

Training Transformer-based Entity Matchers using the Web as Supervision

Prof. Dr. Christian Bizer

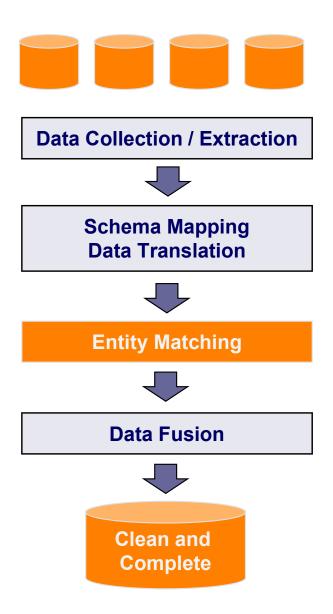
Hello

- Prof. Dr. Christian Bizer
- Chair of Web-based Information Systems@ University of Mannheim
- Research Areas:
 - Large-scale data integration
 - Information extraction from semi-structured sources
 - Knowledge base construction
 - Analysis of the adoption of semantic web technologies
- eMail: christian.bizer@uni-mannheim.de

Outline

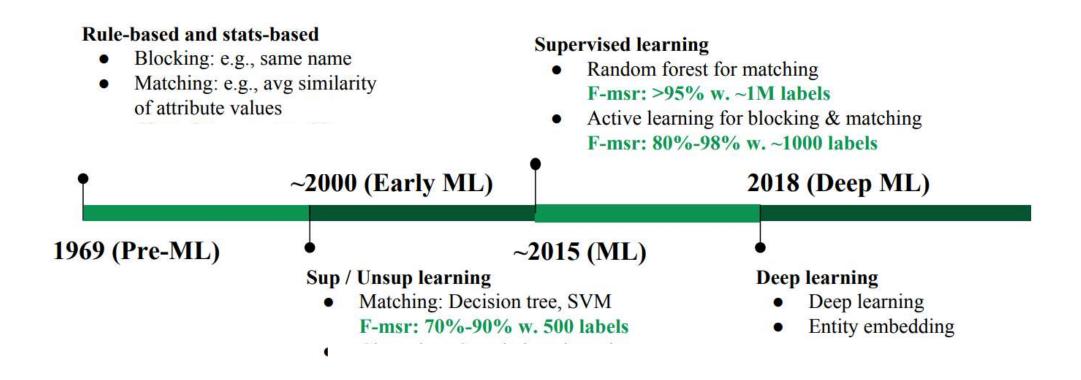
- 1. Entity Matching A Quick Overview
 - Challenges
 - Methods and Benchmarks
- 2. The Web as a Source of Training Data
 - Deployment of Schema.org Annotations
 - The WDC Product Data Corpus
- 3. Entity Matching using Deep Learning Techniques
 - Systems
 - Benchmark Results
- 4. Conclusions

Goal: Find all records in a set of data sources that refer to the same real-world entity.



Main Challenge: Heterogeneity of the entity descriptions.

Brand	Product	Model No.	RAM	Color	Release	
Samsung	Galaxy	S22	128	White	2021/1/29	
Samung	Gal.	S 21 TGB12	64 GB	blau	Feb. 2020	
Galaxy S21 Blue 64 GB TGB		64000		2020/1/29		



Luna Dong: ML for Entity Linkage. Data Integration and Machine Learning: A Natural Synergy. Tutorial at SIGMOD 2018. https://thodrek.github.io/di-ml/sigmod2018/sigmod2018.html

Туре	Dataset	Торіс	# Pairs	# Matches	# Attributes
Structured	iTunes-Amazon	Music	539	132	8
	DBLP-ACM	Bibliographic	12,363	2,220	4
	DBLP-Scholar	Bibliographic	28,707	5,347	4
	Walmart-Amazon	Products	10,242	962	5
Textual	Abt-Buy	Products	9,575	1,028	4
	Amazon-Google	Products	11,460	1,167	4

Köpcke, Thor, Rahm: Evaluation of entity resolution approaches on real-world match problems. PVLDB 2010.

https://github.com/anhaidgroup/deepmatcher/blob/master/**Datasets.md** Primpeli, Bizer: **Profiling Entity Matching Benchmark Tasks**. CIKM 2020.

Shortcomings of Many Benchmarks for Evaluating Deep Learning-based Matchers

- The benchmarks are relatively small
- The benchmarks might not cover specific patterns that are relevant for the use case at hand

Туре	Dataset	Topic	# Pairs	# Matches	# Attributes
Structured	iTunes-Amazon	Music	539	132	8
	DBLP-ACM	Bibliographic	12,363	2,220	4
	DBLP-Scholar	Bibliographic	28,707	5,347	4
	Walmart-Amazon	Products	10,242	962	5
Textual	Abt-Buy	Products	9,575	1,028	4
	Amazon-Google	Products	11,460	1,167	4

