Column Property Annotation using Large
Language Models

Keti Korinil [0000—0002—2158—-0070 1[0000—0003—2367—0237]

I and Christian Bizer

Data and Web Science Group, University of Mannheim, Mannheim, Germany
{kkorini,christian.bizer}Quni-mannheim.de

Abstract. Column property annotation (CPA), also known as column
relationship prediction, is the task of predicting the semantic relationship
between two columns in a table given a set of candidate relationships.
CPA annotations are used in downstream tasks such as data search,
data integration, or knowledge graph enrichment. This paper explores
the usage of generative large language models (LLMs) for the CPA task.
We experiment with different zero-shot prompts for the CPA task which
we evaluate using GPT-3.5, GPT-4, and the open-source model SOLAR.
We find GPT-3.5 to be quite sensitive to variations of the prompt, while
GPT-4 reaches a high performance independent of the variation of the
prompt. We further explore the scenario where training data for the CPA
task is available and can be used for selecting demonstrations or fine-
tuning the model. We show that a fine-tuned GPT-3.5 model outperforms
a RoBERTa model that was fine-tuned on the same data by 11% in F1.
Comparing in-context learning via demonstrations and fine-tuning shows
that the fine-tuned GPT-3.5 performs 9% F1 better than the same model
given demonstrations. The fine-tuned GPT-3.5 model also outperforms
zero-shot GPT-4 by around 2% F1 for the dataset on which is was fine-
tuned, while not generalizing to tasks that require a different vocabulary.

Keywords: Table Annotation - Large Language Models - Column Prop-
erty Annotation

1 Introduction

Table annotation is the task of annotating elements of a table using terms from
a pre-defined vocabulary in order to discover their semantics [14]. It consists of
several sub-tasks that aim at discovering the semantics of different elements of
the table. Two of the sub-tasks are column property annotation (CPA) which
focuses on discovering the semantic relationship between two columns, and col-
umn type annotation (CTA) which aims at discovering the semantic type of
entities contained in a column. Figure 1 shows an example of both tasks. The
example table describes books, the names of which are contained in the first
column and some of their attributes are contained in the other three columns.
The goal of a CTA system is to discover the types of each column separately, for
example the last column contains dates therefore the CTA label assigned to this

2 K. Korini et al.

column by the system would be Date. The goal of a CPA system is to annotate
the relationships of the columns with the first column of the table, also referred
to as the subject column [21]. As the last column contains the dates when the
books listed in the first column were published, a CPA system would annotate
this relationship with the label datePublished.

BookName BookFormatType Language Date

A Handbook for Paperback English 01-01-2016
Morning Time

The Intentional Brain |[Hardcover English 15-06-2016
The Comeback Hardcover English 03-08-2020

| |
inLanguage
datePublished

Fig. 1. Example of CTA and CPA annotations. CTA labels are shown above the table
columns, while CPA labels are shown below the table.

Early statistical approaches [12,21] use a maximum likelihood or maximize
joint probabilities to assign CTA and CPA labels to columns or pair of columns.
Later systems [7, 15, 16] use a knowledge base (KB) such as DBpedia [1] to first
match the entities in columns to entities in the KB and consider the KB class of
the entity as its column type while considering the KB properties of the entities
as potential CPA labels. Cannaviccio et al. [2] use a combination of language
modeling and using a KB. Recent approaches often rely on pre-trained language
model (PLM) such as BERT [4]. The approaches fall into two groups: methods
that learn tabular embeddings such as TURL [3] where the authors propose an
architecture that learns cell representations which can be used for predicting
CTA and CPA labels, or works that fine-tune PLMs such as DODUO [19] which
experiments with table serialization and a multi-task learning architecture for
CTA and CPA. With the advancements in generative large language models
(LLMs) [17,20, 24], such as GPT-3.5, GPT-4, LLaMa, Gemini, and Mixtral, re-
search has started to explore prompt designs for table tasks as well as fine-tuning
these models on table tasks: [9] compares prompt designs for the CTA task. In
Chorus [8], different table tasks are explored, including CTA. The authors test
adding instructions to their prompts and introduce the concept of anchoring for
mapping the answers of the model to the original label space. ArcheType [5]
fine-tunes a LLaMa-7B model on the CTA task and compares its results to two
PLM baselines. Table-GPT [11] fine-tunes the text-davinci-002 GPT-3.5 model
using a combination of unsupervised table tasks such as row/column filtering,
row/column sorting as well as supervised table tasks such as schema matching
and entity matching. They show that their fine-tuned model generalizes to other
unseen tasks. In our work, we also fine-tune a GPT-3.5 model, gpt-3.5-0613, on
the CTA and CPA task separately as well as their combination to test if fine-

