Profiling Entity Matching Benchmark Tasks

Anna Primpeli
anna@informatik.uni-mannheim.de
Data and Web Science Group
University of Mannheim
Mannheim, Germany

ABSTRACT

Entity matching is a central task in data integration which has been
researched for decades. Over this time, a wide range of benchmark
tasks for evaluating entity matching methods has been developed.
This resource paper systematically complements, profiles, and com-
pares 21 entity matching benchmark tasks. In order to better un-
derstand the specific challenges associated with different tasks, we
define a set of profiling dimensions which capture central aspects
of the matching tasks. Using these dimensions, we create groups
of benchmark tasks having similar characteristics. Afterwards, we
assess the difficulty of the tasks in each group by computing base-
line evaluation results using standard feature engineering together
with two common classification methods. In order to enable the
exact reproducibility of evaluation results, matching tasks need to
contain exactly defined sets of matching and non-matching record
pairs, as well as a fixed development and test split. As this is not
the case for some widely-used benchmark tasks, we complement
these tasks with fixed sets of non-matching pairs, as well as fixed
splits, and provide the resulting development and test sets for public
download. By profiling and complementing the benchmark tasks,
we support researchers to select challenging as well as diverse tasks
and to compare matching systems on clearly defined grounds.

CCS CONCEPTS

« Information systems — Entity resolution; Deduplication.

KEYWORDS

entity matching; benchmarking; profiling; reproducibility; baseline
evaluation

ACM Reference Format:

Anna Primpeli and Christian Bizer. 2020. Profiling Entity Matching Bench-
mark Tasks. In Proceedings of the 29th ACM International Conference on
Information and Knowledge Management (CIKM ’20), October 19-23, 2020,
Virtual Event, Ireland. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3340531.3412781

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM °20, October 19-23, 2020, Virtual Event, Ireland

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6859-9/20/10...$15.00
https://doi.org/10.1145/3340531.3412781

Christian Bizer
chris@informatik.uni-mannheim.de
Data and Web Science Group
University of Mannheim
Mannheim, Germany

1 INTRODUCTION

Entity matching identifies records in one or more data sets that
refer to the same real-world entity [4, 5, 9]. Being a central task
in data integration, entity matching has been the focus of many
research works as well as industrial projects for more than five
decades [10].

In order to evaluate and compare different entity matching meth-
ods, a wide range of benchmark tasks has been developed and made
publicly available. A benchmark task for entity matching consists
of the following artifacts: 1) One or more data sets consisting of
records describing real-world entities and 2) a set of correspon-
dences stating for all or a subset of all record pairs whether they
describe the same real-world entity (match) or different real-world
entities (non-match). Many entity matching methods rely on super-
vised machine learning and the correspondence set is thus often
split into training and test sets. Matching the schemata of the data
sets is usually considered a separate problem and it is assumed
that all correspondences between the attributes of the data sets are
known. Figure 1 illustrates the artifacts of an entity matching task
along the example of two data sets describing smartphones.

Understanding the difficulty and diversity of benchmark tasks
is essential for the meaningful comparison of matching methods
and the assessment of their strengths and weaknesses. Existing
approaches for categorizing benchmark tasks focus only on the
structure of the benchmark data sets but ignore the influence of
the correspondence set on the difficulty of a matching task. For
instance, Mudgal et al. [17] categorize matching tasks into the
categories structured, textual, and dirty. However, textuality and
structuredness alone are not enough to understand the specific
challenges associated with a matching task: matching two data sets
with records having textual descriptions and no corner cases, i.e. all
matches have high textual similarity and all non-matches have low
textual similarity, is less challenging than matching data sets with
textual records and many corner cases. In addition to corner cases,
the size of the correspondence set that is available for training also
determines the capability of supervised learning methods to excel
on a matching task. Therefore, the correspondence set needs to
be considered in addition to the data sets for profiling benchmark
tasks.

This paper fills this gap by proposing a set of profiling dimen-
sions which capture properties of the data sets as well as the corre-
spondence set. Based on these dimensions, we define five groups
of benchmark tasks which capture specific matching challenges.
We apply the dimensions as well as the grouping to systematically
profile 21 benchmark tasks. The resulting grouping on the one hand
verifies the utility of the proposed dimensions and on the other hand
unveils the specific challenges associated with the benchmark tasks.

https://doi.org/10.1145/3340531.3412781
https://doi.org/10.1145/3340531.3412781
https://doi.org/10.1145/3340531.3412781

DatasetA Data set B
ID | name price brand ID | name price brand
Al | i-phone 4s 200€ apple Bl | iphone 4 190€ apple
A2 | htconem9 220€ htc B2 | onem9 210€ htc
Correspondences

Al-B1 non-match

A2-B2 match

A1-B2 non-match

Figure 1: Artifacts of an Entity Matching Task

In addition, we evaluate the difficulty of the 21 benchmark tasks
by computing baseline evaluation results using standard feature
engineering together with two widely-used classification methods
(SVMs and Random Forests). In this way, we set a lower bound that
new supervised matching methods should at least be able to beat.
Finally, in order to ensure the exact reproducibility of matching
results and the sound comparison of matching methods, we sug-
gest a heuristic for complementing benchmark tasks which do not
provide pre-defined non-matches as well as fixed development and
test sets. We provide the resulting complemented benchmark tasks
for public download!.
The contributions of our work are summarized as follows:

o We define a set of profiling dimensions for analyzing en-
tity matching tasks which captures characteristics of the
correspondence set in addition to the data sets.

o We create groups of benchmark tasks having similar charac-
teristics and associated challenges.

o We evaluate the difficulty of 21 benchmark tasks by estab-
lishing baseline evaluation results.

e We complement existing benchmark tasks and make all re-
sulting artifacts publicly available in order to support the
reproducibility and comparability of matching results.

