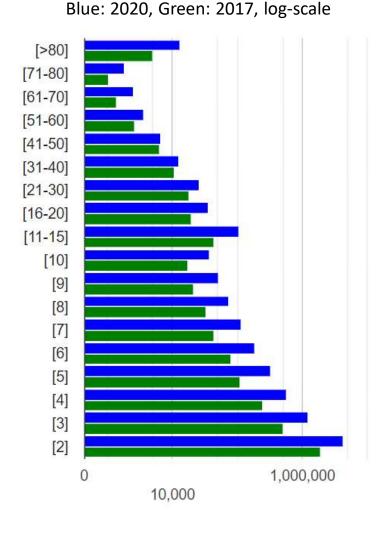
Primpeli, Peeters, Bizer: **The WDC training dataset and gold standard for large-scale product matching.** WWW2019 Companion.

extracted from CC 2017 and 2020

Version	# Offers	# Clusters >2	# Websites
2020	98 Million	7.1 Million	603,000
2017	26 Million	3.0 Million	78,000

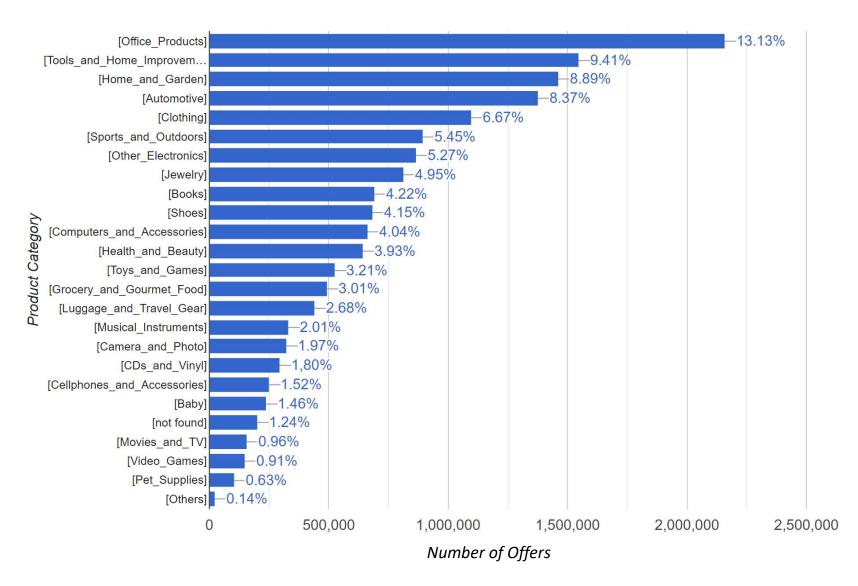
- cluster quality: 93,4 %
 (evaluated on sample of 900 pairs)
- available for download as JSON

Cluster Size Distribution



http://webdatacommons.org/largescaleproductcorpus/v2020/http://webdatacommons.org/largescaleproductcorpus/v2/

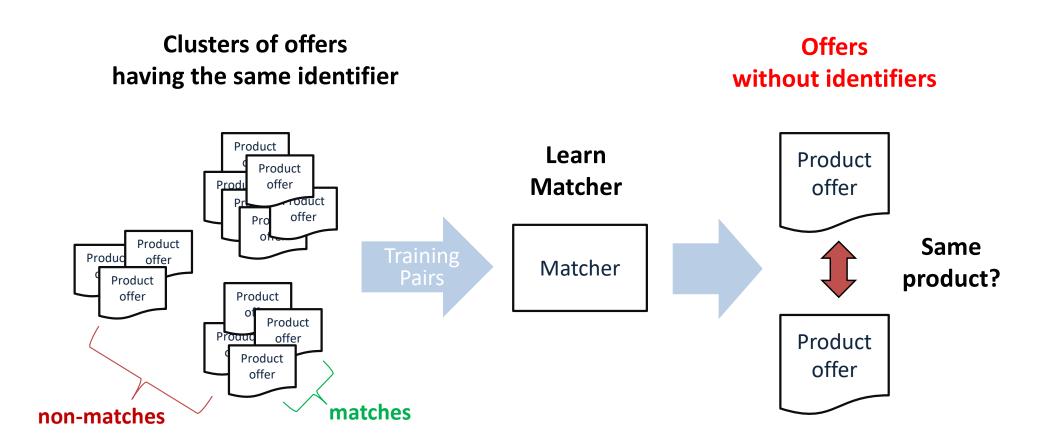
Product Categories of the Offers in the WDC Product Corpus 2017



Use Case 1: Price Comparison

How to cover more e-shops?

