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ABSTRACT
Knowledge about the general graph structure of the World Wide
Web is important for understanding the social mechanisms that
govern its growth, for designing ranking methods, for devising bet-
ter crawling algorithms, and for creating accurate models of its
structure. In this paper, we describe and analyse a large, pub-
licly accessible crawl of the web that was gathered by the Common
Crawl Foundation in 2012 and that contains over 3.5 billion web
pages and 128.7 billion links. This crawl makes it possible to ob-
serve the evolution of the underlying structure of the World Wide
Web within the last 10 years: we analyse and compare, among other
features, degree distributions, connectivity, average distances, and
the structure of weakly/strongly connected components.

Our analysis shows that, as evidenced by previous research [17],
some of the features previously observed by Broder et al. [10] are
very dependent on artefacts of the crawling process, whereas other
appear to be more structural. We confirm the existence of a giant
strongly connected component; we however find, as observed by
other researchers [12, 5, 3], very different proportions of nodes that
can reach or that can be reached from the giant component, sug-
gesting that the “bow-tie structure” as described in [10] is strongly
dependent on the crawling process, and to the best of our current
knowledge is not a structural property of the web.

More importantly, statistical testing and visual inspection of size-
rank plots show that the distributions of indegree, outdegree and
sizes of strongly connected components are not power laws, con-
trarily to what was previously reported for much smaller crawls,
although they might be heavy-tailed. We also provide for the first
time accurate measurement of distance-based features, using re-
cently introduced algorithms that scale to the size of our crawl [8].
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1. INTRODUCTION
The evolution of the World Wide Web is summarized by Hall and

Tiropanis as the development from “the web of documents” in the
very beginning, to “the web of people” in the early 2000’s, to the
present “web of data and social networks” [13]. With the evolution
of the World Wide Web (WWW), the corresponding web graph has
grown and evolved as well.

Knowledge about the general graph structure of the web graph is
important for a number of purposes. From the structure of the web
graph, we can provide evidence for the social phenomena govern-
ing the growth of the web [13]. Moreover, the design of exogenous
ranking mechanisms (i.e., based on the links between pages) can
benefit from deeper knowledge of the web graph, and the very pro-
cess of crawling the web can be made more efficient using infor-
mation about its structure. Finally, studying the web can help to
detect rank manipulations such as spam networks, which publish
large numbers of “fake" links in order to increase the ranking of a
target page.

In spite of the importance of knowledge about the structure of the
web graph, the latest publicly accessible analysis of a large global
crawl is nearly a decade old. The first, classic work about the struc-
ture of the web as a whole was published by Broder et al. [10] in
2000 using an AltaVista crawl of 200 million pages and 1.5 billion
links.1 A second similar crawl was used to validate the results.

One of their main findings was a bow-tie structure within the
web graph: a giant strongly connected component containing 28%
of the nodes. In addition, Broder et al. show that the indegree dis-
tribution, the outdegree distribution and the distribution of the sizes

1Throughout the paper, we avoid redundant use of the ≈ symbol:
all reported figures are rounded.



of strongly connected components are heavy tailed. The paper ac-
tually claims the distributions to follow power laws, but provides
no evidence in this sense except for the fact that the data points in
the left part of the plots are gathered around a line. The authors
comment also on the fact that the initial part of the distributions
displays some concavity on a log-log plot, which requires further
analysis.

An important observation that has been made by Serrano et al. [17]
analysing four crawls gathered between 2001 and 2004 by differ-
ent crawlers with different parameters is that several properties of
web crawls are dependent on the crawling process. Maybe a bit
optimistically, Broder et al. claimed in 2000 that “These results are
remarkably consistent across two different, large AltaVista crawls.
This suggests that our results are relatively insensitive to the par-
ticular crawl we use, provided it is large enough”. We now know
that this is not true: several studies [12, 5, 3, 21] using different
(possibly regional) crawls gathered by different crawlers provided
quite different pictures of the web graph (e.g., that “daisy” of [12]
or the “teapot” of [21]).

