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ABSTRACT
Cross-domain knowledge bases such as YAGO, DBpedia, or the
Google Knowledge Graph are being used as background knowl-
edge within an increasing range of applications including web
search, data integration, natural language understanding, and
question answering. The usefulness of a knowledge base for these
applications depends on its completeness. Relational HTML ta-
bles from the Web cover a wide range of topics and describe
very specific long tail entities, such as small villages, less-known
football players, or obscure songs.

This systems and applications paper explores the potential of
web table data for the task of completing cross-domain knowl-
edge bases with descriptions of formerly unknown entities. We
present the first system that handles all steps that are necessary
for this task: schema matching, row clustering, entity creation,
and new detection. The evaluation of the system using a manu-
ally labeled gold standard shows that it can construct formerly
unknown instances and their descriptions from table data with
an average F1 score of 0.80. In a second experiment, we apply
the system to a large corpus of web tables extracted from the
Common Crawl. This experiment allows us to get an overall im-
pression of the potential of web tables for augmenting knowledge
bases with long tail entities. The experiment shows that we can
augment the DBpedia knowledge base with descriptions of 14
thousand new football players as well as 187 thousand new songs.
The accuracy of the facts describing these instances is 0.90.

1 INTRODUCTION
Cross-domain knowledge bases like YAGO [18], DBpedia [20],
Wikidata [30], or the Google Knowledge Graph are being em-
ployed for an increasing range of applications, including natural
language processing, web search, and question answering.

The YAGO, DBpedia, and Wikidata knowledge bases all rely
on data that has been extracted from Wikipedia and as a result
cover mostly head instances that fulfill the Wikipedia notability
criteria. Their coverage of less well known instances from the
long tail is rather low [11]. As the usefulness of a knowledge base
often increases with its completeness, adding long tail instances
to an existing knowledge base is an important task.

Web tables [8], which are relational HTML tables extracted
from the Web, contain large amounts of structured information,
covering a wide range of topics, and describe very specific long
tail instances. Web tables are thus a promising source of informa-
tion for the task of augmenting cross-domain knowledge bases.

Augmenting knowledge bases with descriptions of long tail
instances requires, on the one hand, identifying instances of a
specific class that are not yet part of a knowledge base, and,
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on the other hand, compiling descriptions of the new instances
according to the schema of the knowledge base. Two areas of
related work are relevant for this task: Existing work on slot
filling [11, 22, 23, 27, 29] focuses on adding missing facts describ-
ing existing instances to a knowledge base. The methods do not
attempt to discover new instances. In contrast, existing research
on set expansion [24, 31, 32] focuses on determining the names
of new instances and is not concerned with compiling struc-
tured descriptions of those instances according to a schema of a
knowledge base. As most set expansion methods disambiguate
new instances solely based on names, they miss the potential of
exploiting additional features for disambiguation.

As a result, no viable methods that are able to automatically
augment a knowledge base with new instances and their descrip-
tions exist. In this work, we close this gap by introducing and
evaluating the first system that is able to generate descriptions of
formerly unknown long-tail entities given a corpus of relational
web tables. The system exploits the synergies between the task
of identifying new instances and compiling descriptions of these
instances using an iterative approach. The contributions of the
paper are as follows:

• We introduce the first system that is able to generate de-
scriptions of new instances given the set of all instances of
a class from a knowledge base and a corpus of relational
web tables.

• We evaluate our system using a manually built gold stan-
dard of annotatedweb tables and report the lessons learned
from this experiment.

• We run our system over a large corpus of web tables which
allows us to profile the general potential of web table data
for augmenting knowledge bases with descriptions of long
tail instances.

Figure 1 gives an overview of the overall process performed
by our system. The process consists of four main steps which are
executed in two iterations. We first apply schema matching meth-
ods to match web tables and attribute columns of those tables
to classes and properties in the knowledge base. Second, a row
clustering method identifies rows that describe the same entity.
From these row clusters, the entity creation component creates
entity descriptions according to the schema of the knowledge
base. Finally, the new detection component determines whether
an entity already exists in the knowledge base. We iterate over
the pipeline a second time using the row clusters and entity-to-
instance correspondences from the first run in order to refine the
schema mapping. After the second run of the pipeline, entities
identified as new are added to the knowledge base.

The paper is structured as follows: First, we describe the pro-
file of the knowledge base, the web table corpus, and the gold
standard that are used for the experiments throughout the pa-
per. Section 3 describes and evaluates the individual steps of the
overall process. Section 4 discusses the overall performance of
the pipeline on the gold standard, while in Section 5 we run our
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Figure 1: Overview of the overall pipeline.

Table 1: Number of instances and facts for selected DBpe-
dia classes.

Class Instances Facts

GF-Player 20,751 137,319
Song 52,533 315,414
Settlement 468,986 1,444,316

system on the large corpus of web tables in order to profile the
overall potential of web tables for the task at hand. Section 6
compares our system to the related work.

2 EXPERIMENTAL SETUP
This section describes the datasets that we use to evaluate our
system. We will first describe the knowledge base and the se-
lection of classes we aim to extend. We then describe the web
table corpus in which we hope to find new instances. We finally
describe the gold standard that we use throughout this work.

2.1 Knowledge Base and Classes
We employ DBpedia [20] as the target knowledge base to be
extended. It is extracted fromWikipedia and especiallyWikipedia
infoboxes. As a result, the covered instances are limited to those
identified as notable by the Wikipedia community.