This paper is structured as follows: Section 2 introduces the
benchmark tasks that we analyze throughout the paper. Section 3
describes the employed heuristic for complementing existing bench-
mark tasks. Section 4 presents the profiling dimensions of matching
tasks that we extract and use for grouping. In Section 5, we present
the baseline matching methods and report the baseline results for
each task. Section 6 discusses the related work in the areas of pro-
filing matching tasks as well as reproducing matching results.

2 BENCHMARK TASKS

Various repositories provide entity matching benchmark tasks for
public download in an effort to facilitate the evaluation, repro-
ducibility, and comparability of matching methods. The Database
Group of the University of Leipzig? has published several bench-
mark tasks in 2010 which are widely used by the community since
then. The Magellan repository® is maintained since 2015 by the

!http://data.dws.informatik.uni-mannheim.de/benchmarkmatchingtasks/index.html
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_
for_entity_resolution

3https://sites.google.com/site/anhaidgroup/useful-stuff/data

Data Management Research Group of the University of Wisconsin-
Madison. It includes a large collection of benchmark tasks, a subset
of which has been created by the same research group while some
tasks have been collected from other repositories. The DuDe repos-
itory of the Hasso Plattner Institute*, provides three benchmark
tasks originally published by other sources which have been modi-
fied to better serve the matching setting [7]. Finally, the Web Data
Commons project, which is maintained by the Data and Web Sci-
ence Group of the University of Mannheim, has published several
e-commerce related benchmark tasks®’°.

We collect and profile 21 benchmark tasks from these four repos-
itories. Table 1 provides information about the selected tasks includ-
ing references to publications which use the corresponding task.
Additionally, we report basic profiling information concerning the
amount of data sets from which the records originate, the number of
records in the data sets, the amount of matching and non-matching
record pairs in the correspondence set, whether fixed development
and test splits are provided, the number of attributes having specific
data types, and the average density (ratio of non-null values to all
values) of the attributes of all records appearing in the correspon-
dence set. We consider an attribute to be of data type long string, if
the average length of its values exceeds six words. As shown in Ta-
ble 1, the tasks are highly diverse and include data sets of different
sizes, amounts of attributes, density as well as attribute data types.
Most benchmark tasks contain records deriving from two data sets.
In contrast, the tasks provided by the Web Data Commons Product
repositories include records from up to 269 data sets.

Six matching tasks provide the complete mapping (i.e. all match-
ing record pairs) while no non-matching pairs are offered. For
the rest of the tasks a subset of both matching and non-matching
record pairs is included in the set of correspondences. For the cases
where the complete mapping is provided, non-matching pairs can
be generated by calculating the Cartesian product of all records and
excluding the matching pairs. Given the size of the data sets, this
often results in large numbers of non-matching pairs and thus mo-
tivates the usage of blocking techniques [8, 18] to remove obvious
non-matches which are not helpful for training and uninteresting
for testing. As the benchmark tasks only define matches, different
researchers who use these tasks, generate different sets of non-
matches which influence the model training [2, 16, 17]. Given that
not all of those works publish the complemented sets used for their
experiments, it is not possible to exactly reproduce the evaluation
of the methods.

Except for the large Web Data Commons tasks, it is uncommon
for benchmark tasks to provide fixed splits for model development
and model testing. Researchers using the tasks thus split the cor-
respondences into development and test sets by themselves often
without providing the details required for reproducing the splits
in their papers, such as the sampling tool and random seeds. This
hampers the reproducibility of the experimental results.

“https://hpi.de/naumann/projects/data-integration-data-quality-and-data-
cleansing/dude.html
Shttp://webdatacommons.org/productcorpus/index.html
®http://webdatacommons.org/largescaleproductcorpus/v2/index.html