In particular, recent strong and surprising results [1] have shown
that, in principle, most heavy-tailed (and even power-law) distribu-
tions observed in web crawls may be just an artefact of the crawling
process itself. It is very difficult to predict when and how we will
be able to understand fully whether this is true or not.

Subsequent studies confirmed the existence of a large strongly
connected component, usually significantly larger than previously
found, and heavy-tailed (often, power-law) distributions. However,
such studies used even smaller web crawls while the size of the web
was approaching the tera scale, and provided the same, weak visual
evidence about distribution fitting. While no crawl can claim to
represent the web as a whole (even large search engines crawl only
a small portion of the web, geographically, socially and economi-
cally selected) the increase in scale of the web requires the analysis
of crawls an order of magnitude larger. Nonetheless, billion-scale
representative crawls have not been available to the scientific com-
munity until very recently. Thus, only large companies such as
Google, Yahoo!, Yandex, and Microsoft had updated knowledge
about the structure of large crawls of the WWW.

A few exceptions exist, but they have significant problems. The
AltaVista webpage connectivity dataset, distributed by Yahoo! as
part of the WebScope program, has in theory 1.4 billion nodes, but
it is extremely disconnected: half of the nodes are isolated (no links
incoming or outgoing) and the largest strongly connected compo-
nent is less than 4% of the whole graph, which makes it entirely
unrepresentative. We have no knowledge of the crawling process,
and URLs have been anonymised, so no investigation of the causes
of these problems is possible.

The ClueWeb09 graph, gathered in 2009 within the U.S. Na-
tional Science Foundation’s Cluster Exploratory (CluE), has a sim-
ilar problem due to known mistakes in the link construction, with
a largest strongly connected component that is less the 3% of the
whole graph. As such, these two crawls cannot be used to infer
knowledge about the structure of the web.

The ClueWeb12 crawl, released concurrently with the writing of
this paper, has instead an accurate link structure, and contains a
largest strongly connected component covering 76% of the graph.
The crawl, however, is significantly smaller than the graph used in
this paper, as it contains 1.2 billion pages,2 and it is focused mostly
on English web pages.

2Note that the web graph distributed with ClueWeb09 and
ClueWeb12 appears to be much larger because all frontier nodes
have been included in the graph. The number we report are those
of the actually crawled pages.

In this paper, we try to update the original studies on the structure
of the web and its current state. We revisit and update the findings
of previous research to give an up-to-date view of the web graph
today, using a crawl that is significantly larger (3.5 billion pages)
than the ones used in previous work.

We repeat previous measurement, observing interesting differ-
ences, and provide new, previously unknown data, such as the dis-
tance distribution. The crawl3 as well as the hyperlink graph4 are
publicly available, so to encourage other researchers and analysts
to replicate our results and investigate in further interesting topics.

2. DATASET AND METHODOLOGY
The object of study of this paper is a large web crawl gathered

by the Common Crawl Foundation5 in the first half of 2012. The
crawl contains 3.83 billion web documents, of which over 3.53 bil-
lion (92%) are of mime-type text/html. The crawler used by the
Common Crawl (CC) Foundation for the crawl is based on a breath-
first visiting strategy, together with heuristics to detect spam pages.
In addition heuristics were used to reduce the number of crawled
pages with duplicate or no content. Such heuristics, in principle,
may cut some of the visiting paths and make the link structure
sparser. The crawl was seeded with the list of pay-level-domain
names from a previous crawl and a set of URLs from Wikipedia.
The list of seeds was ordered by the number of external references.
Unfortunately this list is not public accessible, but we estimated
that at least 71 million different seeds were used, based on our ob-
servations on the ratio between pages and domains. The selected
amount of seeds in combination with the methodology are likely
to affect the distribution of host sizes, as popular websites were
crawled more intensely: for example, youtube.com is represented
by 93.1 million pages within the crawl [18]. In addition, it is likely
that the large number of seeds used in the multiple phases of the
crawl caused the large number of pages of indegree zero (20% of
the graph) found in the graph.