Column Property Annotation using Large Language Models 3

tuning on both tasks provides a better generalization ability than fine-tuning
on the tasks separately. In TableLlama [23] a LLaMa-7B model is fine-tuned on
six table tasks, two of which are CTA and CPA. [23] does not experiment with
zero-shot prompts for the CTA task nor does it fine-tune the LLM exclusively
for CPA. This paper fills these gaps. The contributions of the paper are:

1. We are the first to compose prompt designs for the CPA task in a zero-shot
and few-shot setting while existing work only explores fine-tuning LLMs for
the CPA task amongst other tasks.

2. Using different zero- and few-shot prompts, we analyze the performance and
prompt sensitivity of GPT-3.5, GPT-4, and SOLAR-70B for the CPA task.

3. Existing research has only fine-tuned for the CPA task as one task amongst
others in a multi-task learning setting. In contrast, we explore the effect of
fine-tuning gpt-3.5-turbo-0613 exclusively for the CPA task and explore how
the fine-tuned model generalizes to other datasets and to the CTA task.

2 Experimental Setup

This section introduces our experimental setup. We make the code and data
available on GitHub!® so that all our experiments can be replicated.

Datasets. We use two datasets for the experiments on the CPA task. The
first dataset is SOTAB V2 CPA [10] which consists of tables whose topics range
across 17 domains, including books, products, local businesses etc. Its test set
consists of 595 tables with 2,340 columns annotated using 108 schema.org? terms
which are manually verified. The second dataset is the T2Dv2 CPA dataset. The
dataset was originally published by Ritze et al. [18] and we use the manually
verified version®, the test set of which consists of 80 tables from domains such
as animals, book, country etc. labeled using 48 terms from DBpedia.

Additionally, for the fine-tuning experiments we use two more datasets for the
evaluation of the CTA task. SOTAB V2 CTA [10] consists of tables with topics
ranging over 17 domains including movies, music albums, events etc. Its test
set consists of 609 tables where 1851 columns are labeled using 82 schema.org
terms and the annotation is manually verified. Lastly, we build the T2Dv2 CTA
dataset by using T2Dv2 CPA’s tables where we map the DBpedia properties to
DBpedia classes to generate the CTA labels. Statistics about all datasets can
be found in Table 1. For training in our experiments, we do not use the original
large training sets for SOTAB V2 CTA and CPA, but we use down-sampled
train sets to explore the scenario where less training data is available.

Language models. The LLMs that we test in the zero and few-shot scenario
are two of OpenAl’s GPT models?, gpt-3.5-turbo-0125 and gpt-4-0125-preview

! https://github.com/wbsg-uni-mannheim/TabAnnGPT
2 https:/ /schema.org/

3 https://webdatacommons.org/structureddata,/smb/

* https://platform.openai.com/docs/models

4 K. Korini et al.

Table 1. Statistics of datasets used.

Original Train Sampled Train Test
Tables Columns Tables Columns Tables Columns
SOTAB V2 CTA 44,769 116,887 1199 1640 609 1,851 82

Dataset Labels

T2Dv2 CTA 74 146 - - 71 145 16
SOTAB V2 CPA 29,158 109,994 1264 2160 565 2,340 108
T2Dv2 CPA 81 170 - - 82 166 48

and one open-source model SOLAR-70B5, which is a LLaMa-2-70B [20] fine-
tuned model. In our experiments, we will refer to these models as GPT-3.5,
GPT-4 and SOLAR respectively. For our fine-tuning experiments, we fine-tune
gpt-3.5-turbo-0613. To build our prompt templates and to access OpenAl’s mod-
els we use the Langchain® library, while for using the open-source model we use
the Huggingface transformers” library. In order to make our experiments repro-
ducible, we set the temperature of the models to 0. We use one NVIDIA A100
provided by bwHPC® to run the SOLAR experiments.

Evaluation Setup. We use a multi-class classification setup and report
Micro-F1 as evaluation metric due to the imbalance of the different classes. We
consider answers that do not directly mention terms from the label set as errors
and do not try to map such OOV (out of vocabulary) answers to the label set.

