
Heuristics for Fixing Common Errors
in Deployed schema.org Microdata

Robert Meusel and Heiko Paulheim

University of Mannheim
Research Group Data and Web Science

{robert,heiko}@dwslab.de

Abstract. Being promoted by major search engines such as Google,
Yahoo!, Bing, and Yandex, Microdata embedded in web pages, espe-
cially using schema.org, has become one of the most important markup
languages for the Web. However, deployed Microdata is most often not
free from errors, which limits its practical use. In this paper, we use
the WebDataCommons corpus of Microdata extracted from more than
250 million web pages for a quantitative analysis of common mistakes
in Microdata provision. Since it is unrealistic that data providers will
provide clean and correct data, we discuss a set of heuristics that can
be applied on the data consumer side to fix many of those mistakes in a
post-processing step. We apply those heuristics to provide an improved
knowledge base constructed from the raw Microdata extraction.

Keywords: Microdata, schema.org, Data Quality, Knowledge Base Construc-
tion

1 Introduction

In the recent years, languages for incorporating structured knowledge into HTML
web pages, such as RDFa, Microformats, and Microdata, have been proposed.
Out of those, the latter shows the widest adoption [11], in particular due to the
Schema.org initiative driven by major web search engines such as Google, Bing,
Yahoo!, and Yandex.1

The main motivation for web site providers to include Microdata is an im-
proved displaying of results by major search engines and by this a improved
awareness of their page to the user. Search engines display richer results for
web sites described with Microdata.Furthermore, the extraction of a large-scale
knowledge base is possible by harvesting data from different sites. One such
knowledge base is the Web Data Commons Microdata corpus2 [11].

In order to fully exploit such capabilities, it is necessary that web site providers
adhere to the standards defined by schema.org. For example, a product offer will
only appear on an aggregate search site if it uses the correct schema.org classes
and properties to annotate the relevant information. Furthermore, a knowledge

1 http://schema.org
2 htttp://webdatacommons.org/structureddata/



base extracted from Microdata will be of higher utility the more strictly the
given schema is followed.

In this paper, we analyze common mistakes made in the adoption of sche-
ma.org for Microdata. Using the WebDataCommons Microdata corpus extracted
from the web corpora provided by the Common Crawl Foundation,3 we perform
a quantitative analysis of those mistakes, and we compare the findings to similar
analyses carried out on Linked Open Data (LOD). For many of those mistakes,
we discuss heuristics to fix them, and apply the fixes to the recent WebDat-
aCommons Microdata corpus. That cleaned corpus contains data that is both
syntactically and semantically corrected, and thus represents a more valuable
knowledge base. Each heuristic applied is evaluated with respect to its quanti-
tative impact.

The rest of this paper is structured as follows. Section 2 gives an overview
of related work. Section 3 shows the quantitative analysis of common mistakes
observed in deployed Microdata, and section 4 discusses heuristics for fixing
many of those mistakes, as well as the construction of a cleaned up Microdata
corpus. We close with a summary and an outlook on future work.

2 Related Work

In [14], the definition of schema.org and its mapping to RDF triples and OWL
has been reviewed from a model-theoretic perspective. While that work is rather
top-down, starting from the schema definition, we follow a bottom-up approach,
making quantitative statements about the actually deployed data – a task named
as future work in [14].

Only few works have analyzed the current deployment of RDFa, Microdata,
and Microformats in the Web. Mika et al. have presented the first statistics of
deployment of the three markup languages in 2011 [12] and 2012 [13], using a
non-public web crawl owned by Yahoo!. Bizer et al. [4] present a broader analysis
of the current deployment using the public web crawls of the Common Crawl
Foundation. They report a strong deployment of markup to describe companies,
persons, products, and events, but also note a rather flat usage of properties to
describe those items. All those works solely perform an empiric analysis on the
current deployment of the different markups and schemas, without a discussion
the deviation between the schema definition(s) and the actual usage.

The problem of flatly described items is analyzed in-depth for the class
s:Product4 [15]. The authors propose to use regular expressions for extracting
features from the title and the description of products marked with Microdata.

A study on validation problems with HTML pages has been done by Chen et
al. [5]. They found that only 5% of all web pages are valid according to HTML
standards, and analyzed the major problems leading to this invalidity.

For Linked Open Data (LOD), similar works have been carried out [18].
While many of the metrics applied for LOD are rather LOD-specific (such as

3 http://commoncrawl.org
4 In this paper, we use s:Foo as a shorthand notation for http://schema.org/Foo.



the presence and correctness of dataset interlinks), some of the typical mistakes
apply to both LOD and Microdata, mainly in the categories of validity and
consistency. In the following, we cite some works which perform similar analyses
as the one presented in this paper on LOD. Similar to our work for Microdata
described in this paper, LOD Laundromat project provides cleaned versions of
LOD datasets with syntax errors removed [3].