Associated with the crawl is a web graph, in which each node
represents a page and each arc between two nodes represents the
existence of one or more hypertextual links between the associated
pages. We extracted the web graph from the crawl with a 3-step
process, using an infrastructure similar to the framework used by
Bizer et al. to parse the Common Crawl corpus and extract struc-
tured data embedded in HTML pages [4]. We first collected for
each crawled page its URL, mime-type, links to other pages, type,
and, if available, the redirect URL, using 100 parallel c1.xlarge
Amazon Elastic Compute Cloud (EC2) machine instances. We then
filtered the extracted URLs by mime-type text/html and kept
only links within HTML elements of type a and link, as we want
to focus on HTML pages linking to other HTML pages.6 Also redi-
rects contained in HTTP header have been treated as links. Finally,
we used a 40-node Amazon Elastic MapReduce cluster to compress
the graph, indexing all URLs and remove duplicate links.

Additionally, we built the host graph and the pay-level-domain
(PLD) graph. Nodes in such graphs represent sets of pages with the

3https://commoncrawl.atlassian.net/wiki/display/
CRWL/About+the+Data+Set
4http://webdatacommons.org/hyperlinkgraph/
5http://commoncrawl.org/
6We remark that this choice might have introduced some sparsity,
as in principle the crawling process might have followed further
links, such as src attributes of iframe elements. Keeping per-
fectly aligned the online (during the crawl) and offline (in a sepa-
rate pass after the crawl) link extraction process when they are per-
formed by different organisations is, unfortunately, quite difficult,
as link and page selection strategies could differ.



same host/pay-level-domain, and there is an arc between nodes x
and y if there is at least one arc from a page in the set associated
with x to a page in the set associated with y. Table 1 provides basic
data about the size of the graphs.

Granularity # Nodes in millions # Arcs in millions
Page Graph 3 563 128 736
Host Graph 101 2 043
PLD Graph 43 623

Table 1: Sizes of the graphs

3. ANALYSIS OF THE WEB GRAPH
Most of the analyses presented in the following section have

been performed using the “big” version of the WebGraph frame-
work [6], which can handle more than 231 nodes. The BV compres-
sion scheme was able to compress the graph in crawl order at 3.52
bits per link, which is just 12.6% of the information-theoretical
lower bound (under a suitable permutation of the node identifiers it
is common to obtain slightly more than one bit per link). The whole
graph occupied in compressed form just 57.5GB, which made it
possible to run resource intensive computations such as the compu-
tation of the strongly connected components.

3.1 Indegree & Outdegree Distribution
The simplest indicator of density of web graphs is the average

degree, that is, the ratio between the number of arcs and the number
of nodes in the graph.7

Broder et al. report an average degree of 7.5 links per page. Sim-
ilar low values can be found in crawls of the same years—for in-
stance, in the crawls made by the Stanford WebBase project.8 In
contrast our graph has average degree of 36.8, meaning that the av-
erage degree is factor 4.9 larger than in the earlier crawls. Similar
values can be found in 2007 .uk crawls performed by the Labora-
tory for Web Algorithmics, and the ClueWeb12 crawl has average
degree 45.1.9 A possible explanation for the increase of the aver-
age degree is the wide adoption of content management systems,
which tend to create dense websites.

Figures 1 and 2 show frequency plots of indegrees and outde-
grees in log-log scale. For each d, we plot a point with an ordinate
equal to the number of pages with that have degree d. Note that
we included the data for degree zero, which is omitted in most of
the literature. We then aggregate the values using Fibonacci bin-
ning [19] to show the approximate shape of the distribution.

Finally, we try to fit a power law to a tail of the data. This part is
somewhat delicate: previous work in the late 90’s has often claimed
to find power laws just by noting an approximate linear shape in
log-log plots: unfortunately, almost all distributions (even, some-
time, non-monotone ones) look like a line on a log-log plot [20].
Tails exhibiting high variability, in particular, are very noisy (see
the typical “clouds of points” in the right part of degree plots) and
difficult to interpret.
7Technically speaking, the density of a graph is the ratio between
the square of the number of nodes and the number of arcs, but for
very sparse graphs one obtains abysmally small numbers that are
difficult to interpret.
8http://dbpubs.stanford.edu:8091/~testbed/
doc2/WebBase/
9We remark that all these values are actually an underestimation,
as they represent the average number of outgoing arcs in the web
graph built from the crawl. The average number of links per page
can be higher, as several links will point outside the graph.