Learn to Match Products using Schema.org Identifiers as Supervision



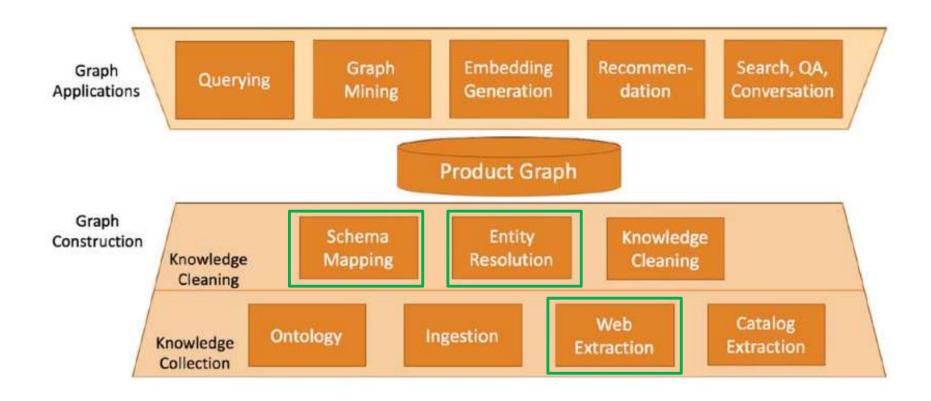
WDC Training Sets and Gold Standard for Large-Scale Product Matching

- covers four product categories
 - computers, cameras, watches, shoes
- Training sets of different sizes
 - 2,000 to 60,000 pairs of offers
- Manually verified test sets of 1100 pairs from each category

Category	Size	Positives	Negatives
Computers	XLarge	9.690	58.771
	Large	6.146	27.213
	Medium	1.762	6.332
	small	722	2.112
Cameras	XLarge	7.178	35.099
	Large	3.843	16.193
	Medium	1.108	4.147
	Small	486	1.400

Category	Size	Positives	Negatives
Watches	XLarge	9.264	52.305
	Large	5.163	21.864
	Medium	1.418	4.995
	small	580	1.675
Shoes	XLarge	4.141	38.288
	Large	3.482	19.507
	Medium	1.214	4.591
	Small	530	1.533

Use Case 2: Completing Product Knowledge Graphs



Luna Dong: Challenges and Innovations in Building a Product Knowledge Graph. KDD 2018.

Schema.org Attributes used to **Describe Products in 2020**

Attribute	# PLDs		_
schema:Product/name	99 %		New Sa
schema:Product/offers	94 %		Smartp
schema:Offer/price	95 %		299
schema:Offer/priceCurrency	95 %		The (
schema:Product/description	84 %		phon displa
schema:Offer/availability	72 %		optio
schema:Product/sku	56 %		000
schema:Product/brand	30 %		San
schema:Product/image	26 %	,	
schema:Product/aggregateRating	17 %		Ν
schema:Product/category	8 %		C r
schema:Product/productID	5 %		sp
			SL

Galaxy S4 is among the earliest nes to feature a 1080p Full HD lay. The various connectivity ons on the Samsung include ...

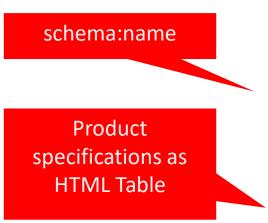
0214632623

msung

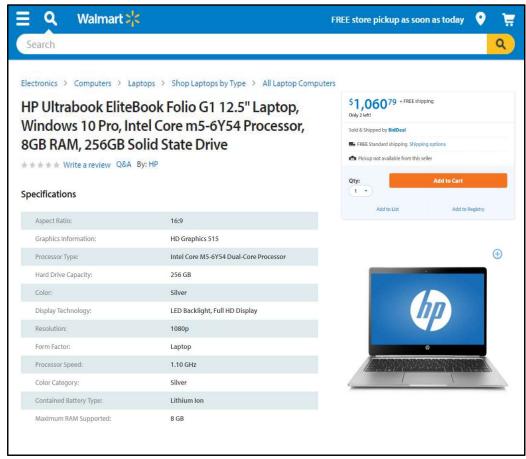
o categorypecific attributes, uch as memory or screen size 🕾