Table 1: Overview of the Benchmark Tasks

#Data #Records #Non- Fixed Attributes
Matching Task [Used in] Sets L R #Matches Matches Splits | #Short Str. #Long Str. #Num. Density
Leipzig Database Group
abt-buy [16, 17] 2 | 1,081 1,092 1,095 - 0 2 1 0.63
amazon-google [16, 17] 2| 1,363 3,226 1,298 - 1 2 1 0.75
dblp-acm [2, 16, 17] 2| 2,614 2,294 2,223 - 1 2 1 1.00
dblp-scholar [2, 8, 16, 17] 2| 2,616 64,263 5,346 - 1 2 1 0.81
DuDe
restaurantsgodors-zagats [17] 2 533 331 112 - 5 0 0 1.00
cora [13, 24] 1 1,879 64,578 268,082 11 6 1 0.31
Magellan
productswaimart-Amazon 12> 17] 2 [2,554 22,074 1,154 - 6 3 1 0.84
baby products 2| 5,085 10,718 108 292 7 2 7 0.42
beer [16, 17] 2 | 4,345 3,000 68 382 4 0 0 0.96
bikes 214,785 9,002 130 320 5 0 3 0.78
booKSGoodreads-Barnes 23967 3,700 92 305 6 1 3 0.53
cosmetics 2| 6,443 11,026 128 280 2 1 0 0.94
MUSICiTunes - Amazon [2, 16, 17] 2 | 6906 55,932 132 407 7 0 0 0.99
restaurantsyeliow - yelp [16] 2 | 5223 11,840 130 270 5 0 1 1.00
Web Data Commons
phones [21, 22] 17 447 50 258 22,092 22 1 3 0.25
headphones [21, 22] 6 444 51 226 22,418 21 3 3 0.13
tvs [21, 22] 8 428 60 182 25,499 49 9 3 0.07
xlarge_cameras [16, 19] 269 3,665 7,478 35,899 v 1 3 0 0.51
xlarge_watches [16, 19] 190 4,068 9,564 53,105 v 1 3 0 0.43
xlarge_computers [16, 19, 20] 235 4,676 9,991 59,571 v 1 3 0 0.50
xlarge_shoes [16, 19] 120 2,808 4,440 39,088 v 1 3 0 0.41

3 TASK COMPLETION

In order to exactly reproduce evaluation results, the correspondence
set must contain the same non-matches and it must be split into
a fixed development and test set. As explained in section 2, most
benchmark tasks do not provide fixed splits.

We complement the correspondence sets of the benchmark tasks
that provide a complete mapping but do not provide non-matches
using the following heuristic: First, we construct all non-matching
record pairs by calculating the Cartesian product of all records and
exclude the pairs appearing in the complete mapping. We restrict
the amount of non-matching pairs to allow for reasonable duration
of feature creation and training by blocking using the domain-
dependent label of the records, e.g. title for records describing
books or product name for records describing products. The blocks
of non-matching pairs are created using relaxed Jaccard with inner
Levenshtein distance and a threshold of 0.2. We select all non-
matching pairs within each block. To avoid selection bias, we add
randomly selected non-matching pairs, the amount of which equals
to 25% of the amount of non-matching pairs sampled within the
blocks. To allow a high diversity of distinct records appearing in
the correspondence set, we allow each record to appear in at most
10 non-matching record pairs. Finally, we apply stratified sampling
and split the correspondence sets of the tasks that do not provide
fixed splits, into training (70%), optimization (20%), and test (10%)
sets.

4 MATCHING TASK PROFILING

This section introduces the profiling dimensions that we use for an-
alyzing the tasks and describes our strategy for selecting attributes
that are relevant for entity matching. Afterwards, we present the
profiling results for the 21 tasks and create groups of tasks having
similar characteristics.

4.1 Relevant Attributes

Attributes that do not contribute to the solution of a matching task
are not relevant for understanding the task-related challenges and
therefore should be excluded from the profiling.

We identify relevant attributes by learning a Random Forest and
by selecting attributes based on the importance of the features of
the trained model. For this, we calculate various pairwise record
similarity scores for each attribute using a set of data type specific
similarity metrics. All details about the feature generation are pro-
vided in section 5.1. The feature selection method starts by fitting a
Random Forest classifier to the complete feature vector and retriev-
ing the weights of the features, i.e. the feature importances assigned
by the trained classifier. The Random Forest classifier is evaluated
using four-fold cross validation. The score of this evaluation F1,
is the F1 score that can be reached when all attributes are used for
feature generation and learning. Next, the features are sorted in
descending order given their weights. We iterate over the sorted
features and in each iteration m we reduce the feature vector to

top m features. The reduced feature vector is used for learning a
new Random Forest classifier which is evaluated with F1,,. We stop
iterating once the model learned using a reduced feature vector
reaches the quality of the model learned on the complete feature
set, i.e. F1, >= F1,. Algorithm 1 gives the pseudo code of our
feature selection strategy.

We identify relevant attributes by projecting the relevant fea-
tures to single record attributes, e.g. title_Levenshtein to title. In
contrast to key detection, which finds the combinations of attributes
that uniquely identify records in a data set, our attribute selection
strategy finds attributes whose values when compared pairwise
with one or more similarity metrics, help reveal if a pair of records
is matching or non-matching.

The coverage of models learned with different combinations
of attributes can significantly vary as not all attributes contribute
equally to the solution of the matching task [21]. Discovering the set
of attributes that encode the most-identifying information, is crucial
for the extraction of more focused profiling meta-information. We
define these attributes as top relevant attributes and approximate
their calculation using the following simple rule: the top relevant
attributes are the attributes that when used for pairwise feature
generation and model learning, make up for 95% of the maximum F1
score, F1,. Therefore, we use the same feature selection strategy as
described by Algorithm 1 with the only difference that the selection
condition (line 8 in the pseudo code) is now F1, >= 0.95 X F1p,.

Algorithm 1 Feature selection algorithm

Input: Dy, : r X n matrix, n > 0

Output: D’ : r X m matrix,0 < m <=n

: model, = RandomForest(Dy,)

F1, = cross_validate(model,, Dy,)

. sorted_features = sort_desc(model,.feature_importances)
: form=1tondo

D’ « Dy[r,sorted_features.top(m)]
modely, = RandomForest(D’)

Fl1y, = cross_validate(model,,, D)
if F1,, >= F1, then break

end if

. end for

: return D’

R A U A

_ =
[N

4.2 Profiling Dimensions

We define five profiling dimensions that evolve around specific
matching-related challenges: schema complexity, textuality, spar-
sity, development set size and corner cases. In the following, we
present the motivation behind each profiling dimension and explain
how it is calculated.