Figure 1: Frequency plot of the indegree distribution

Figure 2: Frequency plot of the outdegree distribution

We thus follow the methodological suggestions of Clauset et al. [11].
We use the plfit10 tool to attempt a maximum-likelihood fitting of
a power law starting from each possible degree, keeping the start-
ing point and the exponent providing the best likelihood. After that
we perform a goodness-of-fit test and estimate a p-value.

The first important fact we report is that the p-value of the best
fits is 0 (±0.01). In other words, from a statistical viewpoint, in
spite of some nice graphical overlap the tail of the distribution is
not a power law. We remark that this paper applies for the first time
a sound methodology to a large dataset: it is not surprising that the
conclusions diverge significantly from previous literature.

To have some intuition about the possibility of a heavy tail (i.e.,
that the tail of the distribution is not exponentially bounded) we
draw the size-rank plot, as suggested in [14]. The size-rank plot is
the discrete version of the complementary cumulative distribution
function in probability: if the data fits a power law it should display
as a line on a log-log scale. Concavity indicates a superpolynomial
decay. Size-rank plots are monotonically decreasing functions, and
do not suffer the “cloud of points” problem.

Figure 3 shows the size-rank plot of the degree distributions of
our graph and the best power-law fit: from what we can ascertain
visually, there is a clear concavity, indicating once again that the tail
of the distribution is not a power law. The concavity leaves open
the possibility of a non-fat heavy tail, such as that of a lognormal
distribution.

10https://github.com/ntamas/plfit



Figure 3: Size-rank plot of degree distributions

In any case, the tails providing the best fit characterize a very
small fraction of the probability distribution: for indegrees, we ob-
tain an exponent 2.24 starting at degree 1 129, whereas for outde-
grees we obtain an exponent 2.77 starting at 199, corresponding,
respectively, to 0.4% and less than 2% of the probability mass (or,
equivalently, fraction of nodes). Models replicating this behaviour,
thus, explain very little of the process of link formation in the web.

The values we report are slightly different than those of Broder et
al., who found 2.09 respectively 2.72 as power-law exponent for
the indegree respectively outdegree. But in fact they are incompa-
rable, as our fitting process used different statistical methods.

Finally, the largest outdegree is three magnitudes smaller than
the largest indegree. This suggests that the decay of the indegree
distribution is significantly slower than that of the outdegree distri-
bution, a fact confirmed by Figure 3.

3.2 High Indegree Pages and Hosts
The three web pages with highest indegree are the starting pages

of YouTube, WordPress and Google. Other six pages from YouTube
from the privacy, press and copyright sections of this website ap-
pear within the top 10 of pages ranked by their indegree. This is an
artefact of the large number of pages crawled from YouTube.11

The list of hosts with the highest indegree (in the host graph)
is more interesting: in Table 2 we show the top 20 hosts by in-
degree, PageRank [16] and harmonic centrality [9]. While most
of the sites are the same, some noise appears because some sites
are highly linked for technical or political reasons. In particular,
the site miibeian.gov.cn must be linked by every Chinese site,
hence the very high ranking. PageRank is as usual very correlated
to degree, and cannot avoid ranking highly this site, whereas har-
monic centrality understands its minor importance and ranks it at
position 6146.

3.3 Components
Following the steps of Broder et al., we now analyse the weakly

connected components (WCC) of our web graph.
Weakly connected components are difficult to interpret—in the-

ory, unless one has two seed URLs reaching completely disjoint re-
gions of the web (unlikely), one should always find a single weakly
connected component. The only other sources of disconnection are
crawling and/or parsing artefacts.