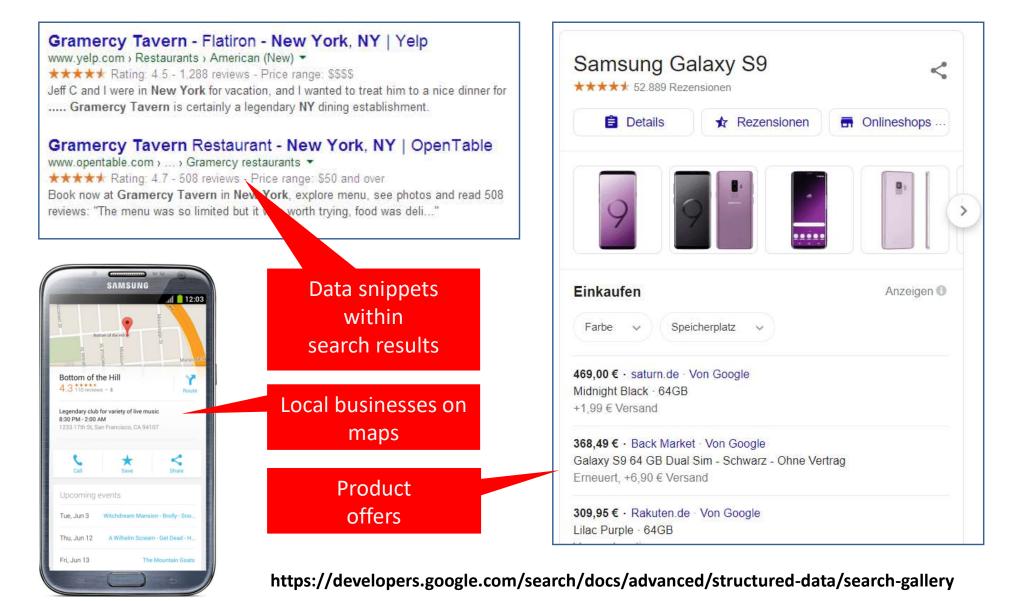
2. The Web as a Source of Training Data

- ask website owners since 2011 to annotate data within pages for enriching search results
- 675 Types: Event, Place, Local
 Business, Product, Review, Person
- Encoding: Microdata, RDFa, JSON-LD

Schema.org Product Annotations within HTML using the Microdata Syntax

```
<div itemtype="http://schema.org/Product">
   <h1 itemprop="name">Coleman Signature Instant Dome 7 Orange</h1>
  Item # <span itemprop="gtin12">200734246807</span>
  <img itemprop="image" src="../20073424680.jpg">
  Special offer: <span itemprop="prize">278.99 EUR</span>
  The Coleman Signature 7-Person Instant Dome
     tent makes camping easy so you can enjoy every moment of your
     outdoor adventure. In about a minute you can have ...
 <span itemprop="review" itemtype="http://schema.org/Review">
      <span itemprop="ratingValue">5</span>
      <span itemprop="reviewBody">Great waterproof tent!</span>
   </span>
</div>
```


Usage of Schema.org Data @ Google



UNIVERSITY OF MANNHEIM Data and Web Science Group

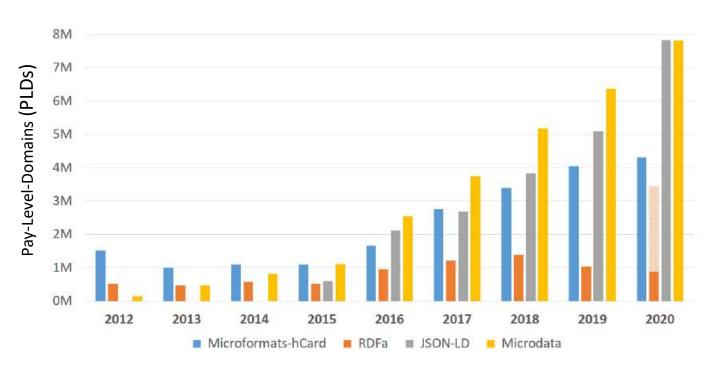
Common Crawl

Web Data Commons Project

- extracts all Microformat, Microdata,
 RDFa, JSON-LD data from the Common Crawl (CC)
- analyzes and provides the extracted data for download
- statistics of some extraction runs
 - 2010 CC Corpus: 2.8 billion HTML pages \rightarrow 5.1 billion RDF triples
 - 2013 CC Corpus: 2.2 billion HTML pages → 17.2 billion RDF triples
 - 2017 CC Corpus: 3.1 billion HTML pages → 38.2 billion RDF triples
 - 2020 CC Corpus: 3.4 billion HTML pages → 86.3 billion RDF triples

Adoption of Semantic Annotations 2020

- 1.7 billion HTML pages out of the 3.4 billion pages provide semantic annotations (50.0%).
- 15.3 million pay-level-domains (PLDs) out of the 34.5 million
 PLDs (websites) provide semantic annotations (44.3%).



http://webdatacommons.org/structureddata/2020-12/stats/stats.html

Frequently used Schema.org Classes

Top Classes	# Website	s (PLDs)
	JSON-LD	Microdata
schema:WebPage	4,484,026	1,339,999
schema:Person	3,151,809	514,990
schema:BreadcrumbList	1,688,820	924,991
schema:Article	1,327,578	627,303
schema:Product	1,234,972	1,059,149
schema:Offer	1,182,855	946,725
schema:PostalAddress	863,243	585,417
schema:BlogPosting	529,020	552,338
schema:LocalBusiness	363,843	280,338
schema:AggregateRating	432,014	315,253
schema:Place	255,139	93,124
schema:Event	194,115	77,722
schema:Review	181,097	158,333
schema:JobPosting	28,759	8,520