One of the closest works is the work on the Pedantic Web [8]. The authors
identify four categories of mistakes in Linked Open Data, i.e., incomplete, in-
coherent, hijack, and inconsistent. An updated study on a more recent crawl of
LOD has been discussed in [17]. Similar to those papers, Prolod++ [1], among
others, can search for typical modeling problems such as data properties with
inconsistent data values (e.g., mixing numbers and dates). The work by Ziawasch
et al. [2] even goes one step further. Using the deployment of Linked Open Data,
their work aims to check whether properties are attached to the “right level”
within the hierarchy or if certain properties should be redefined.

In this paper, we specifically analyze to which extent the schema definition
of schema.org is followed. Similar works also exist for Linked Open Data, e.g.,
the DataBugger framework, which is based on user-formulated tests run against
SPARQL endpoints [9] and examines the adherence of instance data to a schema
and additional, user-defined constraints. Similarly, SWIQA uses patterns and
rules, e.g., for defining legal ranges of literals [6]. On the schema level, tools like
OOPS! [16] search for common violations of modeling best practices.

3 A Quantitative Analysis of Common Errors in
schema.org Microdata

For our analysis, we use the the most recent Microdata corpus5 from WebData-
Commons [11]. That original corpus includes over 8.7 billion triples originating
from 463 539 pay-level domains (PLDs), where we focus on the large majority
of PLDs which make use of the schema.org vocabulary (see Section 3.1).6

To avoid misleading results which are artifacts due to the selection strategy
of the underlying web crawl (not all PLDs are fully crawled), we mainly report
numbers aggregated to PLDs instead of triples. This leads to more representa-
tive numbers, assuming that an institution (with one or more web masters) is
responsible to maintain the pages of a PLD, and that this institution will al-
ways apply the same patterns for markup, i.e., they will also repeat the same
set of mistakes. Moreover, many websites are generated from databases, and the
markup of the information follows a global algorithm, i.e., values from the same

5 http://webdatacommons.org/structureddata/2013-11/
6 Only 0.1% of all PLDs deploying RDFa use schema.org, and only 2.4% of all LOD

sources [11, 17]. Hence, we restrict ourselves to Microdata, where we see a large-scale
adoption of schema.org.



database field are always marked up in the same way for one PLD. Different
aggregations are only used for making comparisons to other research works.7

For the schema description of schema.org, we use the RDF description of
schema.org, using version 1.91.8

From the Pedantic Web paper [8] (see above), we have selected those mis-
takes that can also occur in Microdata. However, since we base our analysis on
an extracted corpus of structured data, not the original embedding web pages,
we have no data for some of the categories reported in their paper, such as
syntax errors preventing a correct parsing of the contents. Furthermore, some
of the categories, such as the misuse of constructs that exist in OWL, but not
schema.org, are not applicable to our use case.

3.1 Usage of Wrong Namespaces and Identification of Relevant
PLDs

In this paper, we are primarily interested in schema.org Microdata. Hence, we
first identify all PLDs from the Microdata corpus which deploy such data by
looking at the namespaces used. To extract the namespaces from the types within
our corpus, we worked with a known namespace list, which includes the most
common namespaces as done by Bizer et al. [4].

In our case, the two namespaces for data-vocabulary.org and schema.org are
mostly deployed. For all non-fitting namespaces, we consider the substring until
the last non-trailing slash as a namespace.9

As a result of this extraction, we could identify over 15K different namespaces
within the whole Microdata corpus. At a first glance, besides the two major
namespaces (data-vocabulary.org and schema.org), we identified obvious typos of
those two major namespaces, and a large number of website specific namespaces.

As proposed by [11], and since we are mostly interested in the most com-
mon errors, we filtered out all namespaces occurring solely in one PLD. This
results in 361 different namespaces, including the two major namespaces. By
manually inspecting this set, we could identify 162 namespaces, used by 398 542
PLDs, which obviously were meant to be schema.org, but did not use the correct
namespace. 149 of those included the substring schema.org. The remaining 13
were well-formed URIs10 whose protocol and authority is within an edit distance
of 1 to http://schema.org.

Inspecting the most common errors we found that 102 namespaces include
a leading www., 19 use the https protocol, 11 have missing slashes within the
namespace, and four used a wrong capitalization (e.g., SChema.org). Despite this

7 Although the comparisons should be handled with care, since they might be biased
by different crawling strategies underlying the corpora at hand.

8 http://schema.rdfs.org/
9 Note that this might lead to a larger amount of different namespaces in the case

of wrong written namespaces or the use of the schema.org extension mechanism, as
defined by http://schema.org/docs/extension.html

10 Based on http://www.ietf.org/rfc/rfc2396.txt



large variety, overall only 4 909 (1.23%) from 398 542 pay-level domains deploy
a wrong namespace meant to be http://schema.org.