http://webdatacommons.org/structureddata/schemaorgtables/

Option: Exploit HTML Tables Containing Product Specifications



10% of the product pages in CC2017 contain specification tables

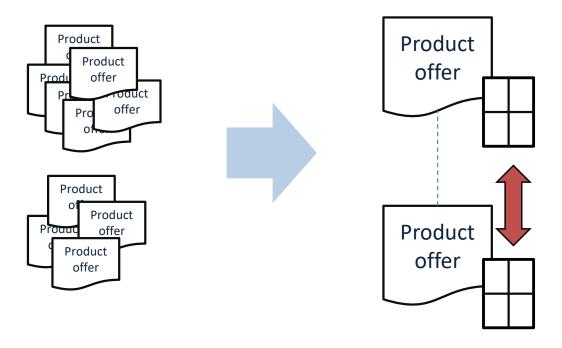


Qui, et al.: **DEXTER: Large-Scale Discovery and Extraction of Product Specifications on the Web.** VLDB 2015. Petrovski, et al: **The WDC Gold Standards for Product Feature Extraction and Product Matching.** ECWeb 2016.

Option: Exploit Clusters to Combine Data from Multiple Offers for the Same Product

Clusters of offers having the same identifiers

Combine specification table content from multiple offers for same product



2. Product Matching using Deep Learning Techniques

Performance of Magellan as an Example of a Traditional Matching Method

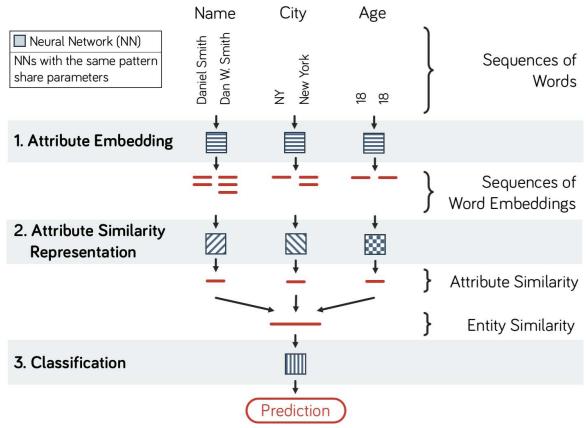
Туре	Dataset	Торіс	Magellan F1
	WDC Computer - Large	Products	64.5
	WDC Computer - Small	Products	57.6
Textual Data	Abt-Buy	Products	43.6
	Amazon-Google	Products	49.1
	iTunes-Amazon	Music	91.2
Structured Data	DBLP-ACM	Bibliographic	98.4
Data	DBLP-Scholar	Bibliographic	94.7

Product matching performance too low for practical applications 🕾

Konda, et al.: **Magellan: Toward Building Entity Matching Management**. PVLDB 2016. Anna Primpeli and Christian Bizer: **Profiling Entity Matching Benchmark Tasks**. CIKM 2020.

UNIVERSITY OF MANNHEIM Data and Web Science Group

DeepMatcher (2018)



- Embeddings: FastText
- Summarization: Bi-RNN with attention
- Similarity computation: element-wise difference and multiplication, concatenation
- Classification: Fully connected neural net, cross entropy loss

Mudgal, Sidharth, et al.: Deep Learning for Entity Matching: A Design Space Exploration. SIGMOD 2018.