http://webdatacommons.org/structureddata/2020-12/stats/schema_org_subsets.html

Schema.org Attributes used to Describe Products in 2020

Attribute	# PLDs		
schema:Product/name	99 %		New Samsung Galaxy S4 GT-19505 16GB 5.0 inches Android
schema:Product/offers	94 %		Smartphone with 2-Year Sprint Contract - White Frost
schema:Offer/price	95 %		99.00 US\$
schema:Offer/priceCurrency	95 %		The Galaxy S4 is among the earliest phones to
schema:Product/description	84 %		feature a 1080p Full HD display. The various connectivity options on the Samsung include
schema:Offer/availability	72 %		connectivity options on the barnsung include
schema:Product/sku	56 %		000214632623
schema:Product/brand	30 %		Samsung
schema:Product/image	26 %		12.45
schema:Product/aggregateRating	17 %		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
schema:Product/mpn	6.3 %		GT-19505
schema:Product/productID	4.7 %	—	000214632623

http://webdatacommons.org/structureddata/schemaorgtables/

Adoption of Schema.org Product Identifier Annotations

In 2020, over 60% of the e-commerce websites annotate product IDs

schema.org/		20	13		Q	2017			2020			
Product property	Marked entitie		PLD	S	Marked entitie		PLD	s	Marked entitie		PLD	S
2	# (in K)	%	# (in K)	%	# (in K)	%	# (in K)	%	# (in K)	%	# (in K)	%
gtin8	0.3	0.0	0.0	0.0	540.9	0.1	0.3	0.0	3,661.9	0.5	22.8	1.0
gtin12	0.3	0.0	0.0	0.0	507.6	0.1	0.6	0.1	4,052.6	0.5	24.5	1.0
gtin13	177.5	0.1	0.3	0.4	5,737.9	1.2	6.6	1.0	29,590.2	3.7	68.0	2.9
gtin14	10.9	0.0	0.0	0.0	578.1	0.1	0.8	0.1	2,784.0	0.3	18.0	0.8
identifier	273.4	0.2	0.2	0.2	425.3	0.1	0.6	0.1	4,197.5	0.5	14.1	0.6
productID	28,427.0	16.0	7.4	10.8	54,787.4	11.0	38.0	6.3	51,663.9	6.5	109.3	4.7
mpn	1,561.4	0.9	0.5	0.7	15,678.3	3.2	10.1	1.7	69,860.7	8.8	148.0	6.3
sku	14,513.1	8.2	1.3	1.9	49,732.8	10.0	150.4	25.3	241,700.5	30.4	1,291.1	56.2

sku often contains merchant independent identifiers

http://webdatacommons.org/structureddata/2020-12/stats/stats.html

Grouping Offers by Product Identifier

Croup size		# Occurrence	es
Group size	2013	2017	2020
1	4,492,158	41,538,284	100,464,424
[2-5]	2,084,117	10,676,183	36,033,295
[6-10]	409,380	1,234,244	5,254,722
[11-20]	285,232	634,551	2,576,139
[21-50]	180,727	310,188	1,182,615
[51-100]	54,480	95,664	295,704
[101-200]	23,863	40,512	123,900
[201-500]	17,408	16,411	65,008
[501-800]	4,082	3,049	16,205
[801-1000]	1,208	917	5,057
[1001-5000]	2,436	2,127	11,623
[5001-10000]	125	208	852
>10000	161	497	465

Group of offers sharing the same ID

The CC 2020 contains least two offers for over 45 million products

Workflow for Cleansing the Product Clusters

Removal of listing pages

Filtering by identifier value length (8-25)

Cluster creation based on identifier value co-occurrence

Split wrong clusters due to category IDs

58M offers out of 121M (2017)

26M offers

16.4M clusters

16.6M clusters

Primpeli, Peeters, Bizer: The WDC training dataset and gold standard for large-scale product matching. WWW2019 Companion.

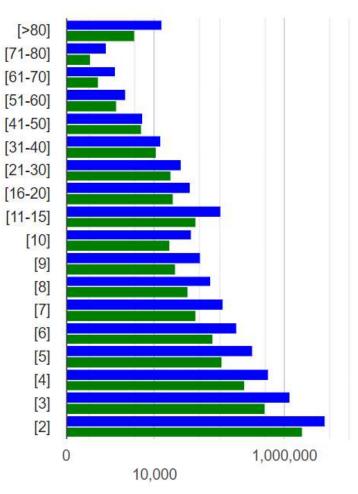
extracted from CC 2017 and 2020

Version	# Offers	# Clusters >2	# Websites
2020	98 Million	7.1 Million	603,000
2017	26 Million	3.0 Million	78,000

- cluster quality: 93,4 %
 (evaluated on sample of 900 pairs)
- available for download as JSON