In the following sections, we will only use those triples which at least include
the substring schema.org within the namespace. Those 398 542 PLDs, originat-
ing from 217.018.636 different URLs, contain 6.4 billion triples describing 1.4
billion different instances (identified by a class), which corresponds to 86.0% of
the complete Microdata corpus.

The problem of wrong namespaces in schema.org Microdata is a subproblem
of the dereferencability issues in [8], although only for schema elements, not for
instances (a schema element with a wrong namespace will not be derefencable,
but a non-derefencable one may still have a correct namespace). Still, we can
compare it to the analysis of dereferencability of vocabulary elements for LOD
provided in [17]. According to that paper, 80% of all LOD datasets use at least
one schema element which is not de-referenceable, which is a much larger fraction
than for schema.org Microdata.11

3.2 Usage of Undefined Types

Using the definitions from the schema.org website, we identified 24 227 (6.07%)
PLDs which make use of undefined types by simply selecting the type-triple for
each entity and searching its value in this definition. Table 1 lists the ten most
common used schema.org types, which are not defined by the official schema.
Inspecting a larger fraction of the list of undefined types manually, we could
identify three major different types of errors:

Missing Slashes: As already mentioned in the section above, some data pro-
viders did not set the slashes correctly, which results in unknown types when
parsing the page (e.g. http://schema.orgStore on 6 236 different PLDs).

Capitalization: We orientated our analysis on the formal definition given on
the web page of schema.org, including the capitalization. Miscapitalization
(e.g. s:localbusiness) is also a major source of errors, observed for 1 169
PLDs.

Empty Types: A third mistake, according to our observation, are empty or
missing types. We identified 228 PLDs, which did not set a type for at least
one item on their page. Furthermore, 3 506 PLDs left the type empty within
the markup on the HTML page.

[8] reports that for LOD, 38.8% of all documents use undefined types, as
opposed to 5.82% of all documents in our corpus.

3.3 Usage of Undefined Properties

Again using the definitions on the schema.org website, we could identify 15 597
(3.92%) PLDs which use at least one undefined property. Table 2 shows the most
20 common used properties which are not defined in schema.org, together with

11 Even if we pessimistically assume that all other namespaces we observe are wrong.



Table 1. Most common used undefined types within schema.org, ordered by number
of pay-level domains.

Type # PLDs Class # PLDs

1 http://schema.orgStore 6 236 6 http://schema.orgApartmentComplex 767
2 http://schema.org 3 507 7 http://schema.org/product 566
3 http://schema.orgAggregateRating 1 931 8 http://schema.orgClothingStore 404
4 http://schema.orgPerson 1 738 9 http://schema.org/Postaladdress 368
5 http://schema.org/localbusiness 1 169 10 http://schema.orgPostalAddress 325

Table 2. Most common used undefined properties by type within schema.org, ordered
by number of PLDs.

Type Property #PLDs Comment

1 s:ImageObject s:contentURL 5 904 typo: s:contentUrl
2 s:Article s:type 2 393 not defined
3 s:BlogPosting s:postId 1 574 not defined
4 s:BlogPosting s:blogId 1 572 not defined
5 s:BlogPosting s:image url 1 509 not defined
6 s:LocalBusiness s:URL 1 365 typo: s:url
7 s:VideoObject s:embedURL 1 299 typo: s:embedUrl
8 s:SoftwareApplication s:operatingSystems 529 typo: s:operatingSystem
9 s:VideoObject s:thumbnailURL 464 close: s:thumbnail

10 s:Offer s:currency 442 close: s:priceCurrency
11 s:LocalBusiness s:rating 394 close: s:aggregatedRating
12 s:PostalAddress s:AddressLocality 387 typo: s:addressLocality
13 s:VideoObject s:contentURL 382 typo: s:contentUrl
14 s:LocalBusiness s:fax 302 not defined
15 s:SoftwareApplication s:SoftwareApplicationCategory 295 close: s:applicationCategory
16 s:SoftwareApplication s:softwareApplicationCategory 274 close: s:applicationCategory
17 s:PostalAddress s:postalcode 255 typo: s:postalCode
18 s:Person s:jobtitle 201 typo: s:jobTitle
19 s:Review s:itemreviewed 193 typo: s:itemReviewed
20 s:Product s:identifier 173 close: s:productID

the type they are to be used with. In this list, we can identify different types
of errors. One main source of errors are spelling mistakes, as in s:contentURL,
which is only defined as s:contentUrl. This error applies to eight out of the
top 20 mistakes. Besides completely not defined properties like s:postId and
s:blogId, we also find we also find properties where there is a close match, e.g.,
s:priceCurrency for s:priceCurrency.

The prevalence of undefined properties in LOD has also been investigated
in [8], where the authors report that 72.4% of all documents use undefined prop-
erties, while in our corpus, there are 9.69% of all documents. In [17], it is reported
that 80.75% of all documents use non-dereferencable vocabulary elements, i.e.,
either undefined properties or types.