Schema Complexity (SC) This dimension refers to the amount
of attributes that contribute to solving a matching task. A high
schema complexity suggests a larger amount of underlying match-
ing patterns and thus might be harder for a learner to solve. We ap-
proximate schema complexity by the number of relevant attributes
of a matching task, calculated with the heuristic introduced in
section 4.1.

Textuality (TX) Attribute values that consist of long sequences of
words, e.g. the title of a product offer in e-commerce, often contain
information that could also have been represented using multiple
attributes. Such attributes are challenging for matching methods as
they need to either separate the attributes in pre-processing or apply
similarity metrics that can deal with below 1st normal form values.
We calculate the textuality of a matching task as the average length
value in words split by white-space, of the top relevant attributes
of the records appearing in the set of correspondences.

Sparsity (SP) Having missing values in a supervised learning set-
ting is a well recognized challenge for machine learning. In a clas-
sification setting with a non-dense feature vector, the learning
algorithm has to learn multiple classification functions with each
function covering a subset of the data points having the same
missing features [12]. We calculate sparsity as the ratio of missing
attribute values to all attribute values of the relevant attributes of
records that appear in the correspondence set of the matching task.
Development Set Size (DS) The difficulty of a matching task also
depends on the amount of correspondences that are available for
learning and selecting matching models. This is an instantiation
of the general observation that the performance of a classifier is
affected by the size of the training set, while small sample sizes tend
to cause classification models to overfit the data used for training
and optimization [1]. We calculate the development set size as the
amount of matching and non-matching record pairs in the training
and optimization sets of a matching task.

Corner Cases (CC) The dimension of corner cases aims to cap-
ture the amount of record pairs that are non-matching but their
attribute values are similar and the ones that have attributes values
of low similarity but are matching. This dimension is crucial for
understanding the difficulty of a matching task. In a trivial match-
ing setting with no corner cases, the matching record pairs lie far
from the non-matching record pairs in the hypersurface of the
vector space and can be thus perfectly separated with a decision
boundary. A less trivial matching task, includes record pairs that are
close to the decision boundary. For these corner cases the learning
algorithm needs to make further adjustments.

We use this observation and the simple case of a linear classifier
for approximating the amount of corner cases of a matching task
which we compute with the following heuristic: for every record
pair in the correspondence set we calculate an aggregated similar-
ity score by averaging the pairwise similarity score-based feature
values, the computation of which is detailed in section 5.1, of the
top relevant attributes. Feature values that cannot be computed
because of missing corresponding attribute values of one or both
records of the pair, are excluded from this aggregation. With every
record pair being represented by its aggregated similarity score,
we iteratively search in steps of 0.01 for the threshold value that
can best separate the matching from the non-matching pairs, i.e.
maximizes the F1 score. Once the optimal threshold is found, we
measure the amount of matching pairs lying in the non-matching
zone (false negatives) and the amount of non-matching pairs lying
in the matching zone (false positives). To account for the class im-
balance problem in entity matching, the corner cases dimension is

calculated as the ratio of corner cases in relation to the amount of
matchin airS'# alse_positives+#false_negatives
gp : #matching_pairs :

Table 2: Relevant Attributes and Profiling Results
SP = Sparsity, SC = Schema Complexity, TX = Textuality, DS = Development Set Size, CC = Corner Cases

Matching Task Relevant Attributes Profiling Dimensions
%ofall | SP SC TX DS CC
Group 1: Dense Data, Simple Schema
beer [[beer_name], brew_factory, ABV, style] 1.00 | 0.06 4 5.32 405 0.32
bikes [[color, bike_name], price, km_driven] 0.44 | 0.00 4 5.37 405 0.09
MUSICiTunes-Amazon [[song_name, time], album_name] 0.42 | 0.00 3 6.6 485 0.08
restaurantsyellow-Yelp [[phone], name, address] 0.50 | 0.00 3 2 360 0.05
restaurantsgodors-zagats | [[phone], name, address] 0.60 | 0.00 3 1.02 600 0.03
Group 2: Sparse Data, Complex Schema
phones [[phone_type,memory, display_size], color, mpn, ..] 0.38 [039 10 48 20,137 042
headphones [[model], mpn, impedance, sensitivity, accessories] 0.18 | 0.63 5 1.5 20,401 0.23
tvs [[model], mpn, weight, height, width] 0.11 | 0.64 7 1.04 23,138 0.36
Group 3: Small and Difficult
baby products [[title, ext_id, SKU],colors, category, ..] 0.50 | 032 8 9.2 360 0.81
booksgoodreads-Barnes [[pagecount, title], publisher, ISBN13, format, ..] 0.70 | 0.24 7 7.86 357 0.53
cosmetics [[color, description], price] 1.00 | 0.07 3 9.36 367 0.27
Group 4: Textual Data, Few Corner Cases
dblp-acm [[title], year, authors] 0.75 | 0.00 3 7.65 42,079 0.02
dblp-scholar [[title], authors] 0.50 | 0.02 2 7.8 74,689 0.07
productswalmart-Amazon | L[title, modelno], long_description, brand, price] 0.50 | 0.08 5 10.52 14,036 0.27
cora [[authors, volume, pages, year, title] , ..] 0.38 | 0.26 7 15.97 299,726 0.23
Group 5: Textual Data, Many Corner Cases
abt-buy [[name], description, price] 1.00 | 0.23 3 8.69 6,452 0.69
amazon-google [[name, price, description]] 0.75 | 0.03 3 130.22 7,604 0.68
xlarge_cameras [[title, description], brand, specTable] 1.00 | 038 4 9871 42,277 0.78
xlarge_watches [[title, description], specTable, brand] 1.00 | 0.43 4 109.79 61,569 0.64
xlarge_computers [[title, description], brand, specTable] 1.00 | 0.44 4 51.69 68,462 0.86
xlarge_shoes [[title, description]] 0.50 | 0.17 2 80.85 42,429 098