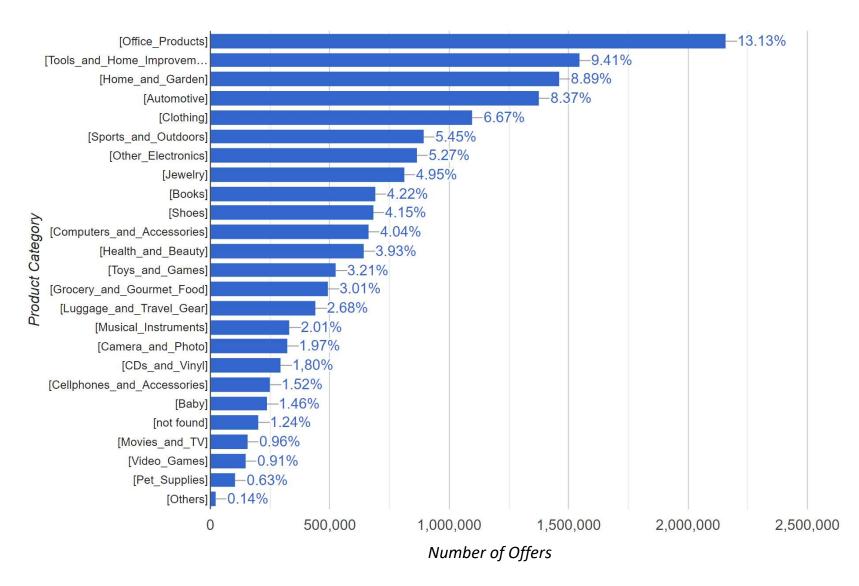
Cluster Size Distribution

Blue: 2020, Green: 2017, log-scale



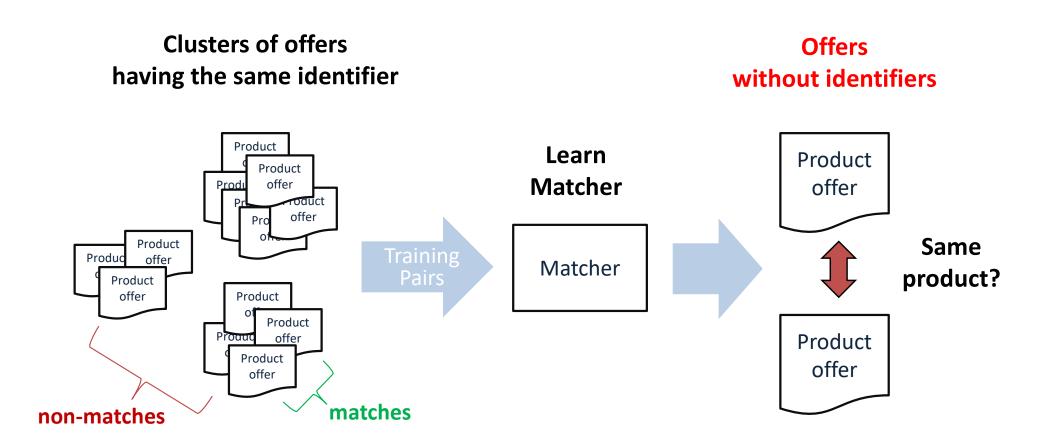
http://webdatacommons.org/largescaleproductcorpus/v2020/http://webdatacommons.org/largescaleproductcorpus/v2/

Product Categories of the Offers in the WDC Product Corpus 2017



How to cover more e-shops?

Derive Training Data from the Clusters for Learning Product Matchers



WDC Training Sets and Gold Standard for Large-Scale Product Matching

- covers four product categories
 - computers, cameras, watches, shoes
- Training sets of different sizes
 - 2,000 to 60,000 pairs of offers

Category	Size	Positives	Negatives
Computers	XLarge	9.690	58.771
	Large	6.146	27.213
	Medium	1.762	6.332
	small	722	2.112
Cameras	XLarge	7.178	35.099
	Large	3.843	16.193
	Medium	1.108	4.147
	Small	486	1.400

Category	Size	Positives	Negatives
Watches	XLarge	9.264	52.305
	Large	5.163	21.864
	Medium	1.418	4.995
	small	580	1.675
Shoes	XLarge	4.141	38.288
	Large	3.482	19.507
	Medium	1.214	4.591
	Small	530	1.533

Manually verified test sets of 1100 pairs from each category

3. Entity Matching using Deep Learning Techniques

Performance of Magellan as an Example of a Traditional Matching Method

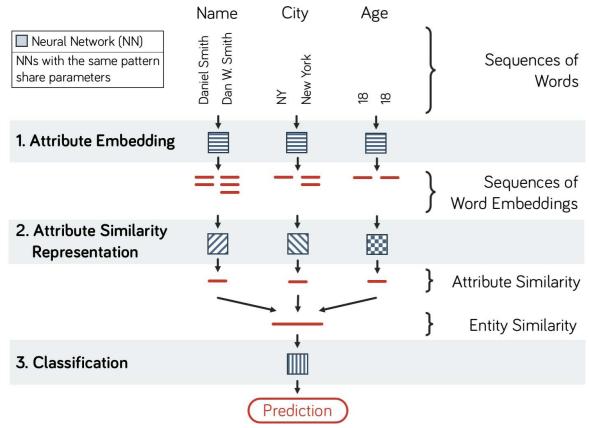
Туре	Dataset	Topic	Magellan F1
	WDC Computer - Large	Products	64.5
	WDC Computer - Small	Products	57.6
Textual Data	Abt-Buy	Products	43.6
	Amazon-Google	Products	49.1
	iTunes-Amazon	Music	91.2
Structured Data	DBLP-ACM	Bibliographic	98.4
	DBLP-Scholar	Bibliographic	94.7

Product matching performance too low for practical applications 🕾

Konda, et al.: Magellan: Toward Building Entity Matching Management. PVLDB 2016.

UNIVERSITY OF MANNHEIM Data and Web Science Group

DeepMatcher (2018)



- Embeddings: FastText
- Summarization: Bi-RNN with attention
- Similarity computation: element-wise difference and multiplication, concatenation
- Classification: Fully connected neural net, cross entropy loss

Mudgal, et al.: Deep Learning for Entity Matching: A Design Space Exploration. SIGMOD 2018.