3.4 Confusion of ObjectProperties and DatatypeProperties

In our corpus (using only types and properties which are defined by the website)
163 404 PLDs make use of ObjectProperties. Over half of those sites, namely
92 449 (56.58%) use those properties with a literal value at least once. This
percentage is large in comparison to LOD where only 8% of all documents use



Table 3. Most common ObjectProperties used with a literal.

Domain Property #PLDs Actual Domain

1 s:PostalAddress s:addressCountry 10 249 s:Country
2 s:Product s:manufacturer 7 933 s:Organization
3 s:Review s:author 7 807 s:Organization, s:Person
4 s:BlogPosting s:author 7 089 s:Organization, s:Person
5 s:Article s:author 5 491 s:Organization, s:Person
6 s:WebPage s:mainContentOfPage 5 441 s:WebPageElement
7 s:Article s:creator 4 567 s:Organization, s:Person
8 s:Product s:brand 4 402 s:Brand, s:Organization
9 s:AutoDealer s:address 2 437 s:PostalAddress

10 s:Recipe s:author 2 392 s:Organization, s:Person
11 s:ImageObject s:thumbnail 2 233 s:ImageObject
12 s:Review s:itemReviewed 1 564 s:Thing
13 s:Organization s:address 1 284 s:PostalAddress
14 s:AggregateRating s:itemReviewed 1 177 s:Thing
15 s:Blog s:author 1 171 s:Organization, s:Person
16 s:Event s:location 1 086 s:Place, s:PostalAddress
17 s:WebPage s:author 991 s:Organization, s:Person
18 s:Offer s:seller 845 s:Organization, s:Person
19 s:VideoObject s:thumbnail 818 s:ImageObject
20 s:Book s:author 619 s:Organization, s:Person

object properties with literal objects [8], as opposed to 24.35% of all documents
in our corpus.

Table 3 lists the 20 most commonly misused ObjectProperties by the number
of PLDs making use of them.12 Within this list, literals are mostly used to de-
scribe objects of the types s:Organization, s:Person, and s:PostalAddress.

The reverse case is neglectable. While 356 274 PLDs of the corpus use Datatype-
Properties, only 810 (0.2%) of those sites use an instance and not a literal for
at least one datatype property. This number is low compared to the numbers
reported by [8] for LOD, i.e., 2.2% of all documents use datatype properties with
non-literal objects, as opposed to 0.56% of the documents in our corpus.

3.5 Datatype Range Violations

For DatatypeProperties, eight different datatypes are defined in schema.org:
Text (the most general type), URL for all kinds of links, Boolean for binominal
values, Date, DateTime, and Time for temporal values, and Number and Integer

for numeric values. It is notable that, in some cases, more than one datatype
is allowed. For example, the property s:discount expects either a Number or a
Text as value. For the given values of each datatype property within our corpus,
we tried to parse them into one of the defined datatypes (e.g. for the property
s:deathDate, we tried to parse the literal into a date) using the type guessing
code from the Mannheim Search Join Engine for parsing web tables [10]. The
type guesser uses defensive heuristics, e.g., for URL, we only checked if the lit-
eral starts with something like http, www, ftp, or sftp, and even includes more
possible types for dates than the proposed ISO 8601 standard.

12 We have excluded all properties which are also used with literals in the examples
provided at http://schema.org.



Table 4. Most common datatype property values with non-parseable values, sorted by
number of PLDs.

Domain Property #PLDs Expected Datatype

1 s:BlogPosting s:datePublished 7 890 s:Date
2 s:Event s:startDate 4 877 s:Date
3 s:Article s:dateCreated 4 807 s:Date
4 s:Review s:datePublished 2 691 s:Date
5 s:Event s:endDate 2 422 s:Date
6 s:Article s:datePublished 2 247 s:Date
7 s:ImageObject s:uploadDate 2 097 s:Date
8 s:AggregateRating s:reviewCount 1 644 s:Number
9 s:Product s:url 926 s:URL

10 s:NewsArticle s:datePublished 750 s:Date
11 s:Article s:dateModified 610 s:Date
12 s:AggregateRating s:ratingCount 552 s:Number
13 s:VideoObject s:uploadDate 481 s:Date
14 s:Person s:url 409 s:URL
15 s:UserComments s:commentTime 401 s:Date
16 s:Organization s:url 390 s:URL
17 s:JobPosting s:datePosted 369 s:Date
18 s:Person s:birthDate 321 s:Date
19 s:OpeningHoursSpecification s:opens 295 s:Time
20 s:OpeningHoursSpecification s:closes 271 s:Time

From the 356 274 PLDs using datatype properties, the parser was not able to
parse the literal to one of the defined datatypes on at least one property in 34 324
(9.63%) PLDs. Table 4 shows the top 20 properties with non-parseable literals.
Obviously, most difficulties exist for dates: when investigating the data manually,
we found various strings that were interpretable as dates for human beings, but
which did not follow a known standard. Also for some PLDs, we could not parse
the values for s:reviewCount properly. Here, not only a number was given in
the literal, but also the unit, e.g. ”10 votes“.