Evaluation: DeepMatcher versus Magellan

Туре	Dataset	DeepMatcher F1	Difference
WDC Computer - Large		89.5	+25.0
	WDC Computer - Small	70.5	+12.9
Textual Data	Textual Data Abt-Buy	62.8	+19.2
	Amazon-Google	69.3	+20.1
	iTunes-Amazon	88.5	-2.7
Structured Data	DBLP-ACM	98.4	+0.0
	DBLP-Scholar	92.3	+2.4

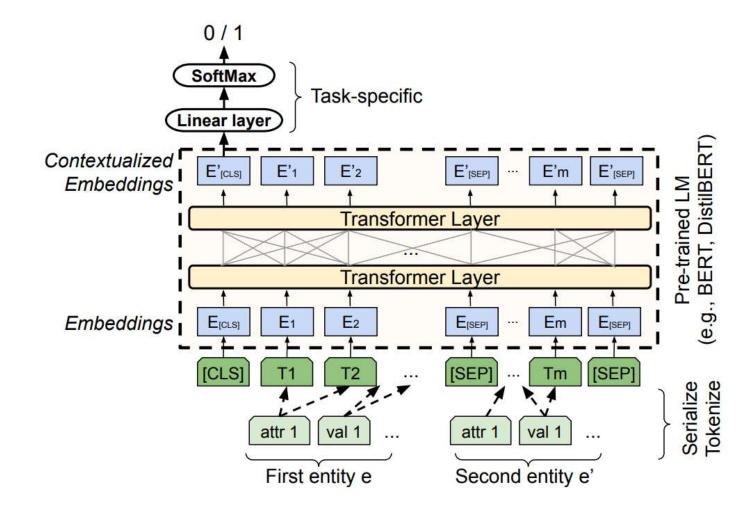
- DeepMatcher outperforms traditional methods on textual data
- mixed results on structured data

Mudgal, Sidharth, et al.: Deep Learning for Entity Matching: A Design Space Exploration. SIGMOD 2018.

DITTO (2021)

- applies BERT, DistilBERT, RoBERTa for entity matching
- adds methods for entity summarization, highlighting matching clues, training data augmentation
- Entity serialization for BERT
 - Pair of entity descriptions are turned into single sequence
 - [CLS] Entity Description 1 [SEP] Entity Description 2 [SEP]
 - Entity Description = [COL] attr₁ [VAL] $val_1 ...$ [COL] attr_k [VAL] val_k

DITTO: Architecture



- [CLS] token summarizes the pair of entities
- linear layer on top of [CLS] token for matching decision

DITTO: Evaluation

Туре	Dataset	DITTO F1	DeepMatcher F1	Magellan F1
	WDC Computer - Large	91.7	89.5 +3.2	64.5 +27.2
	WDC Computer - Small	80.8	70.5 +10.3	57.6 +23.2
Textual Data	Abt-Buy	89.3	62.8 +26.5	43.6 +45.7
	Amazon-Google	75.6	69.3 +6.3	49.1 +26.5
	iTunes-Amazon	97.0	88.5 +8.5	91.2 +5.8
Structured Data	DBLP-ACM	99.0	98.4 +0.6	98.4 +0.6
	DBLP-Scholar	95.6	92.3 +3.3	94.7 +0.9

- large performance gain for textual data
- constant improvement for structured data

Potential Reasons for the Performance Gain

- Serialization allows model to attend to all attributes
 - no strict separation between attributes
- WordPiece tokenizer breaks unknown terms into pieces
 - no problems with out of vocabulary terms
- Transfer learning from pre-training texts
 - different surface forms are already close in embedding space
- Contextualization of the token embeddings
 - potentially more suited for capturing differing semantics

Paganelli, et al: Analyzing How BERT Performs Entity Matching. PVLDB 2022.

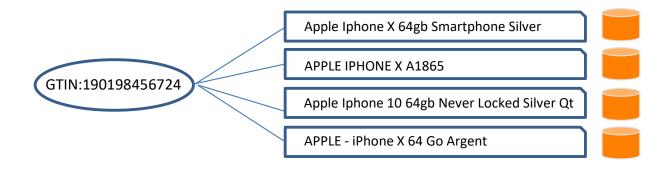
Seen versus Unseen during Training

- 1. model trained on WDC computers large
- 2. model tested using different test sets:

Test Set	RoBERTa F1	BERT F1	DeepMatcher F1	Magellan F1
a) Seen products - different offers	94.73	92.11	89.55	63.45
b) Unseen products - high similarity	83.18	84.53	58.64	27.89
c) Unseen products - low similarity	77.72	76.92	58.78	59.04
Δ between a) and c)	-17.01	-15.19	-30.91	-4.41

