
Extending Tables with Data from over a Million
Websites

Oliver Lehmberg, Dominique Ritze, Petar Ristoski,
Kai Eckert, Heiko Paulheim, and Christian Bizer

University of Mannheim, Germany
Data and Web Science Group

{oli,dominique,petar.ristoski,kai,heiko,chris}
@informatik.uni-mannheim.de

Abstract. This Big Data Track submission demonstrates how the BTC 2014
dataset, Microdata annotations from thousands of websites, as well as millions
of HTML tables are used to extend local tables with additional columns. Ta-
ble extension is a useful operation within a wide range of application scenarios:
Imagine you are an analyst having a local table describing companies and you
want to extend this table with the headquarter of each company. Or imagine you
are a film enthusiast and want to extend a table describing films with attributes
like director, genre, and release date of each film. The Mannheim Search Joins
Engine automatically performs such table extension operations based on a large
data corpus gathered from over a million websites that publish structured data in
various formats. Given a local table, the Mannheim Search Joins Engine searches
the corpus for additional data describing the entities of the input table. The dis-
covered data are then joined with the local table and their content is consolidated
using schema matching and data fusion methods. As result, the user is presented
with an extended table and given the opportunity to examine the provenance of
the added data. Our experiments show that the Mannheim Search Joins Engine
achieves a coverage close to 100% and a precision of around 90% within different
application scenarios.

1 Application Example

Assume a marketing manager who wants to classify the customers of a company accord-
ing to different properties of the countries in which the customers are located in order
to select those that should be targeted by a marketing campaign. While the data about
the customers can be found in the company’s internal data sources, further background
information about the customers’ countries is not. Relevant data about countries could
for instance include their population, GDP, or human development index. Today, the
manager needs to manually search and integrate data about each country using search
engines such as Google, access a small set of online databases he knows about, or copy-
and-paste values from Wikipedia. Manually searching for data is cumbersome and the
manager will likely miss a large fraction of the relevant data sources that are available
on the Web. The Mannheim Search Joins Engine (MSJ Engine) supports the manager in
reaching his goal by automating the data search and data integration tasks, leaving him
his core task.



2 O. Lehmberg, D. Ritze, P. Ristoski, H. Paulheim, C. Bizer

2 Description

In the following, we first introduce the data corpus that is used by the MSJ Engine
(Section 2.1). Afterwards, we explain the general architecture of the engine and provide
details about the methods that we employ for data pre-processing, data search, and data
consolidation (Section 2.2). Section 2.3 describes how the engine is used via its web
interface. Section 2.4 presents the evaluation results using local tables covering books,
cities, companies, countries, drugs, films, songs, and soccer players.

2.1 Data Corpus

For our experiments, we use data which is published on the Web either as Linked Data,
as Microdata annotations, or as HTML tables. Altogether, the data originates from over
a million different websites. We do not gather the data ourselves, but rely on data from
the following four datasets:

Billion Triples Challenge 2014 Dataset. As source of Linked Data, we use the Bil-
lion Triple Challenge 2014 dataset1. It contains around 4 billion RDF quads that
were crawled from 47 000 websites in the period between February and June 2014.
Please note that we consider a website to be a pay-level domain (PLDs).

WebDataCommons Microdata Dataset. This dataset2 contains Microdata annotations
that were extracted from the 2 billion HTML pages contained in the 2013 version of
the CommonCrawl web corpus3. The dataset consists of 8 billion RDF quads which
were extracted from 463 000 different websites (PLDs). According to Meusel et al.
[4], the data strongly relies on the schema.org vocabulary and primarily describes
products, people, organizations, and events.

WebDataCommons HTML Tables Dataset. Further, we include is the biggest, non-
commercial corpus of HTML tables that is available to the public.4 These tables
have been extracted from the 2012 version of the CommonCrawl web corpus which
contains 3.3 billion HTML pages. Out of the 11.2 billion HTML tables contained
in the crawl, 147.6 million were classified as (quasi-) relational tables containing
structured data using similar methods as the ones proposed by Wang et al. [7]. As
all our evaluation queries will be formulated in English, we only use the subset of
the tables originating from (mostly) English language domains (com, org, net, eu,
and uk). This subset contains 35.7 million tables which originate from 1.5 million
different pay-level domains (PLDs).

WikiTables Dataset. In addition to the HTML tables corpus mentioned above, we also
use a smaller corpus containing 1.35 million tables that have been extracted from
Wikipedia [1]. Although this corpus is a rather small, it contains very valuable data
about entities of common interest.