A similar analysis was presented in [8] for LOD. Here, the authors examined
whether the lexical syntax of literals matched the lexical form. They report
that 4.6% of all literals have a mismatch between their declared type and their
lexical form, as opposed to 12.06% of all documents in our corpus. Here, the
most dominant source of problems were also dates, with prominently 26.6% of
all xsd:dateTime literals being malformed.

3.6 Property Domain Violations

For each property, schema.org defines a domain and a range. It is important to
note that the semantics for schema.org are different than for LOD. Schema.org
uses s:domainIncludes and s:rangeIncludes to define disjunctive, not con-
junctive enumerations of domains and ranges as in RDFS and OWL [14]. We
assume the enumerations of possible domains and ranges to be complete, and
count each typed subject or object as a mistake if it has a type which is not con-
tained in the domain or range enumeration (or an rdfs:subclassOf thereof),
respectively, although disjointness is not explicitly defined in schema.org.

In total, 15 949 PLDs (4.0%) expose domain violations. Table 5 lists the 20
most common domain violations. Column four shows the types the property



Table 5. Most common used defined properties with a domain violation, ordered by
number of PLDs.

Class Property #PLDs Is property of type

1 s:Product s:price 2 480 s:Offer
2 s:LocalBusiness s:addressLocality 1 437 s:PostalAddress
3 s:LocalBusiness s:addressRegion 1 143 s:PostalAddress
4 s:Product s:availability 1 163 s:Offer
5 s:Product s:video 1 032 s:CreativeWork
6 s:Article s:ratingValue 983 s:Rating
7 s:Article s:ratingCount 943 s:Rating
8 s:WebPage s:title 868 s:JobPosting
9 s:LocalBusiness s:streetAddress 766 s:PostalAddress

10 s:Event s:price 731 s:Offer
11 s:LocalBusiness s:postalCode 687 s:PostalAddress
12 s:Event s:telephone 565 s:Person, s:Organization, s:Place
13 s:WebPage s:location 550 s:PostalAddress
14 s:Place s:startDate 545 s:Event, s:Role, s:Season, s:Series
15 s:Event s:email 510 s:Person, s:Organization
16 s:Product s:category 508 s:Offer
17 s:Place s:endDate 489 s:Event, s:Role, s:Season, s:Series
18 s:Product s:priceCurrency 390 s:PostalAddress
19 s:Review s:ratingValue 344 s:Rating
20 s:Blog s:breadcrumb 336 s:WebPage

was actually defined for. Inspecting this list, we found that most of the prop-
erties which are used actually have s:PostalAddress, s:Offer, and s:Rating

as their domain. Looking at the types these properties are used with, we can
find a unique direct link between the defined and the used type. In most cases,
those types are needed to describe the original item further (e.g. Offer to de-
scribe prices, availability of a Product). It seems that the data providers used a
“shortcut”, without modeling the in-between instance, as defined by the schema.
For example, the triple13

1. :1 s:ratingValue ‘‘5’’ .

is used for an s:Article instead of the set of triples

1. :1 s:aggregateRating :2 .

2. :2 a s:AggregateRating .

3. :2 s:ratingValue ‘‘5’’ .

3.7 ObjectProperty Range Violations

We used the schema given at the website to gather a list of all ObjectProperties
and their ranges, including all the subtypes and supertypes. This means, e.g.
for the the property s:bloodSupply expecting an object of type s:Vessel, we
recursively included all subtypes (e.g. s:Artery and s:Vein), as well as all
supertypes (s:AnatomicalStructure, s:MedicalEntity, and s:Thing) of this
object. An instance of any of those types in the object position, respectively, was
counted as correctly typed.

13 Following [7], we use blank nodes for instances extracted from Microdata.



Table 6. Most common type, object property range violation ordered by number of
PLDs.

Domain Property #PLDs Domain Property #PLDs

1 s:WebPage s:mainContentOfPage 6 230 11 s:Review s:reviewRating 179
2 s:Article s:aggregateRating 1 696 12 s:JobPosting s:jobLocation 173
3 s:BlogPosting s:author 1 460 13 s:JobPosting s:address 151
4 s:Product s:offers 405 14 s:Product s:review 131
5 s:Place s:address 396 15 s:Recipe s:reviews 108
6 s:Review s:aggregateRating 298 16 s:Article s:author 103
7 s:LocalBusiness s:address 283 17 s:Dentist s:address 95
8 s:Product s:aggregateRating 259 18 s:Movie s:director 76
9 s:Place s:geo 257 19 s:Event s:location 66

10 s:Organization s:address 219 20 s:SoftwareApplication s:aggregateRating 63

From the 163 404 PLDs making use of ObjectProperties, 14 089 (8.62%) PLDs
violate the defined range of at least one object property on their pages. Table 6
lists the 20 most common range violations. This list does only include those
PLDs which use the object properties with an object as range, and not with a
literal, as those mistakes are covered in Section 3.4.