Peeters, Bizer: Dual-Objective Fine-Tuning of BERT for Entity Matching. PVLDB 2021

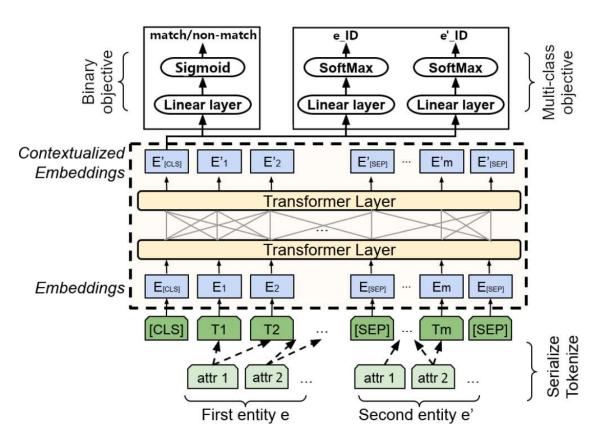
Back to schema.org Identifiers: Let's exploit our Clusters!



Clusters of product offers allow to

- learn recognizers for single products
- treat entity matching as a multi-class classification task

- combines pairwise matching and multi-class classification via multi-task learning
- hypothesis: Learning to recognize single entities might help to classify entity pairs



Overall loss:

$$L_i = BCEL(y_{b_i}, \hat{y}_{b_i}) + (CEL(y_{l_i}, \hat{y}_{l_i}) + CEL(y_{r_i}, \hat{y}_{r_i}))$$

BCEL: Binary cross entropy loss

CEL: Cross entropy loss

Peeters, Bizer: Dual-Objective Fine-Tuning of BERT for Entity Matching. PVLDB 2021.

JointBERT: Evaluation

Testset	Training Set	Word Co-oc	Magellan	Deepmatcher	BERT	RoBERTa	Ditto	JointBERT
	xlarge	82.39	63.16	88.95	94.57	94.73	96.53	97.49
W/DCt	large	81.23	64.56	84.32	92.11	94.68	93.81	96.90
WDC computers	medium	70.94	61.59	69.85	89.31	91.90	88.97	88.82
	small	62.69	57.60	61.22	80.46	86.37	81.52	77.55
	xlarge	73.33	51.70	84.88	91.42	94.39	94.74	98.02
WDC	large	76.24	54.49	82.16	91.02	93.91	94.41	96.51
WDC cameras	medium	69.89	54.99	69.34	87.02	90.20	87.97	87.91
	small	64.86	52.78	59.65	77.47	85.74	78.67	78.30
	xlarge	79.78	56.04	88.34	95.76	94.87	97.05	97.09
WDC watches	large	79.64	60.59	86.03	95.23	93.93	97.17	98.46
WDC watches	medium	69.54	66.62	67.92	89.00	92.28	89.16	87.46
	small	63.49	59.73	54.97	78.73	87.16	81.32	75.83
	xlarge	70.38	61.45	86.74	87.44	88.88	93.28	97.88
WDC -L	large	71.18	60.48	83.17	87.37	86.60	90.07	95.16
WDC shoes	medium	72.43	59.80	74.40	79.82	81.12	83.20	82.61
	small	63.65	58.57	64.71	74.49	80.29	75.13	73.13

Increase of 1% to 5% F1 given enough training examples

Peeters, Bizer: Dual-Objective Fine-Tuning of BERT for Entity Matching. PVLDB 2021.

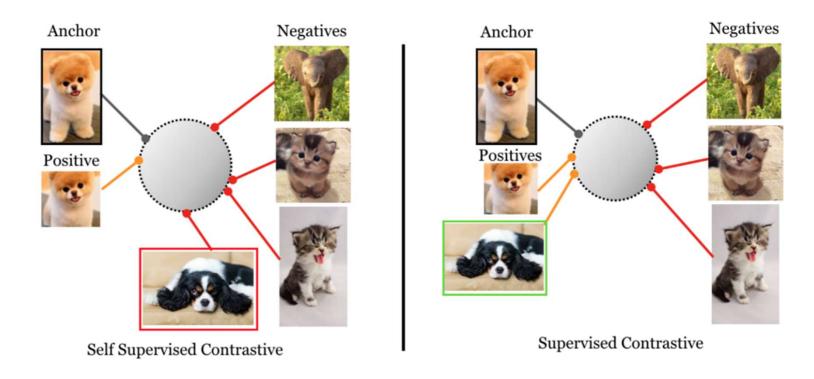
What about Long-Tail Products without many Training Examples?