Figure 4 shows the distribution of the sizes of the weakly con-
nected components using a visualization similar to the previous fig-
ures. The largest component (rightmost grey point) contains about
around 94% of the whole graph, and it is slightly larger than the

11The highest ranked pages are listed at http://
webdatacommons.org/hyperlinkgraph/top_degree_
pages.html.

PageRank Indegree Harmonic Centrality
gmpg.org wordpress.org youtube.com

wordpress.org youtube.com en.wikipedia.org
youtube.com gmpg.org twitter.com

livejournal.com en.wikipedia.org google.com
tumblr.com tumblr.com wordpress.org

en.wikipedia.org twitter.com flickr.com
twitter.com google.com facebook.com

networkadvertising.org flickr.com apple.com
promodj.com rtalabel.org vimeo.com

skriptmail.de wordpress.com creativecommons.org
parallels.com mp3shake.com amazon.com
tistory.com w3schools.com adobe.com
google.com domains.lycos.com myspace.com

miibeian.gov.cn staff.tumblr.com w3.org
phpbb.com club.tripod.com bbc.co.uk

blog.fc2.com creativecommons.org nytimes.com
tw.yahoo.com vimeo.com yahoo.com
w3schools.com miibeian.gov.cn microsoft.com
wordpress.com facebook.com guardian.co.uk

domains.lycos.com phpbb.com imdb.com

Table 2: The 20 top web hosts by PageRank, indegree and har-
monic centrality (boldfaced entries are unique to the list they
belong to)

one reported by Broder et al. (91.8%). Again, we show the max-
likelihood power-law fit starting at 14 with exponent 2.22, which
however excludes the largest component. The p-value is again 0,
and the law covers only to 1% of the distribution.

Figure 4: Frequency plot of the distribution of WCCs

More interestingly, we now analyse the strongly connected com-
ponents (SCC). Computing the strongly connected components of
a 3.5 billion node graph was no easy task: it required one terabyte
of core memory and, in fact, the computation was only possible
because WebGraph [6] uses lazy techniques to generate successor
lists (i.e., successors lists are never actually stored in memory in
uncompressed form).

Figure 5 shows the distribution of the sizes of the strongly con-
nected components. The largest component (rightmost grey point)
contains 51.3% of the nodes. Again, we show a fitted power law
starting at 22 with exponent 2.20, which however excludes the
largest component, and fits only to 8.9% of the distribution. The
p-value is again 0.

In Figure 6 we show the size-rank plots of both distributions,
which confirm again that the apparent fitting in the previous figures
is an artefact of the frequency plots (the rightmost grey points are
again the giant components).

3.4 The Bow Tie
Having identified the giant strongly connected component, we

can determine the so-called bow tie, a depiction of the structure of
the web suggested by Broder et al.. The bow tie is made of six
different components:



Figure 5: Frequency plot of the distribution of SCCs

Figure 6: Size-rank plot of the distribution of components

• the core is given by the giant strongly connected component
(LSCC);

• the IN component contains non-core pages that can reach the
core via a directed path;

• the OUT component contains non-core pages that can be
reached from the core;

• the TUBES are formed by non-core pages reachable from IN
and that can reach OUT;

• pages reachable from IN, or that can reach OUT, but are not
listed above, are called TENDRILS;

• the remaining pages are DISCONNECTED.

All these components are easily computed by visiting the direct
acyclic graph of strongly connected components (SCC DAG): it is
a graph having one node for each strongly connected component
with an arc from x to y if some node in the component associated
with x is connected with a node in the component associated with y.
Such a graph can be easily generated using WebGraph’s facilities.
Figure 7 shows the size of bow-tie component.

Table 3 compares the sizes of the different components of the
bow-tie structure between the web graph discussed in this paper
(column two and three) and the web graph analysed by Broder et al.
in 2000 (column four and five).12

12Broder et al. did not report the number of nodes belonging to the
TUBE component separately, as they define as TUBE as a TEN-
DRIL from the IN component hooked into the TENDRIL of a node
from the OUT component.