The most common mistake is made for the property s:mainContentOfPage

for the type s:WebPage, expecting an object of type s:WebPageElement. Here
webmasters in 92.5% of the cases maintain an object of type s:Blog as value.
Semantically, this might make sense, as the Blog is part of the web page, but
based on the schema, s:Blog is a subtype of s:CreativeWork and by that no
subtype of s:WebPageElement. For the property s:aggregateRating of type
s:Article, we found that the major reason for the range violation results from
undefined types, resulting from spelling mistakes, e.g. s:aggregatedrating.

In [8], a similar analysis has been carried out for LOD, using reasoning to find
inconsistencies between a type assigned to an instance, and the expected type
according to the domain/range of its properties. On average, 2.4% of all LOD
documents are reported to show one such inconsistency, as opposed to 3.2% of
the document in our corpus.

3.8 Hybrid Properties

Last, we have a look at properties which are defined as DatatypeProperties
as well as ObjectProperties in schema.org. In comparison to LOD, where this
phenomenon is only rarely applied [8], 24 such properties exist in schema.org, e.g.
s:category, s:citation, s:defaultValue, s:image, s:option, and s:query

to name just a few.14 While those are not a mistake w.r.t. schema.org, they lead
to an unclean knowledge base when applying RDFS/OWL semantics.

Table 7 lists all of the hybrid properties which are deployed within our
corpus with the number of PLDs making use of them at least once. From
the 24 available hybrid properties, only 10 are present within our corpus. The
most common used property is s:image, whose range can be an URL or an

14 The complete list of properties can be found at http://webdatacommons.org/

structureddata/2013-11/stats/fixing_common_errors.html.



Table 7. List of all deployed hybrid properties, ordered by the number of pay-level
domains using them at least once.

Property #PLDs Property #PLDs

1 s:image 133 819 6 s:citation 24
2 s:logo 10 929 7 s:license 13
3 s:model 2 231 8 s:eligibleRegion 12
4 s:category 825 9 s:toLocation 1
5 s:screenshot 305 10 s:fromLocation 1

Table 8. Distribution of deployed object or datatypes for hybrid properties by per-
centage of PLDs making use of those values. Most outstanding values are marked bold.
The table lists only properties used by more than one PLD.

Property # Different PLDs Object Text URL Number Date

s:image 133 819 0.08% 15.22% 84.68% 0.01% 0.00%
s:logo 10 929 1.59% 3.41% 95.00% 0.00% 0.00%
s:model 2 231 0.14% 76.82% 0.82% 14.27% 7.94%
s:category 825 0.12% 98.32% 1.20% 0.24% 0.12%
s:screenshot 305 3.25% 5.84% 90.91% 0.00% 0.00%
s:citation 24 14.29% 50.00% 32.14% 3.57% 0.00%
s:license 13 0.00% 76.92% 23.08% 0.00% 0.00%
s:eligibleRegion 12 0.00% 100.00% 0.00% 0.00% 0.00%

s:ImageObject, the same holds for s:logo. The third most common used hy-
brid property is s:model, where the schema expects a textual description of an
item of type s:ProductModel. A still broadly used property is s:category. The
schema allows a textual description, as well as a s:Thing and more specific a
s:PhysicalActivityCategory.

For those 10 properties, we again used our datatype guesser (see section 3.5)
to find out what kind of value is mostly used for those properties. Table 4 lists
for each of the properties the percentage of value types used by PLDs for this
property. Whenever it was not possible to find a more specific datatype, the
datatype s:Text was guessed. The table reveals that most of the cases, objects
are not the dominantly deployed value types for those properties. Among the
properties, s:citation stands out. Here, we cannot define the major used value
type, as beside s:CreativeWork and s:Text (as defined by the schema), 32% of
the PLDs use a URL as value.

4 Heuristics for Fixing Deployed schema.org Microdata

Since we cannot rely that data providers will fix their Microdata, we follow
the approach of repairing the data on the consumer side. In the following, we
introduce a set of simple heuristics for fixing schema.org Microdata, and quantify
their coverage. With those heuristics, many of the mistakes discussed above can
be fixed rather easily.

4.1 Identifying and Fixing Wrong Namespaces

According to our observation from the previous section, we identified a set of
heuristics to fix the most common namespace mistakes:



1. Removal of the leading www. before schema.org

2. Replacement of https:// by http://

3. Conversion of the whole domain name to lower case
4. Removal of any additional sequence between http:// and schema.org

5. Addition of an extra slash after schema.org, if none is present.

Using these rules in the given order, we are able to fix 147 out of 148 of wrongly
spelled schema.org namespaces. The remaining namespace had a duplication of
the top-level domain .org and could not be fixed by these heuristics.