Evaluation: DeepMatcher versus Magellan

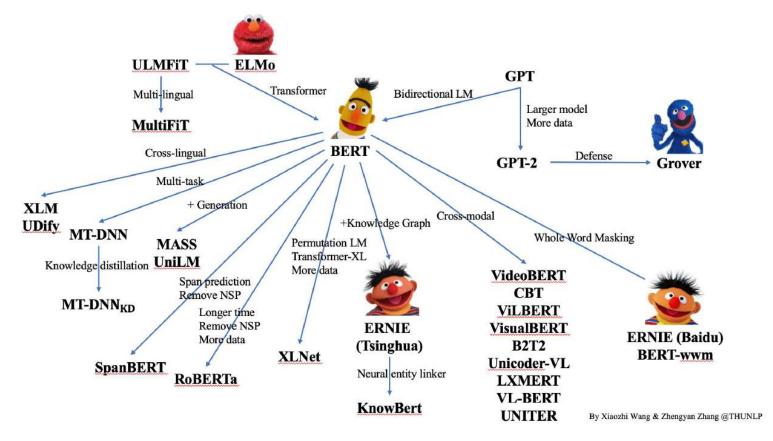
Туре	Dataset	DeepMatcher F1	Difference
	WDC Computer - Large	89.5	+25.0
	WDC Computer - Small	70.5	+12.9
Textual Data	Abt-Buy	62.8	+19.2
	Amazon-Google	69.3	+20.1
	iTunes-Amazon	88.5	-2.7
Structured Data	DBLP-ACM	98.4	+0.0
	DBLP-Scholar	92.3	+2.4

- DeepMatcher outperforms traditional methods on textual data
- mixed results on structured data

Mudgal, Sidharth, et al.: Deep Learning for Entity Matching: A Design Space Exploration. SIGMOD 2018.

Transformers started to win all Benchmarks in NLP

- Self-supervised pre-training on large text corpora
- Fine-tuning for downstream tasks

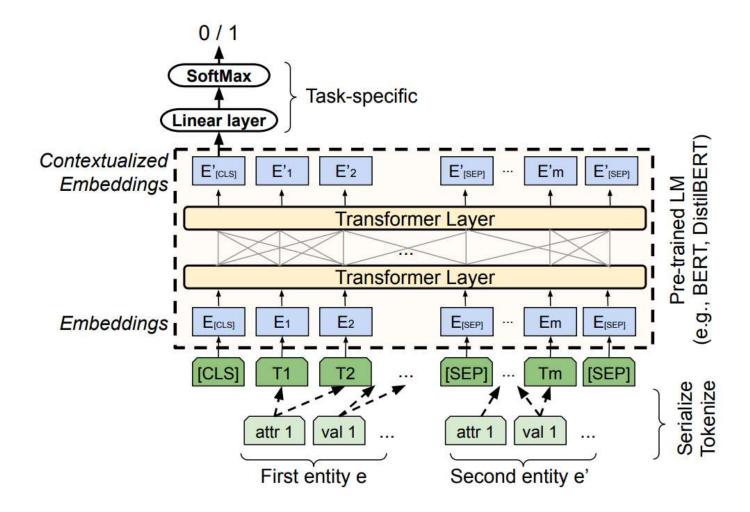


https://huggingface.co/docs/transformers/index

DITTO (2021)

- applies BERT, DistilBERT, RoBERTa for entity matching
- adds methods for entity summarization, highlighting matching clues, training data augmentation
- Entity serialization for BERT
 - Pair of entity descriptions are turned into single sequence
 - [CLS] Entity Description 1 [SEP] Entity Description 2 [SEP]
 - Entity Description = [COL] attr₁ [VAL] val₁ . . . [COL] attr_k [VAL] val_k

DITTO: Architecture



- [CLS] token summarizes the pair of entities
- linear layer on top of [CLS] token for matching decision

DITTO: Evaluation

Туре	Dataset	DITTO F1	DeepMatcher F1	Magellan F1
Textual Data	WDC Computer - Large	91.7	89.5 +3.2	64.5 +27.2
	WDC Computer - Small	80.8	70.5 +10.3	57.6 +23.2
	Abt-Buy	89.3	62.8 +26.5	43.6 +45.7
	Amazon-Google	75.6	69.3 +6.3	49.1 +26.5
Structured Data	iTunes-Amazon	97.0	88.5 +8.5	91.2 +5.8
	DBLP-ACM	99.0	98.4 +0.6	98.4 +0.6
	DBLP-Scholar	95.6	92.3 +3.3	94.7 +0.9

- large performance gain for textual data
- constant improvement for structured data

Potential Reasons for the Performance Gain

- Serialization allows model to attend to all attributes
 - no strict separation between attributes
- WordPiece tokenizer breaks unknown terms into pieces
 - no problems with out of vocabulary terms
- Transfer learning from pre-training texts
 - different surface forms are already close in embedding space
- Contextualization of the token embeddings
 - potentially more suited for capturing differing semantics

Paganelli, et al: Analyzing How BERT Performs Entity Matching. PVLDB 2022.