1 http://km.aifb.kit.edu/projects/btc-2014/
2 http://webdatacommons.org/structureddata/index.html
3 http://commoncrawl.org/
4 http://webdatacommons.org/webtables/



Extending Tables with Data from over a Million Websites 3

Table 1: Datasets Statistics
Datasets Statistics

Dataset # tables # triples # cols. avg. cols. min. cols. max. cols. # rows avg. rows min. rows max. rows
BTC 76K 634M 592K 7.78 2 5,465 18M 244 1 1.2M

Microdata 96K 250M 388K 4.02 1 62 76M 785.96 1 630K
Web 35.7M 2.3B 125M 3.49 3 713 699M 19.52 5 36K
Wiki 1.35M 220M 7.5M 5.34 0 2,349 16M 10.97 0 5K

Preprocessed Datasets Statistics

BTC 16K 555M 285K 18.5 3 3,942 11M 716 5 340K
Microdata 36K 150M 187K 5.27 3 62 38M 1,056.02 5 50K

Web 35.7M 2.3B 125M 3.49 3 713 699M 19.52 5 36K
Wiki 585K 60M 3.7M 6.3 3 1,000 12M 19.38 5 5K

The MSJ Engine uses tables as internal data model. We thus convert the Microdata
and BTC datasets into tables by applying the same procedure that is used by “DBpedia
as Tables”5. In summary, we first split the datasets by pay-level domain. Non-English
or adult content domains are excluded. Afterwards, we create a separate table for each
rdfs:Class or owl:Class and add a column to this table for each RDF predicate that is
used by instances of this class.

Furthermore, the tables that we use in our system must comply with the following
two conditions: Each table has to contain an entity label column (see Section 2.2) and
at least 5 rows and 3 columns. Table 1 gives an overview of the size of the data corpora
before and after applying these conditions. The second column indicates the number of
tables and the third column shows the number of triples. For the datasets converted into
tables, the second column contains the number of tables after the conversion process.
For table data, the third column denotes the number of triples that would be created by
applying the reverse conversion process. As we can see, the tables generated from the
BTC and Microdata dataset are much larger than the HTML tables.

2.2 MSJ Engine

Search Joins (SJ) are an approach to extend a local table (called query table) with ad-
ditional columns from a corpus of other data tables [2]. Given a query table Tq , a SJ
performs three operations: a search operation s, a multijoin operation m, and a consol-
idation operation c. The resulting table R is then computed as a concatenation of the
three operators:

R = c(m(1, sTq,a(T ))) (1)

where T is a set of tables, a is an optional, user-specified parameter for selecting which
columns to include. Figure 1 shows how the MSJ Engine implements these SJ in three
steps: Table Indexing, Table Search and Data Consolidation.

Table Indexing: The corpus of tables that should be searched (T ) is preprocessed: all
cell values are normalized, i.e. tokenized, lower cased, values in brackets and stop words

5 http://wiki.dbpedia.org/DBpediaAsTables



4 O. Lehmberg, D. Ritze, P. Ristoski, H. Paulheim, C. Bizer

are removed. Then, the data type of each table column is identified based on the cell
values in the column. Additionally, the engine uses around 200 rules for detecting units
of measurements, which are then converted to the corresponding base unit, e.g. 8 sq.
km. will be converted to 8M square meter. For each table, the engine uses a heuristic to
identify the entity label column of the tables: If a table contains an rdfs:label column,
this column will be chosen as entity label column. Otherwise, the column of type string
with the highest number of unique values6 is the entity label column. In cases where two
or more columns contain equally high numbers of unique values, the left-most column
of those is the entity label column. With this simple approach, an accuracy of about 83%
can be achieved [5]. In the final step of the preparation, the entity labels and column
headers of each table are stored in a Lucene index7.

Fig. 1: Search Joins Process Overview

Table Search: The query table Tq is preprocessed in the same manner. Then, the search
operator s is applied and tries to find matching entity labels in the previously indexed
tables. For deciding whether an entity label value from a table matches an entity label
value from the query table, two different methods are available: exact entity label match-
ing, and similar entity label matching using the FastJoin matcher [6].8 All tables with at
least one overlapping entity label are returned and ranked by the number of overlapping
entity labels and their resp. similarity. The search can either be unconstrained to find
all kinds of columns, or constrained to specific columns, e.g. only columns containing
information about the population of countries.