4.2 Handling Undefined Types and Properties

Apart from mistakes resulting from errors within the namespace and missing
slashes, our analysis in Section 3.2 and 3.3 has revealed that a large number of
undefined types and properties are caused by spelling errors, in particular wrong
capitalization (e.g. s:contentURL and s:jobtitle). Thus, whenever parsing
Microdata entities from web pages, we suggest to not take capitalization into
account, and replace each schema element with the properly capitalized version.
This approach has also been proposed for consuming LOD in [8].

Applying this heuristic (together with the fixing of namespaces as above) to
the undefined/unknown types, it is possible to replace them by correct types
for 17 192 (71.0%) of all PLDs using undefined types. Likewise, we can replace
undefined properties on 10 281 (65.92%) of the PLDs exposing that problem.
However, we can observe a long tail distribution here, i.e., the remaining 29.0%
(34.08%) PLDs account for 73.89% (91.82%) of all undefined types (properties,
resp.). Those long-tail errors are typically hard-to-detect typos or types and
properties that have been made up freely.

4.3 Handling ObjectProperties with a Literal Value

As shown in section 3.4, the main objects which are modeled by the webmas-
ters as literals are s:Organization, s:Person, and s:PostalAddress. Thus,
we randomly inspected 715 such property value for the properties s:author,
s:creator, and s:address, to get a better understanding. From this analysis,
we saw that the majority of literals for s:Person and s:Organization are person
and organization names or URLs, while s:PostalAddress is usually represented
by a textual representation of the address.

From this observation, we derive the following strategy for fixing literal valued
ObjectProperties: Given a triple

1. :1 s:op l .,

where s:op is an ObjectProperty, and l is a literal, replace the triple by

1. :1 s:op :2 .

2. :2 a s:t .

3. :2 (s:name|s:url) l .



Here, s:t is the range of s:op, or the least abstract common supertype of all
ranges, if there are more than one. If l is a valid URL, then it is set as the s:url
of the newly created instance, otherwise, it is used as its s:name.15

With this heuristic, we are able to replace all misused ObjectProperties

on 92 449 PLDs with a semantically correct set of triples. Note that using this
heuristic might change the overall distribution of types within the corpus, as it
will create a larger number of new entities (e.g., of type s:PostalAddress). For
example, mapping all s:address literal values to a new s:PostalAddress would
create around 14 million new entities of this type, which would be an increase
of 11%. Inspecting this shift more closely will be subject to future work.

4.4 Handling Property Domain Violations

As discussed in section 3.3, properties used on objects that they are not defined
on are often caused by “shortcuts” taken by the data provider. Picking up the
example above, the data provider used the triple

1. :1 s:ratingValue ‘‘5’’ .

instead of the set of triples

1. :1 s:aggregateRating :2 .
2. :2 a s:AggregateRating .
3. :2 s:ratingValue ‘‘5’’ .

where :1 is of type s:Article. In order to expand the wrong triple to the
correct set of triples, we need to guess what the data provider meant. To that
end, we use the following approach: Given two triples

1. foo:x s:r foo:y .
2. foo:x a s:t

where s:t is not the domain of s:r, we try to find a relation R and a type T

within schema.org such that one of the following two patterns is fulfilled:

1. R s:domainIncludes s:t .

2. R s:rangeIncludes T .

3. s:r s:domainIncludes T .

1. R s:rangeIncludes s:t .

2. R s:domainIncludes T .

3. s:r s:domainIncludes T .

If there is one unique solution for only one of the two pattern, we replace the
erroneous triple with the solution we found. In a second step, we unify all newly
created entities of one type into one entity. Thus, given that in the above exam-
ple, there was also a s:ratingCount defined, we would end up with only instance
of s:AggregateRating with both the s:ratingValue and the s:ratingCount

properties from the original s:Article.
With that heuristic, we could replace 1 098 out of 3 767 properties used with

types they are not defined for, which corresponds to 5 011 (31.42%) of all PLDs.
In 986 cases, no solution could be found for any of the two patterns; in the
remaining 1 683 cases, the solution found was not unique.

15 Note that s:name is more generic than, e.g., the name of a person. It is comparable
to rdfs:label in RDF.



5 Conclusion and Outlook

In this paper, we have identified the most common mistakes made by providers of
schema.org Microdata. Beside more obvious mistakes as spellings errors within
namespaces, types or property names, we have identified various confusions
within the usage of values of ObjectProperties and DatatypeProperties, and the
violation of domain and range constraints defined for schema.org. Additionally,
we have investigated the parseability of values, e.g., numbers or dates.

For the issues identified, we have performed a quantitative analysis and com-
pared the numbers to similar analyses carried out on Linked Open Data. The
comparison shows that Microdata is cleaner than LOD w.r.t. simple errors such
as the usage of undefined types or properties, while schema conformance (such
as respecting domain/range restrictions) is higher for LOD.