Figure 7: Bow-tie structure of the web graph

The main constant is the existence of a LSCC, which in our graph
has almost doubled in relative size. We also witness a much smaller
OUT component and a larger IN component. The different propor-
tions are most likely to be attributed to different crawling strategies
(in particular, to our large number of nodes with indegree zero,
which cannot belong to the LSCC or OUT component). Unfortu-
nately, basic data such as the seed size, the type of visit strategy,
etc. are not available for the Broder et al. crawl. Certainly, how-
ever, the web has become significantly more dense and connected
in the last 13 years.

Common Crawl 2012 Broder et al.
# nodes % nodes # nodes % nodes

Component (in thousands) (in %) (in thousands) (in %)
LSCC 1 827 543 51.28 56 464 27.74
IN 1 138 869 31.96 43 343 21.29
OUT 215 409 6.05 43 166 21.21
TENDRILS 164 465 4.61 43 798 21.52
TUBES 9 099 0.26 - -
DISC. 208 217 5.84 16 778 8.24

Table 3: Comparison of sizes of bow-tie components

3.5 Diameter and Distances
In this paper we report, for the first time, accurate measurements

of distance-related features of a large web crawl. Previous work
has tentatively used a small number of breadth-visit samples, but
convergence guarantees are extremely weak (in fact, almost non-
existent) for graphs that are not strongly connected. The data we
report have been computed using HyperBall [8], a diffusion-based
algorithm that computes an approximation of the distance distri-
bution (technically, we computed four runs with relative standard
deviation 9.25%). We report, for each datum, the empirical stan-
dard error computed by the jackknife resampling method.

In our web graph, 48.15±2.14% of the pairs of pages have a con-
necting directed path. Moreover, the average distance is 12.84 ±
0.09 and the harmonic diameter (the harmonic mean of all dis-
tances, see [15] and [7] for motivation) is 24.43± 0.97. These fig-
ures should be compared with the 25% of connected pairs and the
average distance 16.12 reported by Broder et al. (which however
have been computed averaging the result of few hundred breadth-
first samples): even if our crawl is more than 15 times larger, it
is significantly more connected, in contrast to commonly accepted
predictions of logarithmic growth of the diameter in terms of the



number of nodes. This is a quite general phenomenon: the average
distance between Facebook users, for instance, has been steadily
going down as the network became larger [2].

We can also estimate that the graph has a diameter of at least
5 282 (the maximum number of iteration of a HyperBall run). Fig-
ure 8 shows the distance distribution, sharply concentrated around
the average.

Figure 8: Distance distribution

4. CONCLUSION
We have reported a number of graph measurements on the largest

web graph that is available to the public outside companies such
as Google, Yahoo, Yandex, and Microsoft. Comparing our results
with previous measurements performed in the last 13 years, and
with previous literature on significantly smaller crawls, we reach
the following conclusions:

• The average degree has significantly increased, almost by a
factor of 5.

• At the same time, the connectivity of the graph (the percent-
age of connected pairs) has increased (almost twice) and the
average distance between pages has decreased, in spite of a
predicted growth that should have been logarithmic in the
number of pages.

• While we can confirm the existence of a large strongly con-
nected component of growing size, witnessing again the in-
crease in connectivity, the structure of the rest of the web ap-
pears to be very dependent on the specific web crawl. While
it is always possible to compute the components of the bow
tie of Broder et al., the proportion of the components is not
intrinsic.

• The distribution of indegrees and outdegrees is extremely
different. Previous work on a smaller scale did not detect or
underplayed this fact, in part because of the little size of the
concave (on a log-log plot) part of the distribution in smaller
crawls. In our dataset, the two distributions have very little
in common.

• The frequency plots of degree and component-size distribu-
tions are visually identical to previous work. However, us-
ing proper statistical tools, neither degree nor component-
size distributions fit a power law. Moreover, visual inspec-
tion of the size-rank plots suggests that their tails are not fat
(i.e., they decrease faster than a polynomial), in contrast with
assumptions taken for granted in the current literature. Our
data, nonetheless, leaves open the possibility of a heavy tail
(e.g., lognormal).
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