Data Consolidation: After the search is completed, the tables are joined by applying
the multijoin operation m, which performs a series of left outer joins between the query

6 At least 60% of the values must be unique
7 http://lucene.apache.org/
8 We use the FastJoin parameters δ = 0.8, τ = 0.5, and accept matches with a confidence of at least 0.5.



Extending Tables with Data from over a Million Websites 5

table and the tables returned by the search. Afterwards, the consolidation operation c
combines columns that represent the same property. The type of method applied de-
pends on whether a constrained or unconstrained query is executed.

A constrained query considers only columns matching a header specified by the
user. The heuristic we apply here is to accept all column headers that contain the given
header. For example, if the user queries for “GDP”, columns with header “GDP to-
tal” and “GDP (US$)” are also matched. After the filtering, the remaining columns are
consolidated to a single column using a majority vote for each entity label.

An unconstrained query returns all columns without filtering to get as much in-
formation as possible. Thus, we only merge columns which contain overlapping infor-
mation, determined by a combination of label- and instance-based schema matching
techniques. For the actual merging of the values, the user can choose from different
conflict resolution strategies [3]. Within our experiments, we use voting for resolving
conflicts between string values and the median function for combining numeric values.

2.3 Web Access

The functionalities of the MSJ Engine can be easily integrated in any application via
its API. For demonstration purposes, we provide a web interface9 that allows users to
explore our system online. Users can run queries against the complete corpus with the
possibility for custom configuration of the MSJ Engine. Please note that running a query
can take several minutes due to the size of the data corpus. Furthermore, the website
contains the pre-computed results of the queries that we use for the evaluation.

2.4 Evaluation

Table 2 gives an overview of the different query tables that we used for evaluating the
engine. The #Rows column shows the size of the tables. The Properties column contains
the target properties that we use for constrained queries. In order not to over-simplify
the task, we removed DBpedia and Freebase from our corpus for the evaluation. Note
that we only use the top 1 000 tables returned by the search operation.

Results for constrained queries. For constrained queries, the MSJ Engine only joins
columns to the query table with headers containing the specified property name. As
result, one final column with consolidated values is returned. We manually evaluated the
results with respect to precision (percentage of correct values) and coverage (percentage
of entity labels for which we find a value). All film properties are evaluated against

9 http://searchjoins.webdatacommons.org/
10 http://www.bbc.co.uk/arts/bigread/top100.shtml
11 http://www.citymayors.com/features/largest cities1.html
12 http://archive.fortune.com/magazines/fortune/globalmostadmired/top50/
13 http://www.polgeonow.com/2011/04/how-many-countries-are-there-in-world.html
14 http://www.rxlist.com/script/main/art.asp?articlekey=79509
15 http://www.listchallenges.com/empire-magazines-500-greatest-films-of-all-time
16 http://www.songlyrics.com/news/top-songs/all-time/
17 http://www.theguardian.com/football/datablog/2012/dec/24/world-best-footballers-top-100-list



6 O. Lehmberg, D. Ritze, P. Ristoski, H. Paulheim, C. Bizer

Table 2: Query Tables used for the Evaluation
Class Description (Source) # Rows Properties
book Britain’s best-loved novels10 100 author
city world’s largest cities11 100

company global most admired companies12 50 headquarter, industry
country states with at least 201 currency, population

partial recognition13 area, capital, code
drug top prescriptions14 100 ingredient
film greatest films of all time15 100 cast, director, genre, year
song top songs of all time16 100 artist

soccer player world’s best footballers17 100 team

imdb.com, for all other classes we use Wikipedia18. Figure 2 shows the results for
both exact and similarity matching of entity labels.

Fig. 2: Precision and coverage for constrained queries

For all queries, the coverage ranges between 88% (exact) resp. 95% (similar) and
100%. The precision ranges between 67% and 100% for exact entity label matching
and between 54% and 95% for similar entity label matching. As expected, precision
is higher for exact matches and coverage is higher for similar matches. An exception
is drugs, where precision is higher for similar matches, because exact search returns
less values which results in the decision for incorrect values of the majority vote. The
precision for similar matches is low for films (especially cast and genre) and books
as their titles get easily confused with other films, books, computer games, etc. Since
the values for the cast property usually contain the names of multiple actors, they are
marked as correct if all mentioned actors are in the cast of the movie.

Looking at numeric properties, a very high precision can be achieved for area but
not for population. We treat a numeric value as a correct match if it does not deviate
more than 10% from the reference value. The difference between area and population
is explained by their variability over time: the area of a country only changes on rare
occasions, while the population is continuously altering, which leads to a number of

18 Note that we do not use the Wikitables that are included in our corpus.



Extending Tables with Data from over a Million Websites 7

different values found. Another example is the team of soccer players, which can also
change often and many websites might not have been updated yet.