4.3 Profiling and Grouping the Matching Tasks

We identify the relevant attributes, calculate the values of the five
profiling dimensions from each task, and create groups of tasks
having similar characteristics. Table 2 presents the grouped bench-
mark tasks along with the attributes that are relevant for matching,
the ratio of relevant attributes to all attributes, as well as the values
of the five profiling dimensions sparsity (SP), schema complexity
(SC), textuality (TX), development set size (DS) and corner cases
(CC). The relevant attributes are listed in descending order of the
corresponding feature importances. The inner brackets indicate the
top relevant attributes.

Looking at the relevant attributes, we observe that in only 6 out
of the 21 tasks all attributes were selected as relevant using the
selection strategy described in section 4.1. For the remaining 15
tasks, a subset of the attributes is sufficient for reaching the same
F1 score which would result from using all attributes.

Small development sets can lead to models that overfit the data.
This is relevant for the bikes, booksggodreads-Barnes> and cosmetics
tasks. For these tasks, attributes which are more identifying, such as
the book title and the bike model name, receive a lower importance
weight in comparison to less identifying ones, such as the number
of pages and the bike colour.

The profiling results show patterns which we use to create five
groups of matching tasks. The grouping can help researchers to se-
lect interesting tasks for evaluating matching methods and to better
understand and interpret matching results, i.e. with which chal-
lenges a matching method can successfully deal. In the following
we present the five groups:

Group 1: Dense Data, Simple Schema. This group comprises
of matching tasks with low schema complexity (< 4 relevant at-
tributes), high density (> 0.94) and short attribute values (< 7 words).
The following benchmark tasks have dense data and simple schema:
restaurantsgodors-Zagats, Yestaurants yellow-yelp, MUSiCiTunes-Amazon:
bikes and beer. These tasks are expected to be easy to solve for
traditional machine learning algorithms.

Group 2: Sparse Data, Complex Schema. In group 2 belong
matching tasks that have non-dense attributes (< 0.60) with short
values (< 5 words) and high schema complexity (> 5 relevant at-
tributes). Under this group fall the following tasks: phones, head-
phones, and tvs. The matching methods used for evaluating these
tasks need to especially address the challenge of low data den-
sity [21].

Group 3: Small and Difficult. In this group belong the match-
ing tasks that have challenging characteristics, like high schema
complexity and textuality, but only provide a small number of
matches and non-matches which a classifier can use for learning

Datatype Title long string

Detection price s

numeric

kodak power flash single use camera compact film 35mm black

Title kodak single use 35mm blak
Price $ 12.50

Feature Vector “

i Cosine tf-idf

Cosine tf-idf Levenshtein

0.67 0.73 0.44

- i

Price §

Jaccard

12

Title

Abs. Difference

Relaxed Jaccard Containment Overlap

0.5 0.8 0.0 0.5

Figure 2: Feature Vector Creation Example

Table 3: Parameter Ranges of the Grid Search

estimators max. depth min. leaf size

RF
[10, 100, 500] [5, 10, 50, None] [1,3,5]
SVM C gamma kernel

log(-2,5), =10 [17%,17%,172,1,10] [rbf, linear*]

and model selection. The small size of the training set makes it
hard for classifiers to adapt to the different challenges and may lead
to overfitting. The benchmark tasks that fall into this group are:
booksGoodreads-Barness Cosmetics, and baby products.

Group 4: Textual Data, Few Corner Cases. This group contains
matching tasks with textual relevant attributes (> 7 words) and a
low to very low containment of corner cases (< 0.27). The challenge
imposed by the textuality dimension becomes trivial in the absence
of corner cases. The benchmark matching tasks that fall under
this category are: productswalmart-Amazon> dblp-acm, dblp-scholar,
and cora. The lower the containment in corner cases is, the less
interesting a textual matching task is for evaluating state-of-the-art
matching methods.

Group 5: Textual Data, Many Corner Cases This group con-
tains matching tasks with high textuality and many corner cases.
The benchmark tasks that can be categorized under this group are:
xlarge_cameras, xlarge_watches, xlarge_computers, xlarge_shoes,
amazon-google and abt-buy. For these tasks, embedding-based
matching methods have shown to achieve better results than meth-
ods relying on symbolic features [17, 19, 20].