DITTO: Evaluation on WDC Datasets

Size xLarge (1/1)		Large (1/2)		Medium (1/8)		Small (1/20)		
Methods	DM	Ditto	DM	Ditto	DM	Ditto	DM	Ditto
Computers	90.80	95.45	89.55	91.70	77.82	88.62	70.55	80.76
	+4.65		+2.15		+10.80		+10.21	
Cameras	89.21	93.78	87.19	91.23	76.53	88.09	68.59	80.89
	+4.57		+4.04		+11.56		+12.30	
Watches	93.45	96.53	91.28	95.69	79.31	91.12	66.32	85.12
	+3.08		+4.41		+11.81		+18.80	
Shoes	92.61	90.11	90.39	88.07	79.48	82.66	73.86	75.89
	-2.50		-2.32		+3.18		+2.03	
All	90.16	94.08	89.24	93.05	79.94	88.61	76.34	84.36
	+3.92		+3.81		+8.67		+8.02	

- using BERT results in larger F1 gains for small fine-tuning sets
- DITTO is more training efficient than DeepMatcher

Impact of the Base Transformer

- BERT: Pretrained on Books Corpus, Wikipedia
- RoBERTa: Pretrained on Books Corpus, Wikipedia, Common Crawl

Testset	Training Set	BERT	RoBERTa
	xlarge	94.57	94.73
WDCt	large	92.11	94.68
WDC computers	medium	89.31	91.90
	small	80.46	86.37
	xlarge	91.42	94.39
WDC cameras	large	91.02	93.91
	medium	87.02	90.20
	small	77.47	85.74
	xlarge	95.76	94.87
WDC watches	large	95.23	93.93
	medium	89.00	92.28
	small	78.73	87.16
abt-buy	default	84.64	91.05
dblp-scholar	default	95.27	95.29
company	default	91.70	91.81

- RoBERTa performs better for product matching
- base model matters for smaller fine-tuning sets

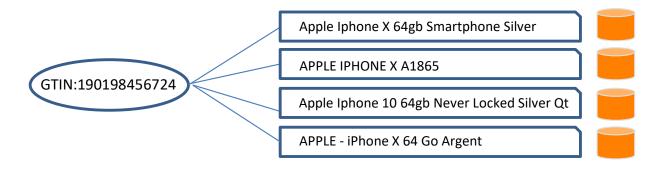
Seen versus Unseen during Training

- 1. model trained on WDC computers large
- 2. model tested using different test sets:

Test Set	RoBERTa F1	BERT F1	DeepMatcher F1	Magellan F1
a) Seen products - different offers	94.73	92.11	89.55	63.45
b) Unseen products - high similarity	83.18	84.53	58.64	27.89
c) Unseen products - low similarity	77.72	76.92	58.78	59.04
Δ between a) and c)	-17.01	-15.19	-30.91	-4.41

Peeters, Bizer: Dual-Objective Fine-Tuning of BERT for Entity Matching. PVLDB 2021

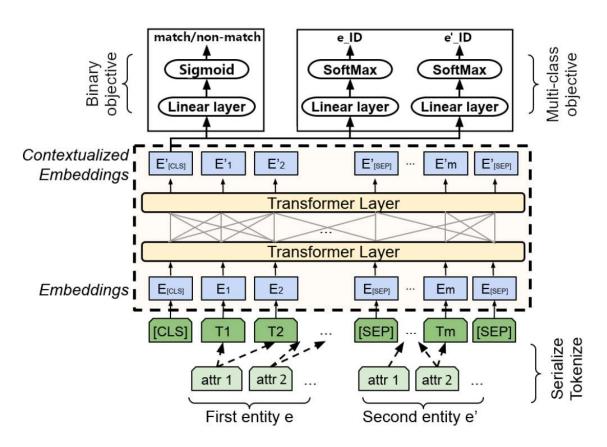
Back to schema.org Identifiers: Let's further exploit our Clusters!



Clusters of product offers allow to

- learn recognizers for single products
- treat entity matching as a multi-class classification task

- combines pairwise matching and multi-class classification via multi-task learning
- hypothesis: Learning to recognize single entities might help to classify entity pairs



Overall loss:

$$L_i = BCEL(y_{b_i}, \hat{y}_{b_i}) + (CEL(y_{l_i}, \hat{y}_{l_i}) + CEL(y_{r_i}, \hat{y}_{r_i}))$$

BCEL: Binary cross entropy loss

CEL: Cross entropy loss

Peeters, Bizer: Dual-Objective Fine-Tuning of BERT for Entity Matching. PVLDB 2021.

JointBERT: Evaluation

Testset	Training Set	Word Co-oc	Magellan	Deepmatcher	BERT	RoBERTa	Ditto	JointBERT
WDC computers	xlarge	82.39	63.16	88.95	94.57	94.73	96.53	97.49
	large	81.23	64.56	84.32	92.11	94.68	93.81	96.90
	medium	70.94	61.59	69.85	89.31	91.90	88.97	88.82
	small	62.69	57.60	61.22	80.46	86.37	81.52	77.55
WDC cameras	xlarge	73.33	51.70	84.88	91.42	94.39	94.74	98.02
	large	76.24	54.49	82.16	91.02	93.91	94.41	96.51
	medium	69.89	54.99	69.34	87.02	90.20	87.97	87.91
	small	64.86	52.78	59.65	77.47	85.74	78.67	78.30
WDC watches	xlarge	79.78	56.04	88.34	95.76	94.87	97.05	97.09
	large	79.64	60.59	86.03	95.23	93.93	97.17	98.46
	medium	69.54	66.62	67.92	89.00	92.28	89.16	87.46
	small	63.49	59.73	54.97	78.73	87.16	81.32	75.83
WDC shoes	xlarge	70.38	61.45	86.74	87.44	88.88	93.28	97.88
	large	71.18	60.48	83.17	87.37	86.60	90.07	95.16
	medium	72.43	59.80	74.40	79.82	81.12	83.20	82.61
	small	63.65	58.57	64.71	74.49	80.29	75.13	73.13

Increase of 1% to 5% F1 given enough training examples

Peeters, Bizer: Dual-Objective Fine-Tuning of BERT for Entity Matching. PVLDB 2021.