Results for unconstrained queries. For unconstrained queries, the MSJ Engine adds
as many columns as possible to the query table. As the result contains all kinds of
properties, it depends on the use case which columns are determined as relevant and
useful, thus we do not apply measures like precision and coverage. Instead, we evaluate
the amount of data joined to the query table. This evaluation is shown in Figure 3. For
each query, the diagram shows the overall number of columns that were added to the
table. The numbers show how many columns were added from each dataset.

Fig. 3: Number of added columns for unconstrained queries

For nearly all of the queries, we can find meaningful information in each of the
four data corpora, but the amount of added columns per corpus differs: For example,
Wikitables contain a lot of information about countries and cities, the BTC dataset offers
a large amount of information about drugs.

In summary, our experiments show that (1) we can extend local tables with mean-
ingful information coming from over a million of websites, and (2) we achieve high
precision and coverage for constrained queries.

3 Challenge Criteria

We believe that the Mannheim Search Joins Engine fits the primary goal of the Big Data
Track to demonstrate approaches that can work on web-scale using realistic web-quality
data. In the following, we will discuss how we meet the specific sub-criteria.

Data Volume Our system combines four large data corpora, including the BTC2014
dataset, the largest non-commercial corpus of HTML tables, and the largest Microdata
corpus that is currently available to the public. Altogether, our system indexes 3 billion
triples which are structured into 36 million tables.

Data Variety The data corpus is highly heterogeneous concerning the original data
formats and the employed schemata as the data originates from over a million different
websites. In general, the MSJ Engine can work with any data that can be converted into
a tabular representation.



8 O. Lehmberg, D. Ritze, P. Ristoski, H. Paulheim, C. Bizer

Data Velocity As Lucene supports live index updates our application can in theory
handle update streams that would be generated by continuous web crawling. Note that
our current implementation does not employ update streams but works with the data
corpora mentioned in Section 2.1.

The application should do more than simply store/retrieve large numbers of triples.
The key features of our MSJ Engine are the search for and ranking of tables matching
a given query table, the subsequent join operation extending the original table and the
final data consolidation steps that employ schema matching and data fusion methods in
order to merge values for the same property from different sources.

The application or tool(s) should be scalable Currently, the MSJ Engine runs on a
single machine. Components critical for the scalability of the MSJ Engine are the index
and the query processor. The index infrastructure that we use is Lucene for which dis-
tributed implementations are available and could be used to scale the index. Concerning
the query processor, two scaling scenarios are possible: On the one hand, if a large user
base needs to be served, a simple load balancing between multiple query processors
will be sufficient. On the other hand, if query sizes increase, each query can be split
into multiple parts, which are then processed on several machines in parallel.

The application should either function in real-time or, if pre-computation is needed,
have a real-time realization Running a table extension query against our current cor-
pus on a single machine takes several minutes. Given multiple machines, this the re-
sponse time could be significantly reduced (see bullet point about scalability). Never-
theless, waiting several minutes is already much shorter than the time it would take to
manually search and integrate data from a large set of websites.

References

1. C. S. Bhagavatula, T. Noraset, and D. Downey. Methods for Exploring and Mining Tables on
Wikipedia. In Proc. of the ACM SIGKDD Interactive Data Exploration and Analytics (IDEA),
2013.

2. C. Bizer. Search Joins with the Web. In Proc. of the 17th Int. Conf. on Database Theory
(ICDT), 2014.

3. J. Bleiholder and F. Naumann. Data fusion. ACM Comput. Surv., 41(1), 2008.
4. R. Meusel, P. Petrovski, and C. Bizer. The WebDataCommons Microdata, RDFa and Micro-

format Dataset Series. In Proc. of the 13th Int. Semantic Web Conference (ISWC14), 2014.
5. P. Venetis, A. Halevy, J. Madhavan, M. Paşca, W. Shen, F. Wu, G. Miao, and C. Wu. Recov-

ering Semantics of Tables on the Web. Proc. of VLDB Endow., 4(9):528–538, 2011.
6. J. Wang, G. Li, and J. Fe. Fast-join: An efficient method for fuzzy token matching based string

similarity join. In Proc. of the 27th Int. Conf. Data Engineering (ICDE), pages 458–469, 2011.
7. Y. Wang and J. Hu. Detecting Tables in HTML Documents. In Proc. of the 5th Int. Workshop

on Document Analysis Systems V, 2002.