One main finding is that the majority of information marked-up using Mi-
crodata with schema.org can be parsed following the recommended schema.
We have proposed a set of simple heuristics that can be applied by data con-
sumers to fix a large fraction of wrong markup in a post-processing step. With
those heuristics, we were able to curate an improved, cleaned up version of the
WebDataCommons Microdata corpus, which corrects many of the syntactic and
semantic errors made on the data providers’ side. This new corpus is a higher
quality knowledge base, derived from Microdata deployed on the web, and fixing
data provided at tens of thousands of PLDs.16

Many of our heuristics are still simple, and there is a room for improvement.
For example, we are currently not trying to guess matching properties for mis-
spelled ones beyond capitalization errors. Furthermore, our method for creating
new objects for literal-valued ObjectProperties is rather simple. In particular for
complex objects, such as addresses, it could be strongly improved by training
extractors that decompose the given literal into a street, a city, ZIP code, etc.
Furthermore, our heuristic for domain violation so far only works if there is a
unique solution, but a more relaxed version looking for likely solutions (e.g.,
patterns that are more commonly deployed than others) could fix even more
mistakes. Similar solutions could be applied for fixing ObjectProperty range
violations, which are currently not addressed by our approach.

Another interesting observation we made was that some classes and prop-
erties – such as s:Game – were already widely used in the corpus before they
became a standard. With our methods, we can identify such widely used cases
and provide quantitative evidence to discussions on missing classes and proper-
ties in the data schema.

While in this paper, we have taken a synchronic approach, looking only at
the state of the data deployment at the current time, we aim at extending our
analysis with a diachronic perspective, looking at the changes over time. This
would reveal insights data quality change over time, as well as on the pace at
which changes in the data schema (such as deprecations) are adopted.

16 The corpus is available for download at http://webdatacommons.org/

structureddata/2013-11/stats/fixing_common_errors.html



References

1. Abedjan, Z., Gruetze, T., Jentzsch, A., Naumann, F.: Profiling and mining rdf
data with prolod++. In: Data Engineering (ICDE), 2014 IEEE 30th International
Conference on. pp. 1198–1201. IEEE (2014)

2. Abedjan, Z., Lorey, J., Naumann, F.: Reconciling ontologies and the web of data.
In: Proceedings of the 21st International Conference on Information and Knowledge
Management (CIKM). pp. 1532–1536. Maui, Hawaii, USA (2012)

3. Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: Lod
laundromat: A uniform way of publishing other peoples dirty data. In: ISWC (2014)

4. Bizer, C., Eckert, K., Meusel, R., Mühleisen, H., Schuhmacher, M., Völker, J.:
Deployment of rdfa, microdata, and microformats on the web – a quantitative
analysis. In: ISWC (2013)

5. Chen, S., Hong, D., Shen, V.: An experimental study on validation problems with
existing html webpages. In: Proceedings of the 2005 International Conference on
Internet Computing, ICOMP’05 (2005)

6. Fürber, C., Hepp, M.: Swiqa–a semantic web information quality assessment frame-
work. In: ECIS (2011)

7. Hickson, I., Kellogg, G., Tennison, J., Herman, I.: Microdata to rdf – second edition
(2014), http://www.w3.org/TR/microdata-rdf/

8. Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the pedantic
web. In: Linked Data on the Web (2010)

9. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen,
R., Zaveri, A.: Test-driven evaluation of linked data quality. In: Proceedings of the
23rd international conference on World Wide Web. pp. 747–758 (2014)

10. Lehmberg, O., Ritze, D., Ristoski, P., Eckert, K., Paulheim, H., Bizer, C.: Extend-
ing tables with data from over a million websites. In: Semantic Web Challenge
(2014)

11. Meusel, R., Petrovski, P., Bizer, C.: The webdatacommons microdata, rdfa and
microformat dataset series. In: ISWC (2014)

12. Mika, P.: Microformats and RDFa deployment across the Web . http:

//tripletalk.wordpress.com/2011/01/25/rdfa-deployment-across-the-web/

(2011)
13. Mika, P., Potter, T.: Metadata statistics for a large web corpus. In: LDOW 2012:

Linked Data on the Web. CEUR Workshop Proceedings, Vol. 937, CEUR-ws.org
(2012), http://ceur-ws.org/Vol-937/

14. Patel-Schneider, P.F.: Analyzing Schema.org (2014)
15. Petrovski, P., Bryl, V., Bizer, C.: Integrating product data from websites offer-

ing microdata markup. In: 4th Workshop on Data Extraction and Object Search
(DEOS2014) @ WWW (2014)

16. Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: Oops!(ontology pit-
fall scanner!): An on-line tool for ontology evaluation. International Journal on
Semantic Web and Information Systems (IJSWIS) 10(2), 7–34 (2014)

17. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: ISWC (2014)

18. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S., Hitzler,
P.: Quality assessment methodologies for linked open data. Submitted to Semantic
Web Journal (2013)