5 BASELINE EVALUATION

Considering baseline results is crucial for judging the difficulty
of benchmark tasks. Baseline results set the lower limit of the
predictive quality that a new matching method needs to achieve on
a specific task and indicates if there is room for improvement for
more sophisticated matching methods. In this section, we describe
the matching methods that we employ for calculating baseline
results. Afterwards, we apply the methods to the 21 benchmark
tasks, present the baseline results, and discuss the difficulty of the
tasks in relation to the task groups.

5.1 Feature Creation

We use symbolic features which we calculate using data type spe-
cific similarity metrics, similarly to the Magellan matching sys-
tem [14]. As a first step, we therefore need to detect the data type
of each attribute. Our data type detection heuristic distinguishes
between three data types: short string, long string, and numeric.
The long string data type is assigned to those attributes whose
values have an average length larger than 6 words. In the case that
more than one data types are detected for the same attribute, we
assign long string, if long string appears in the list of detected data
types, otherwise we assign short string.

Given the detected data type, multiple data type specific simi-
larity metrics are used for constructing the feature vector. Feature
values of data type short string are compared using the following
similarity metrics: Levenshtein, Jaccard on the token level, Jaccard
with inner Levenshtein, exact similarity, and containment similar-
ity. The containment similarity is calculated on word level for any
string value with more than one word, otherwise it is calculated
on the token level. For long strings, the similarity metrics used for
short strings are applied while Jaccard is calculated on the word
level and additionally the cosine similarity with tf-idf weighting is
computed. For numeric attributes, the absolute difference is com-
puted. In addition to the attribute-specific similarity scores, we also
concatenate all attributes values of a record and calculate an overall
similarity score using cosine similarity with tf-idf weighting over
the concatenated values.

All similarity scores are scaled to the range of [0,1]. In the case
that the value of an attribute is missing for one or for both records of
the record pair, we assign the out of range score -1. This allows any
classifier to consider all record pairs without dropping or replacing
the missing values. Figure 2 shows an example of the feature vector
creation for two records A; and Ay describing cameras.

5.2 Classification Methods

We employ two widely-used supervised classification techniques
for learning baseline matchers: Support Vector Machines (SVM)
and Random Forests (RF). We optimize the hyperparameters shown
in Table 3 using grid search. The asterisk indicates that the linear
kernel has not been used in combination with all other parameter
values in the grid search like the rbf kernel, but only in one setting
with default C and gamma values. For the non-optimized param-
eters we use the default values of the python scikit-learn library,

Table 4: Baseline Results and Comparison to Related Work

. . SVM Random Forest Best F1 Result in
Profiling Group Matching Task p R F1 p R F1 ARF-svMm Related Work

beer 1.00 086 0.92 | 1.00 1.00 1.00 +0.08 0.78 [17]

Group 1: bikes 092 092 092|092 092 0.92 0.00 -

Dense Data, MUSICiTunes-Amazon .00 1.00 1.00 | 1.00 1.00 1.00 0.00 0.94 [16]

Simple Schema restaurantsyeljow -Yelp 1.00 1.00 1.00 | 1.00 1.00 1.00 0.00 1.00 [17]

restaurantsgodors zZagats | 100 091 0.95 | 1.00 1.00 1.00 +0.05 0.97 [16]

Group 2: phones 0.85 0.88 0.86 | 0.85 0.88 0.86 0.00 0.84 [21]

Sparse Data, headphones 0.89 0.77 0.83 | 095 082 0.88 +0.05 0.94 [21]

Complex Schema tvs 0.93 078 0.85 | 094 089 091 +0.06 0.83 [21]

baby products 0.70 0.64 0.67 | 0.68 0.55 0.63 -0.04 -

Smlﬁp 5 iDiffeat | POOKSGoodreads Bames | 080 0.89 0.84 | 073 0.89 080 -0.04 -

mafl and DIffieult 1 s metics 100 077 087 | 090 069 0.78 -0.09 -

Group 4: dblp-acm 1.00 1.00 1.00 | 1.00 1.00 1.00 0.00 0.98 [17]

Textual Data dblp-scholar 0.99 0.99 099|099 099 0.99 0.00 0.94 [17]

Few Corner Cases | PTOUCtSWalmart-Amazon | 0.97 087 092 | 0.93 0.89 093 +0.01 0.89 [11]

cora 0.99 098 099 | 1.00 1.00 1.00 +0.01 1.00 [24]

abt-buy 096 0.71 0.81 | 095 0.77 0.85 +0.04 0.62 [17]

Group 5: amazon-google 0.79 073 0.76 | 0.82 0.76 0.79 +0.03 0.71 [16]

Textual Data xlarge_cameras 0.71 0.61 0.65| 0.75 0.67 0.71 +0.06 0.93 [16]

Many Cornel’“ Cases xlarge_watches 0.86 0.71 0.78 | 0.82 0.73 0.81 +0.03 0.96 [16]

xlarge_computers 0.74 0.67 0.70 | 0.78 0.78 0.78 +0.08 0.97 [20]

xlarge_shoes 0.83 0.43 0.57 | 0.82 0.38 0.52 -0.05 0.94 [19]

version 0.22.1. Finally, we use fixed random seeds for allowing the
reproducibility of the baseline results by setting the random_state
parameter of the scikit-learn classification models to 1.