3 Comparison of Zero-shot Prompts

This section compares the performance of different zero-shot prompts for the
CPA task. We distinguish three main parts in the prompts: task description,
instructions, and classification sentence. The task description part aims at de-
scribing the CPA task to the model. In the instructions part we aim at writing
some simple instructions that can help the model follow the CPA tasks’ steps
and inform the model of a preferred format for generating its answer. In the last
part, we test how classification words can influence the answer of the model.
Two example prompts are shown in Figure 2. The prompt on the left contains
as its first message a formulation of the task part where we only describe the
CPA task without mentioning the name of the task. It is followed by a five-step
instructions part which informs the model that the input is a table and the
answer should be returned in a required format. In the classification message
we ask the model to classify the table columns and pass the first five rows of a
table in a markdown format. If in the first five rows some values are missing,
we fill the cells using values from the rest of the rows. The prompt on the right
contains in the first message a task formulation where the cpa task is mentioned
and explained. It is followed by a second message that contains less instructions

® https:/ /huggingface.co/upstage/SOLAR-0-70b-16bit
5 https://www.langchain.com/

7 https: //github.com/huggingface/transformers

8 https://www.bwhpc.de/cluster.php

Column Property Annotation using Large Language Models 5

than the prompt on the left, where we have removed the first two steps. Finally
in its last message we test the keyword annotate to ask the model to return the
labels for the CPA task. For the last message, we also test the words determine

and classification of relationships.

describe

cpa

System message: Classify the relationship between two
columns of a given table with one of the following
relationships that are separated with comma: publisher,
genre, date published, pages, job title, release date, actor, ...

System message: Your task is to perform column property
annotation (CPA), meaning that your task is to predict the
semantic relation between the subject column and the other
columns of a given table with only one of the following
relationships that are separated with comma: publisher,
genre, date published, pages, job title, release date, actor ...

instructions

less-instructions

1. Look at the input given to you and
make a table out of it. 2. Look at the cell values in detail. 3.
For each column, select a relationship that best represents
the relationship between that column and the first column of
the table. 4. Answer with only one selected relationship for
each column with the format Column 2: relationship. Don't
return any relationship for the first column! 5. Answer only
with labels from the provided label set!

1. For each column, select a relationship
that best represents the relationship between that column
and the first column of the table. 2. Answer with only one
selected relationship for each column with the format
Column 2: relationship. Don't return any relationship for the
first column! 3. Answer only with labels from the provided
label set!

classify

annotate

Classify these table columns: | Column 1

Please annotate the columns of the following

| Column 2 | Column 3 | Column 4 | table: | Column 1 | Column 2 | Column 3 | Column 4 |
| |

I I I I I
| A Handbook for Morning Time | Paperback | English |
0986325759 |

I I I I |
| A Handbook for Morning Time | Paperback | English |
0986325759 |

Fig. 2. Example of two CPA prompts showcasing the prompt building blocks.

Results. Table 2 reports the results of prompting the models with each
combination of the three building blocks described in the above paragraph. In
the cases where cpa is not mentioned the describe task description is used. The
results show that including the definition of the CPA task into the prompt does
not help the GPT-3.5 model. This can be seen from the combinations of the
cpa prompt which are all below the score of 61% for both datasets. In opposite,
SOLAR seems to benefit from including the task name and for both datasets
the highest score is achieved in this case. We can observe, mostly from the
results of T2Dv2, that simply changing the wording in the classification message
improves the Micro-F1 score by up to 13% when comparing the classify and the
relationships keyword. In SOTAB V2, this gap ranges from 2-4% for GPT-3.5.
Overall, the results show a prompt sensitivity of 3.95 and 7.49 in the case of
GPT-3.5, while when looking at the results of SOLAR and GPT-4, we notice
a lower sensitivity to the different formulations, especially for GPT-4 which is
the most stable model amongst the three. We calculate prompt sensitivity as the
standard deviation of the scores of the different prompts. Regarding SOTAB V2,
the average OOV answers for GPT-3.5 is 300, 23 for GPT-4 and for SOLAR this
average is 350. For T2Dv2 the averages are 40, 1 and 5 for GPT-3.5, GPT-4 and
SOLAR respectively. The token length of the “less-instr-relationships” prompt
is 428,528, which results in an API usage fee of $ 0.00012 per annotation for
GPT-3.5 and $0.0025 per annotation for GPT-4 with prices as of March 2024.

6 K. Korini et al.

Table 2. Micro-F1 performance of different zero-shot prompts for the CPA task.