Testset	Training Set	Word Co-oc	Magellan	Deepmatcher	BERT	RoBERTa	Ditto	JointBERT
<i>-</i>	xlarge	82.39	63.16	88.95	94.57	94.73	96.53	97.49
WDC computers	large	81.23	64.56	84.32	92.11	94.68	93.81	96.90
	medium	70.94	61.59	69.85	89.31	91.90	88.97	88.82
	small	62.69	57.60	61.22	80.46	86.37	81.52	77.55
WDC cameras	xlarge	73.33	51.70	84.88	91.42	94.39	94.74	98.02
	large	76.24	54.49	82.16	91.02	93.91	94.41	96.51
	medium	69.89	54.99	69.34	87.02	90.20	87.97	87.91
	small	64.86	52.78	59.65	77.47	85.74	78.67	78.30
WDC watches	xlarge	79.78	56.04	88.34	95.76	94.87	97.05	97.09
	large	79.64	60.59	86.03	95.23	93.93	97.17	98.46
	medium	69.54	66.62	67.92	89.00	92.28	89.16	87.46
	small	63.49	59.73	54.97	78.73	87.16	81.32	75.83
WDC shoes	xlarge	70.38	61.45	86.74	87.44	88.88	93.28	97.88
	large	71.18	60.48	83.17	87.37	86.60	90.07	95.16
	medium	72.43	59.80	74.40	79.82	81.12	83.20	82.61
	small	63.65	58.57	64.71	74.49	80.29	75.13	73.13

Results for smaller training sets (~2-3K) are ~10% F1 below top results achieved using >50K training pairs.

Contrastive Pretraining in Vision

- applies data augmentation to add positives
- uses large batches containing many positive and negative examples
- maximizes distance between classes in the embedding space

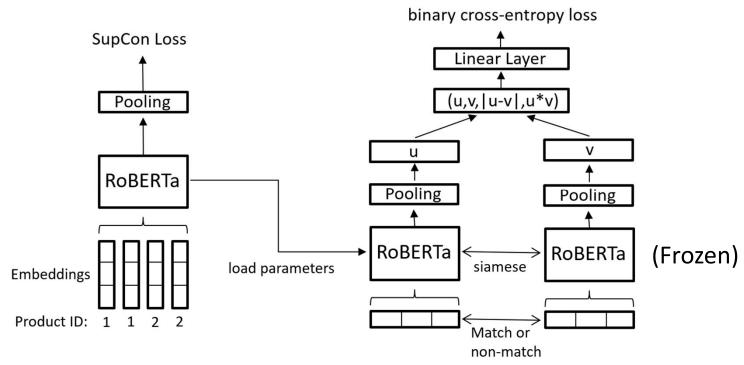


Khosla, et al.: **Supervised Contrastive Learning**. NeurIPS 2020.

Supervised Contrastive Pretraining for Entity Matching (2022)

Contrastive Pre-Training Stage

Cross-entropy Fine-Tuning Stage



Input: Batch of n product offers with product IDs

Input: Batch of product offer pairs with match/non-match labels

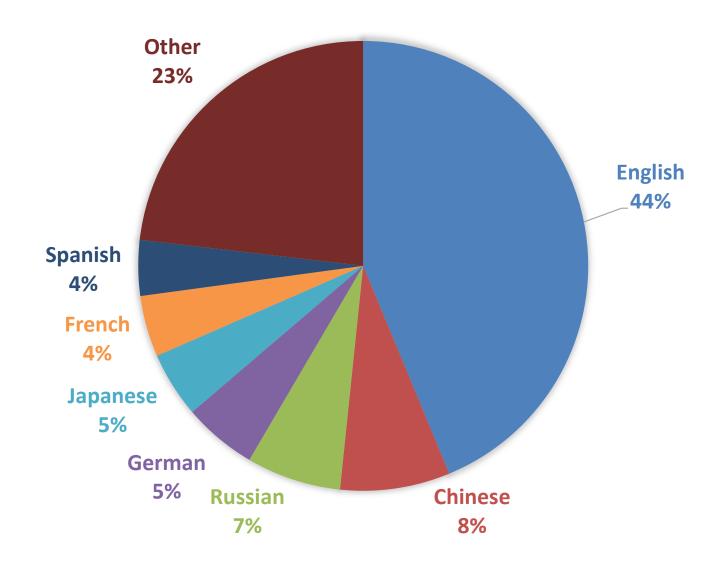
Peeters, Bizer: Supervised Contrastive Learning for Product Matching. WWW Companion 2022.