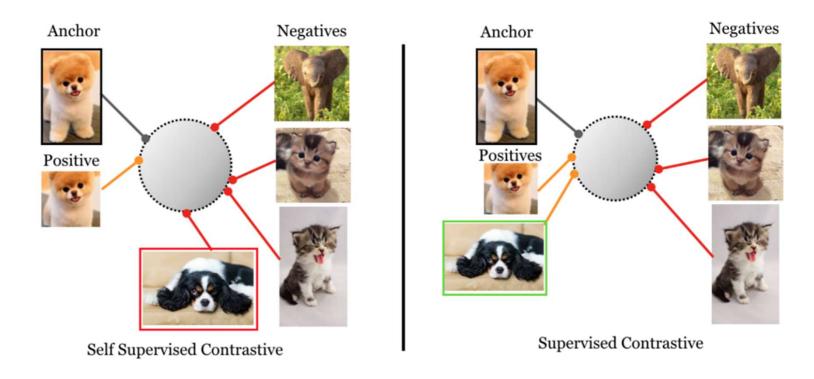
What about Long-Tail Products without many Training Examples?

Testset	Training Set	Word Co-oc	Magellan	Deepmatcher	BERT	RoBERTa	Ditto	JointBERT
<i>-</i>	xlarge	82.39	63.16	88.95	94.57	94.73	96.53	97.49
WDC computers	large	81.23	64.56	84.32	92.11	94.68	93.81	96.90
	medium	70.94	61.59	69.85	89.31	91.90	88.97	88.82
	small	62.69	57.60	61.22	80.46	86.37	81.52	77.55
umo.	xlarge	73.33	51.70	84.88	91.42	94.39	94.74	98.02
	large	76.24	54.49	82.16	91.02	93.91	94.41	96.51
WDC cameras	medium	69.89	54.99	69.34	87.02	90.20	87.97	87.91
	small	64.86	52.78	59.65	77.47	85.74	78.67	78.30
	xlarge	79.78	56.04	88.34	95.76	94.87	97.05	97.09
WDC	large	79.64	60.59	86.03	95.23	93.93	97.17	98.46
WDC watches	medium	69.54	66.62	67.92	89.00	92.28	89.16	87.46
	small	63.49	59.73	54.97	78.73	87.16	81.32	75.83
WDC shoes	xlarge	70.38	61.45	86.74	87.44	88.88	93.28	97.88
	large	71.18	60.48	83.17	87.37	86.60	90.07	95.16
	medium	72.43	59.80	74.40	79.82	81.12	83.20	82.61
	small	63.65	58.57	64.71	74.49	80.29	75.13	73.13

Results for smaller training sets (~2-3K) are ~10% F1 below top results achieved using >50K training pairs.

Contrastive Pretraining in Vision

- applies data augmentation to add positives
- uses large batches containing many positive and negative examples
- maximizes distance between classes in the embedding space

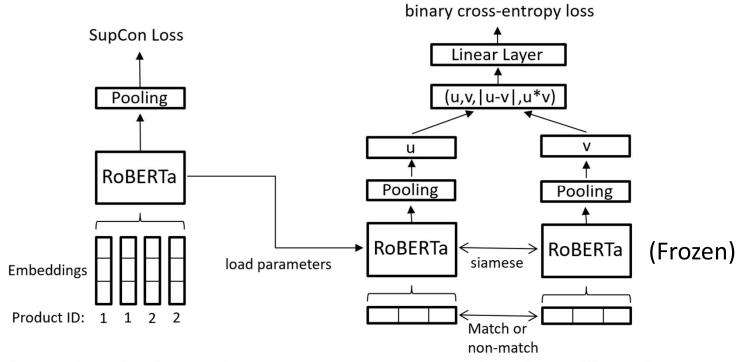


Khosla, et al.: **Supervised Contrastive Learning**. NeurIPS 2020.

Supervised Contrastive Pretraining for Entity Matching (2022)

Contrastive Pre-Training Stage

Cross-entropy Fine-Tuning Stage



Input: Batch of n product offers with product IDs

Input: Batch of product offer pairs with match/non-match labels

Peeters, Bizer: Supervised Contrastive Learning for Product Matching. WWW Companion 2022.