Prompt SOTAB V2 CPA T2Dv2 CPA
GPT-3.5 GPT-4 SOLAR GPT-3.5 GPT-4 SOLAR

instr-classify 64.99 80.31 49.56 56.64 80.36 75.23
cpa-instr-classify 60.14 80.38 53.59 52.55 79.76 69.72
instr-annotate 66.06 79.88 50.56 65.08 80.00 77.30
instr-determine 64.76 80.19 50.25 64.43 82.35 77.68
instr-relationships 66.42 79.30 50.58 73.12 81.48 72.56
less-instr-classify 62.86 80.19 52.57 60.50 78.55 76.83
less-instr-annotate 65.67 79.78 52.61 62.33 81.57 75.38

less-instr-determine 64.82 79.51 52.02 56.34 81.48 73.94
less-instr-relationships 66.49 80.07 52.13 73.58 79.76 71.60
cpa-less-instr-classify 56.73 81.36 53.60 50.56 80.86 78.29
Prompt sensitivity 3.95 0.64 1.30 7.49 1.06 2.60

Table 3. Few-shot performance (Micro-F1) using two demonstration selection methods
and their prompt token lengths (Tokens).

SOTAB V2 CPA T2Dv2 CPA

Method shots Tokens .pny 3 5 GpPT.4 SOLAR GPT-3.5 GPT-4 SOLAR

random 1 547,493 68.99 81.24 53.42 76.69 84.24 78.55
random 5 994,400 70.23 82.45 - 78.55 83.38 -
similar 1 617,256 70.68 82.62 58.21 76.13 84.77 82.67
similar 5 1,337,839 74.39 84.10 - 76.82 86.09 -

4 In-context Learning via Demonstrations

The related work explores different methods of selecting demonstrations for in-
context learning [13,22]. To conduct few-shot experiments for CPA, we employ
two methods for selecting demonstrations from the training sets listed in Table 1:
randomly and based on similarity. The first method randomly selects examples
from the training set as demonstrations. In the similarity method, we embed
the test examples without labels as well as the available training examples using
the embedding model text-embedding-ada-002° and select for each test example a
number of most similar examples determined using cosine similarity. The prompt
that we use for running the few-shot experiments is the less-instr-relationships
prompt which overall gave a decent score for all models. To perform few-shot,
we pass the demonstrations with the help of a message with the role of user that
contains the demonstration table and an assistant role message that contains the
classification output for the demonstration. These messages are passed to the
model before passing the last user message which contains the test table. The
results of the few-shot experiments are listed in Table 3. Due to memory issues,
we could run SOLAR only in a one-shot setting. From the table, we can observe
that in the case of GPT-3.5 and GPT-4 the similarity method outperforms the

9 https://platform.openai.com/docs/models/embeddings

Column Property Annotation using Large Language Models 7

random method by at least 2% for SOTAB V2, while for T2Dv2 the results are
close for both methods. Lastly, SOLAR benefits from the similar demonstrations
by 5 and 4% for SOTAB V2 and T2Dv2 respectively.

5 Fine-tuning the LLM

We fine-tune the gpt-3.5-turbo-0613 model using the down-sampled training sets
of SOTAB V2 CTA and CPA and the instr-classify prompt. We fine-tune the
model with different combinations of training sets: First, we fine-tune the model
using only the SOTAB V2 CTA training set. Second, we fine-tune the model only
on the CPA dataset therefore only on the CPA task. As third approach, we fine-
tune the model using the CTA and CPA datasets from the two previous steps
merged together to fine-tune on both tasks simultaneously. As the last approach,
we fine-tune again on both tasks but with both datasets halved to make the
number of fine-tuning examples comparable with the first two setups. We refer
to these models as cta-ft, cpa-ft, cta-cpa-ft and cta-cpa-ft-small respectively.

Table 4. Micro-F1 fine-tuning results on CTA and CPA compared to GPT-3.5 zero-
shot results. F-Tokens reports the number of tokens of the fine-tuning dataset, while
F-Cost reports the cost of fine-tuning the model with prices as of March 2024.