Evaluation: Supervised Contrastive Pretraining R-SupCon + Augmentation

		WDC Cor	Abt- Buy	Amazon -Google		
# Training Pairs	~3K (small)	~8K (medium)	~23K (large)	~68K (xlarge)	~7.5K	~9K
DeepMatcher	61.22	69.85	84.32	88.95	62.80	70.70
RoBERTa	86.37	91.90	94.68	94.73	91.05	74.10
Ditto	80.76	88.62	91.70	95.45	89.33	75.58
JointBERT	77.55	88.82	96.90	97.49	83.44	-
R-SupCon	93.18	97.66	98.16	98.33	93.70	79.28
R-SupCon+augment	95.21	98.50	98.50	98.33	94.29	76.14
Δ to best baseline	+ 8.84	+ 6.60	+ 1.60	+ 0.84	+ 3.24	+ 3.70

F1 > 0.95 results also for small training sets!

Language of the Webpages in the Common Crawl



Cross-Language Learning for Product Matching

- schema.org ID clusters may cover multiple languages
 - many offers in English as head language
 - less offers in languages such as French or German
- Potential for cross-language learning!
- Experiment: Fine-tuning mBERT

German training set extended with English pairs. F1s:

DE EN	0	450	900	1800	3600	7200	Δ 0-7200
450	67.11	72.79	75.44	80.83	86.82	87.97	20.86
900	75.76	75.10	74.00	87.67	88.92	88.19	12.43
1800	87.69	88.43	88.38	90.17	90.72	91.44	3.75
3600	93.63	92.98	92.46	93.97	93.25	94.46	0.83

Peeters, Bizer: Cross-Language Learning for Product Matching. WWW Companion 2022.

Conclusions: Deep Learning for Product Matching

- 1. Transformer-based matchers boost matching performance
 - F1 scores >0.95 in many cases
- 2. Contrastive pre-training and cross-language learning improve performance for long-tail products
- 3. All products should be covered by training examples
 - F1 scores for unseen products around 0.80
- 4. Reduced feature engineering effort
 - less information extraction effort due to serialization
 - less value normalization necessary due to pre-training

Conclusions: Schema.org Product Data on the Web

- 1. Schema.org annotations are a valuable source of product data
 - many sources, many languages, many products
 - UC1: annotations directly enable price comparison
 - UC2: augmenting KGs requires additional information extraction
- 2. Product identifiers provide distant supervision
 - rich source of training data for learning matchers
- 3. Similar potentials exist in other schema.org domains
 - Local businesses, job postings, reviews, movies, ...
 - Tasks: Matching, hierarchical classification, sentiment analysis,
 pre-training of domain-specific language models, ...

Hands On: Entity Matching Methods

- The source code for all discussed methods is available
 - you can test if the methods work for your use cases
- Current benchmark results are collected on Papers with Code
 - good reference point for latest developments
 - provides links to the source code of the different matchers

https://paperswithcode.com/task/entity-resolution/

Hands On: Experimenting with Schema.org Data

- All mentioned datasets are available for download
- Product Data Corpora and Training/Test Sets (JSON)
 - http://webdatacommons.org/largescaleproductcorpus/v2/
 - https://webdatacommons.org/largescaleproductcorpus/v2020/
- Data for all Schema.org Classes (RDF quads)
 - LocalBusiness, Event, JobPosting, Review, ...
 - http://webdatacommons.org/structureddata/
- Schema.org Table Corpus (JSON)
 - data from 42 schema.org classes grouped into 2 million tables:
 one table per schema.org class and website
 - http://webdatacommons.org/structureddata/schemaorgtables/

Thank you.