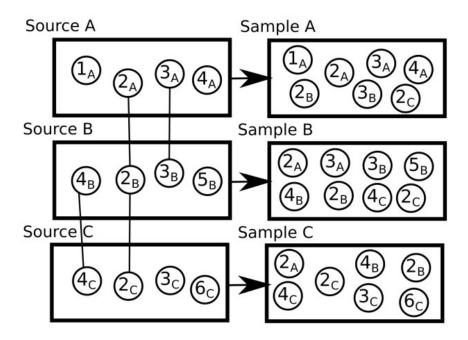
Evaluation: Supervised Contrastive Pretraining R-SupCon + Augmentation

		WDC Cor	Abt- Buy	Amazon -Google		
# Training Pairs	~3K (small)	~8K (medium)	~23K (large)	~68K (xlarge)	~7.5K	~9K
DeepMatcher	61.22	69.85	84.32	88.95	62.80	70.70
RoBERTa	86.37	91.90	94.68	94.73	91.05	74.10
Ditto	80.76	88.62	91.70	95.45	89.33	75.58
JointBERT	77.55	88.82	96.90	97.49	83.44	-
R-SupCon	93.18	97.66	98.16	98.33	93.70	79.28
R-SupCon+augment	95.21	98.50	98.50	98.33	94.29	76.14
Δ to best baseline	+ 8.84	+ 6.60	+ 1.60	+ 0.84	+ 3.24	+ 3.70

F1 > 0.95 results also for small training sets!

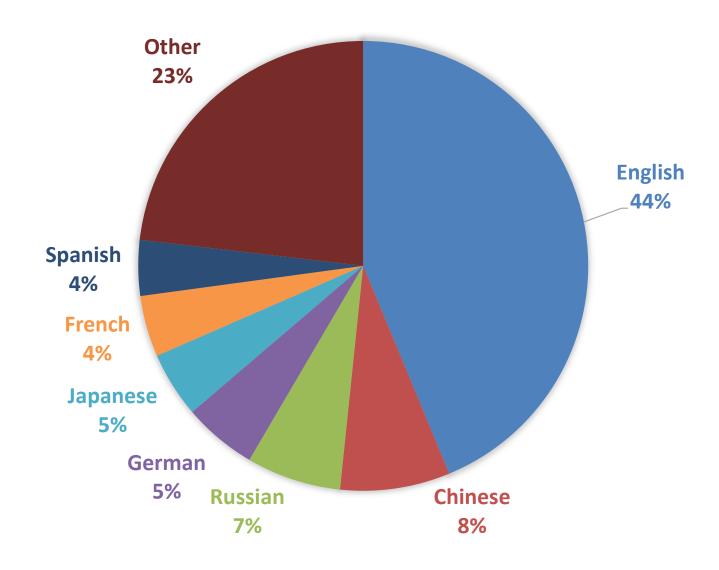
Contrastive Learning Requires Clean Training Data

- False negatives due to incomplete training data heavily deteriorate the quality of the learned representation
- Work-Around: Source-aware sampling strategy



Peeters, Bizer: Supervised Contrastive Learning for Product Matching. WWW Companion 2022.

Language of the Webpages in the Common Crawl



Cross-Language Learning for Product Matching

- schema.org ID clusters may cover multiple languages
 - many offers in English as head language
 - less offers in languages such as French or German
- Potential for cross-language learning!
- Experiment: Fine-tuning mBERT

German training set extended with English pairs. F1s:

DE EN	0	450	900	1800	3600	7200	Δ 0-7200
450	67.11	72.79	75.44	80.83	86.82	87.97	20.86
900	75.76	75.10	74.00	87.67	88.92	88.19	12.43
1800	87.69	88.43	88.38	90.17	90.72	91.44	3.75
3600	93.63	92.98	92.46	93.97	93.25	94.46	0.83

Peeters, Bizer: Cross-Language Learning for Product Matching. WWW Companion 2022.

Conclusions: Deep Learning for Entity Matching

- 1. Transformer-based matchers boost matching performance
 - F1 scores >0.95 in many cases
- 2. Contrastive pre-training and cross-language learning improve performance for long-tail entities
- 3. All entities should be covered by training examples
 - F1 scores for unseen entities around 0.80
- 4. Reduced feature engineering effort
 - less information extraction effort due to serialization
 - less value normalization necessary due to pre-training

Conclusions: The Web as a Source of Training Data

- 1. Schema.org annotations are a valuable source of training data
 - many e-shops, many products, many languages
 - potential to derive benchmarks with a wide range of different characteristics from the WDC product corpus
- 2. Potential to learn matchers for other schema.org classes
 - Local business identifiers: DUNS, vatID, tickerSymbol, PhoneNumber
 - Publication identifiers: ISBN, LCCN, GND
 - Song identifiers : ISWC, MusicBrainzID
- 3. Supervision for other tasks
 - hierarchical classification (products, jobs, local business)
 - table annotation and schema matching (all schema.org classes)
 - pre-training of domain-specific language models (HR-BERT, Event-BERT)

Hands On: Entity Matching Methods

- The source code for all discussed matchers is available
 - you can test if the methods work for your use cases
- Current benchmark results are found on Papers with Code
 - good reference point for latest developments
 - provides links to the source code of the different matchers



https://paperswithcode.com/task/entity-resolution/

Hands On: Experimenting with Schema.org Data

- All mentioned datasets are available for download
- Product Data Corpora and Training/Test Sets (JSON)
 - http://webdatacommons.org/largescaleproductcorpus/v2/
 - https://webdatacommons.org/largescaleproductcorpus/v2020/
- Data for all Schema.org Classes (RDF quads)
 - LocalBusiness, Event, JobPosting, Review, ...
 - http://webdatacommons.org/structureddata/
- Schema.org Table Corpus (JSON)
 - data from 42 schema.org classes grouped into 2 million tables:
 one table per schema.org class and website
 - http://webdatacommons.org/structureddata/schemaorgtables/