SOTAB V2 T2Dv2
F-Tokens F-Cost CTA CPA CTA CPA

zero-shot - - 64.35 66.49 69.85 73.58
cta-ft 1,787,364 $14.92 81.22 63.98 69.43 72.34
cpa-ft 2,341,017 $18.72 70.95 83.55 65.74 72.95
cta-cpa-ft 4,128,381 $33 82.01 84.08 72.92 76.36

cta-cpa-ft-small 2,081,448 $16.65 80.35 80.80 71.97 69.51

Results. The results of fine-tuning are shown in Table 4. From them we
conclude that fine-tuning for a specific task significantly increases the Micro-F1
score for the task and dataset that was used for fine-tuning, while decreasing
the performance on the unseen T2Dv2 datasets. When fine-tuning for both tasks
with the larger set, we observe that the model generalizes better to all datasets.
On the other hand, when using the small CTA and CPA dataset for fine-tuning,
the resulting model performs good on only the datasets that have been used for
fine-tuning and not on the unseen T2Dv2 datasets. By comparing the results in
Table 3 and Table 4, we can conclude that when using GPT-3.5 it is more ben-
eficial to use the training set for fine-tuning the model, which results in 83.55%
Micro-F1, rather than using the training set as a pool for selecting demonstra-
tions which reaches 74.39% for SOTAB V2. In addition, fine-tuning also helps
reduce the number of OOV answers to around 20-30 for SOTAB V2.

8 K. Korini et al.

6 Comparison to PLM Baselines

We compare the previous zero-shot prompts for GPT-3.5, GPT-4 and fine-tuned
GPT-3.5 (FT-GPT-3.5) to three baselines. The first baseline is a fine-tuned
RoBERTa model with the maximum token length set to 512 and a batch size
of 32. The pairs of columns are concatenated together and passed to RoBERTa
which we train for 30 epochs. The second baseline TURL [3] is pre-trained using
table corpora and uses TinyBERT [6] in its architecture. For this baseline we
use CrossEntropy as a loss function and train the model for 50 epochs. The last
PLM baseline DODUO [19] uses a new serialization method where a single table
is serialized into one sequence. For this model, we use a batch size of 32 and run
training for 30 epochs. We train all the baselines using a learning rate of 5e-5
and report the average performance of three runs with different random seeds.

Table 5. F'1 results of fine-tuned PLM baselines compared to zero-shot results of LLMs.

Method shots SOTAB V2 CPA shots T2Dv2 CPA

GPT-3.5 0 66.49 0 73.58
GPT-4 0 81.43 0 82.35
FT-GPT-3.5 2160 83.55 2160 72.95
TURL 2160 60.75 170 59.23
DODUO 10,496 70.34 170 4.08
RoBERTa 2160 71.45 170 81.52

Results. The results of the PLM baselines are summarized in Table 5. Com-
paring RoBERTa and FT-GPT-3.5 which were both fine-tuned on the SOTAB
V2 CPA dataset, GPT-3.5 achieves 11% higher in Micro-F1 than RoBERTa. On
the other hand, for the T2Dv2 dataset, FT-GPT-3.5 fine-tuned on SOTAB V2
does not generalize well and the score compared to RoOBERTa fine-tuned with the
full T2Dv?2 training set is 8% lower. Comparing to TURL, FT-GPT-3.5 achieves
23% higher Micro-F1, while comparing it to DODUO which is fine-tuned with
more data, FT-GPT-3.5 still achieves 11% more in F1.

7 Conclusion

Our experiments using different zero-shot prompts have shown that GPT-4
reaches a F1 score of around 80% for the CPA task, outperforming the other
models while also being less sensitive to variations of the prompt. Fine-tuning
GPT-3.5 for the CPA task enables the model to reach a similar performance
as GPT-4 while costing less API usage fees per annotation. OQur experiments
further show that if training data is available, it is better to use the data for
fine-tuning rather than as a pool for choosing demonstrations.

Acknowledgement. The authors acknowledge support by the state of Baden-
Wiirttemberg through bwHPC for running the open-source model SOLAR.

Column Property Annotation using Large Language Models 9

References

10.

11.

12.

13.

14.

15.

16.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia:
A nucleus for a web of open data. In: Proceedings of the International Semantic
Web Conference. pp. 722-735. Springer (2007)

Cannaviccio, M., Barbosa, D., Merialdo, P.: Towards annotating relational data
on the web with language models. In: Proceedings of the 2018 World Wide Web
Conference. pp. 1307-1316 (2018)

Deng, X., Sun, H., Lees, A., Wu, Y., Yu, C.: TURL: Table understanding through
representation learning. Proceedings of the VLDB Endowment 14(3), 307-319
(Nov 2020)

Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1. pp. 4171-4186 (Jun 2019)
Feuer, B., Liu, Y., Hegde, C., Freire, J.: ArcheType: A Novel Framework for Open-
Source Column Type Annotation using Large Language Models. arXiv preprint
arXiv:2310.18208 (2023)

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., et al.: TinyBERT" Distilling
BERT for natural language understanding. In: Findings of the Association for
Computational Linguistics EMNLP 2020. pp. 4163-4174 (Nov 2020)
Jiménez-Ruiz, E., Hassanzadeh, O., Efthymiou, V., Chen, J., Srinivas, K.: SemTab
2019: Resources to benchmark tabular data to knowledge graph matching systems.
In: Proceedings of the International Semantic Web Conference. pp. 514-530 (2020)
Kayali, M., Lykov, A., Fountalis, 1., Vasiloglou, N., Olteanu, D., Suciu, D.: CHO-
RUS: Foundation Models for Unified Data Discovery and Exploration. arXiv
preprint arXiv:2306.09610 (2023)

Korini, K., Bizer, C.: Column type annotation using ChatGPT. In: Joint proceed-
ings of workshops at the 49th International Conference on Very Large Data Bases,
CEUR-WS Vol. 3462. pp. 1-12 (2023)

Korini, K., Peeters, R., Bizer, C.: SOTAB: The WDC schema.org table annotation
benchmark. In: Proceedings of the Semantic Web Challenge on Tabular Data to
Knowledge Graph Matching (SemTab), CEUR-WS Vol. 3320. pp. 14-19 (2022)
Li, P., He, Y., Yashar, D., Cui, W., Ge, S., Zhang, H., et al.: Table-GPT: Table-
tuned GPT for Diverse Table Tasks. arXiv preprint arXiv:2310.09263 (2023)
Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and searching web tables
using entities, types and relationships. Proceedings of the VLDB Endowment 3(1-
2), 1338-1347 (2010)

Liu, J., Shen, D., Zhang, Y., Dolan, W.B., Carin, L., Chen, W.: What makes
good in-context examples for GPT-3? In: Proceedings of Deep Learning Inside
Out (DeeLIO 2022). pp. 100-114 (2022)

Liu, J., Chabot, Y., Troncy, R., Huynh, V.P., et al.: From tabular data to knowledge
graphs: A survey of semantic table interpretation tasks and methods. Journal of
Web Semantics 76, 100761 (2023)

Liu, J., Troncy, R.: DAGOBAH: an end-to-end context-free tabular data semantic
annotation system. In: Proceedings of the Semantic Web Challenge on Tabular
Data to Knowledge Graph Matching (SemTab), CEUR-WS Vol. 2553. pp. 41-48
(2019)

Nguyen, P., Kertkeidkachorn, N., Ichise, R., Takeda, H.: Mtab: Matching tabular
data to knowledge graph using probability models. In: Proceedings of the Semantic

10

17.

18.

19.

20.

21.

22.

23.

24.

K. Korini et al.

Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab), CEUR-
WS Vol. 2553. pp. 7-14 (2019)

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., et al.:
Training language models to follow instructions with human feedback. Advances
in Neural Information Processing Systems 35, 27730-27744 (2022)

Ritze, D., Lehmberg, O., Bizer, C.: Matching HTML tables to DBpedia. In: Pro-
ceedings of the 5th International Conference on Web Intelligence, Mining and Se-
mantics. pp. 1-6 (2015)

Suhara, Y., Li, J., Li, Y., Zhang, D., Demiralp, ., Chen, C., et al.: Annotating
columns with pre-trained language models. In: Proceedings of the 2022 Interna-
tional Conference on Management of Data. pp. 1493-1503 (2022)

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y.,
et al.: Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288 (2023)

Venetis, P., Halevy, A., Madhavan, J., Pagca, M., Shen, W., Wu, F., et al.: Recov-
ering semantics of tables on the web. Proceedings of the VLDB Endowment 4(9),
528-538 (2011)

Ye, X., Iyer, S., Celikyilmaz, A., Stoyanov, V., Durrett, G., Pasunuru, R.: Com-
plementary explanations for effective in-context learning. In: Findings of the As-
sociation for Computational Linguistics: ACL 2023. pp. 44694484 (2023)

Zhang, T., Yue, X., Li, Y., Sun, H.: TableLlama: Towards Open Large Generalist
Models for Tables. arXiv preprint arXiv:2311.09206 (2023)

Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang, X., et al.: A Survey of Large Lan-
guage Models. arXiv preprint arXiv:2303.18223 (2023)