5.3 Baseline Results

We evaluate the baseline matching methods using split validation
and use precision, recall and F1 score on the positive class (match-
ing) as evaluation metrics. We present the baseline results in Table 4.
In addition we show the best reported result found in related work
from matching systems using supervised learning while matching
systems that use other types of learning (e.g. active learning or semi-
supervised learning) are excluded from this comparison [13, 18, 22].
The interpretation of the comparison to the results reported in re-
lated work should be made with attention to the differing, unfixed
train, optimization, and test sets.

Comparing the results of the two classifiers, we see that the
SVM performs worse than the Random Forest for 17 out of 21
tasks. However, this is not the case for the xlarge_shoes, baby
products, cosmetics and booksgoodreads-Barnes tasks, for which the
SVM outperforms the Random Forest by 0.04 to 0.09 in F1 score. In
addition, six benchmark tasks are perfectly solved by the baseline
method (F1=1.00), indicating that there is no room for improvement
for methods using full supervision.

Considering the grouping of the tasks, we can see that each profil-
ing group imposes varying difficulty levels to our baseline method.
More concretely, F1 scores between 0.92 and 1.00 are achieved for
the tasks belonging to Group 1: Dense Data, Simple Schema. For
solving the tasks of this group, only a small amount of attributes
needs to be considered by the learning algorithm. The matching
patterns are simple which we verify by looking at the average depth

of the trees of the best Random Forest estimator per task, ranging
between 4.5 and 4.98. On the other hand, the tasks of Group 2: Sparse
Data, Complex Schema are more difficult to solve, with the F1 scores
being lower than 0.91, as a result of the higher sparsity and schema
complexity. These characteristics require the matching algorithm
to learn complex matching patterns. The average depth of the trees
of the best Random Forest estimators for the tasks of Group 2 is 10.

Our baseline methods perform poorly for the tasks of Group 3:
Small and Difficult, with F1 scores ranging between 0.67 and 0.87.
We assume the reason of the poor performance to be on the one
hand, the inherent challenging characteristics of the tasks, such
as high textuality, a significant amount of corner cases and high
schema complexity and on the other hand, the small amount of
training data. These factors likely cause the model to overfit the
training data and not generalize well.

The F1 scores achieved using the Random Forest classifier for
the tasks of Group 4: Textual Data, Few Corner Cases are above 0.93,
indicating that they have a low level of difficulty despite their high
textuality. The small amount of corner cases makes the tasks trivial.
For each of the tasks dblp-acm and dbpl-scholar, which contain
almost no corner cases, there is only one top relevant feature: ti-
tle_cosine_tfidf for the dblp-acm task and title_relaxed_jaccard for
the dblp-scholar. This indicates that condensing the title attribute
into a single similarity score is enough for solving both tasks. The
other tasks of Group 4 contain a few corner cases but have the
following characteristics which we hypothesize help the model to
generalize well and achieve good performance: the cora task has a
very large development set and the productswalmart-Amazon task has
a model number attribute which can be identifying for resolving
product records.

The performance of our baseline method drops for the match-
ing tasks of Group 5: Textual Data, Many Corner Cases and ranges
between 0.57 and 0.85. These tasks have many corner cases and
highly textual relevant attributes, such as product titles and descrip-
tions. The weak performance can be explained from the inability
of the similarity-based feature vector to adequately summarize
the textual data. In contrast to our symbolic, similarity-based fea-
tures, the related works that report significantly higher F1 scores
on these tasks, use embeddings and deep neural network-based
matching methods which have been shown to perform better on
textual data [17, 19, 20].

6 RELATED WORK

There are many survey articles comparing entity matching meth-
ods [5, 15] but there are hardly any works comparing and categoriz-
ing entity matching benchmark tasks. To the best of our knowledge,
the work of Mudgal et al. [17] is the only one which profiles the
structure of relational data sets used for matching and distinguishes
three groups of tasks: structured (short attribute values), textual,
and dirty, with the last group being created by removing with 50%
probability the values of certain attributes and injecting them to
other attributes. The profiling is conducted on the basis of the
number of attributes, the length and the presence or absence of
artificial noise in the attribute values. In our work, we show that
concentrating only on data set characteristics is not sufficient for
understanding the challenges associated with the matching tasks,
as the difficulty of textual tasks is for instance highly affected by
the amount of corner cases in the correspondence set. For tasks
involving mostly short attributes, schema complexity, density, and
development set size together determine the difficulty of the task.
In contrast to entity matching, there exist survey papers on bench-
mark tasks for the closely related domain of entity linking [23]. In
our work, we fill this gap and profile benchmark tasks for entity
matching.

The reproducibility of research results is an important issue
across all research communities. Therefore, initiatives such as SIG-
MOD reproducibility’ invite researchers to make their experiments
repeatable by sharing all relevant artifacts. In addition, there exist
multiple campaigns that contribute to the meaningful evaluation
of different systems, such as the SemEval workshop® with a focus
on NLP tasks, the SemWebEval [3], and the OAEI contest® which
both aim at evaluating tasks relevant to the Semantic Web com-
munity. Such campaigns provide benchmarks and fixed evaluation
procedures. The OAEI contest publishes among others, schema and
instance matching tasks for evaluating ontology matching systems.
In contrast to the benchmark tasks that we profile in our work
which contain relational data sets, these tasks use RDF data that
includes class and property hierarchies which should be considered
by successful matching systems. For such tasks a different set of
profiling dimensions becomes relevant which has been analyzed
in the work of Daskalaki et al. [6], such as the data set creation
method, i.e. whether the data is real or synthetic, as well as the
schema similarity of the data sets.

"http://db-reproducibility.seas.harvard.edu/
8http://alt.qcri.org/semeval 2020/
http://oaei.ontologymatching.org

7 CONCLUSION

We defined five dimensions for profiling entity matching tasks
capturing characteristics of both the data sets as well as the cor-
respondence set of the task. On the basis of these dimensions, we
profiled 21 benchmark tasks and grouped them into five groups
entailing similar matching challenges. In an effort to enhance the
comparability and reproducibility of matching results, we com-
plemented the benchmark tasks with fixed development and test
sets which we make publicly available. Using the complemented
benchmark tasks, we calculated baseline results using two match-
ing methods and identified the difficulty level of the tasks in each
group. Our results aim to help researchers select diverse tasks for
showing the strengths and weaknesses of their matching systems.

REFERENCES

[1] M. H. G. Anthony and Norman Biggs. 1997. Computational learning theory. Vol. 30.

Cambridge University Press.

Ursin Brunner and Kurt Stockinger. 2020. Entity matching with transformer

architectures-a step forward in data integration. In EDBT. 463-473.

[3] Davide Buscaldi, Aldo Gangemi, and Diego Reforgiato Recupero (Eds.). 2018.
Semantic Web Challenges - 5th SemWebEval Challenge at ESWC 2018, Heraklion,
Greece, June 3-7, 2018, Revised Selected Papers.

[4] Peter Christen. 2012. Data matching: concepts and techniques for record linkage,
entity resolution, and duplicate detection. Springer.

[5] Vassilis Christophides et al. 2019. End-to-End Entity Resolution for Big Data: A
Survey. arXiv:1905.06397 [cs] (2019).

[6] Evangelia Daskalaki et al. 2016. Instance matching benchmarks in the era of
Linked Data. Journal of Web Semantics 39 (2016), 1 - 14.

[7] Uwe Draisbach and Felix Naumann. 2010. DuDe: The Duplicate Detection Toolkit.
In QDB Workshop.

[8] Muhammad Ebraheem et al. 2018. Distributed Representations of Tuples for
Entity Resolution. In VLDB. 1454-1467.

[9] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. 2007.

Duplicate Record Detection: A Survey. IEEE Transactions on Knowledge and Data

Engineering 19, 1 (2007), 1-16.

Ivan P. Fellegi and Alan B. Sunter. 1969. A Theory for Record Linkage. J. Amer.

Statist. Assoc. 64, 328 (1969), 1183-1210.

Chaitanya Gokhale et al. 2014. Corleone: hands-off crowdsourcing for entity

matching. In SIGMOD. 601-612.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press.

[13] Jungo Kasai et al. 2019. Low-resource Deep Entity Resolution with Transfer and

Active Learning. arXiv preprint arXiv:1906.08042 (2019).

Pradap Konda et al. 2016. Magellan: Toward Building Entity Matching Manage-

ment Systems over Data Science Stacks. PVLDB 13 (2016), 1581-1584.

Hanna Kopcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity

resolution approaches on real-world match problems. PVLDB (2010), 484-493.

Yuliang Li et al. 2020. Deep Entity Matching with Pre-Trained Language Models.

arXiv:2004.00584 [cs] (2020).

Sidharth Mudgal et al. 2018. Deep Learning for Entity Matching: A Design Space

Exploration. In SIGMOD. 19-34.

[18] George Papadakis et al. 2020. Domain- and Structure-Agnostic End-to-End Entity

Resolution with JedAL. ACM SIGMOD Record 438, 4 (2020), 30-36.

Ralph Peeters et al. 2020. Using schema. org Annotations for Training and

Maintaining Product Matchers. In WIMS.

Ralph Peeters, Christian Bizer, and Goran Glavas. 2020. Intermediate Training of

BERT for Product Matching. In DI2KG Workshop @ VLDB.

Petar Petrovski and Christian Bizer. 2020. Learning expressive linkage rules from

sparse data. Semantic Web 11 (2020), 549-567.

[22] Anna Primpeli and Christian Bizer. 2019. Robust active learning of expressive

linkage rules. In WIMS. 1-7.

Marieke van Erp et al. 2016. Evaluating Entity Linking: An Analysis of Current

Benchmark Datasets and a Roadmap for Doing a Better Job. In LREC. 4373-4379.

Jiannan Wang, Guoliang Li, Jeffrey Xu Yu, and Jianhua Feng. 2011. Entity match-

ing: how similar is similar. VLDB Endow. 4, 10 (2011), 622-633.

[2

=
2

—_
_

=
)

===
A

=
=

[19

[20

[21

[23

[24

	Abstract
	1 Introduction
	2 Benchmark Tasks
	3 Task Completion
	4 Matching Task Profiling
	4.1 Relevant Attributes
	4.2 Profiling Dimensions
	4.3 Profiling and Grouping the Matching Tasks

	5 Baseline Evaluation
	5.1 Feature Creation
	5.2 Classification Methods
	5.3 Baseline Results

	6 Related Work
	7 Conclusion
	References