From DBpedia we selected three classes on which we focus
throughout this work. To ensure that information covered by the
classes is diverse, we selected each from a different first-level
class, i.e. Agent, Work, and Place. To ensure that the classes are
not too broad, we preferred classes further down in the hierarchy.
As a result we chose the following three classes: GridironFoot-
ballPlayer (GF-Player), Song and Settlement. The class Song in-
cludes all instances of the class Single. Tables 1 and 2 provide an
overview of the number of instances and facts, and the property
densities of those classes. We only consider properties that have
an initial density of at least 30 %. We use the 2014 release of DBpe-
dia, as this release has been used in related work [22, 23, 26, 27],
and its release date is also closer to the extraction of the web
table corpus used in this work.

Table 1 shows that DBpedia already covers tens of thousands
of instances for the profiled classes. This could indicate that most
of the well-known instances are already covered, so that we are
especially interested in finding instances from the long tail.

Table 2 also reveals that the density differs significantly from
property to property. Only the properties of class Song have
consistently high densities larger than 60 %. The football player
class has many properties, but half of them have a density below
50 %. The class Settlement suffers from both, a small number of
properties, and low densities for some of them.

Table 2: Number of facts and property densities for se-
lected DBpedia properties.

Class Property Facts Density

GF-Player birthDate 20,218 97.43 %
GF-Player college 19,281 92.92 %
GF-Player birthPlace 17,912 86.32 %
GF-Player team 13,349 64.33 %
GF-Player number 11,430 55.08 %
GF-Player position 11,240 54.17 %
GF-Player height 10,059 48.47 %
GF-Player weight 10,027 48.32 %
GF-Player draftYear 7,947 38.30 %
GF-Player draftRound 7,932 38.22 %
GF-Player draftPick 7,924 38.19 %

Song genre 47,040 89.54 %
Song musicalArtist 45,097 85.85 %
Song recordLabel 43,053 81.95 %
Song runtime 42,035 80.02 %
Song album 40,666 77.41 %
Song writer 33,942 64.61 %
Song releaseDate 31,696 60.34 %

Settlement country 433,838 92.51 %
Settlement isPartOf 416,454 88.80 %
Settlement populationTotal 292,831 62.44 %
Settlement postalCode 154,575 32.96 %
Settlement elevation 146,618 31.26 %

2.2 Web Table Corpus
In this work, we utilize the english-language relational tables
set of the Web Data Commons 2012 Web Table Corpus.1 The
set consists of 91.8 million tables. Table 3 gives an overview of
the general characteristics of tables in the corpus. We can see
that the majority of tables are rather short, with an average of
10.4 rows and a median of 2, whereas the average and median
number of columns are 3.5 and 3. As a result, a table on average
describes 10 instances with 30 values, which likely is a sufficient
size and potentially useful for finding new instances and their
descriptions. In [27] we have profiled the potential of the same
corpus for the task of slot filling, meaning to find missing values
for existing DBpedia instances.

For every table we assume that there is one attribute that
contains the labels of the instances described by the rows. The
remaining columns contain values, which potentially can be used
to generate descriptions according to the knowledge base schema.

1http://webdatacommons.org/webtables/#toc3



Table 3: Characteristics of the web table corpus.

Average Median Min Max

Rows 10.37 2 1 35,640
Columns 3.48 3 2 713

Table 4: Number of tables and value correspondences for
selected classes.

Class Tables VMatched VUnmatched

GF-Player 10,432 206,847 35,968
Song 58,594 1,315,381 443,194
Settlement 11,757 82,816 13,735

For the three evaluated classes, Table 4 shows the result of
matching the table corpus to existing instances and properties in
DBpedia, using a method from previous work [26, 27]. The first
column shows the number ofmatched tables that have at least one
matched attribute column. Rows of those tables were matched
directly to existing instances of DBpedia. From the second and
third columns we see how many values were matched to existing
instances and how many values remained unmatched. While
more values were matched, the number of unmatched values is
still large, especially for the song class.

2.3 Gold Standard
For the purpose of this work we built a publicly available gold
standard of annotated web tables. We first annotated clusters of
rows that describe the same instance. Additionally, we annotated
if these clusters describe new instances and for clusters that over-
lap with existing instances in DBpedia, we also annotated the
clusters with the correspondence to the existing instance. We
annotated attribute-to-property correspondences, where table
columns are mapped to properties in DBpedia. Finally, we anno-
tate facts for all cluster and property combinations for which a
candidate value exist in the annotated web tables.

The gold standard contains tables with instances of varying
degree of popularity, so that they describe head and long tail
instances. We also prioritized tables with rows that are unlikely
to have a match in DBpedia and ensured that for some labels, we
select at least five rows to be able to form large enough clusters.

Table 5 provides an overview of the annotations per class. In
the first three columns we see the number of table, attribute and
row annotations. On average, we have 1.85 attribute annotations
per table, not counting the label attribute. The two following
columns show the number of annotated clusters, followed by the
number of values within those clusters that match a knowledge
base property. The second to last column shows the number
of overall value groups, i.e. the number of cluster and property
combinations for which at least one candidate value exists. For all
groups we included facts, i.e. the correct value given the group’s
cluster and property. The last column shows for how many of
the groups, the correct value is contained among the candidate
values. We annotated 271 clusters, of which 39 % are new. On
average, each cluster has approximately 3.42 rows, 7.69 values,
3.17 value groups and their facts, and 2.88 groups where the
correct value is present in the web tables.

We use the gold standard for learning and testing. For this,
we split the data into three folds and performed cross-validation.

We ensured that we evenly split new clusters and homonym
groups, which are groups of clusters with highly similar labels.
All clusters of a homonym group were always placed in one fold.

The gold standard, along with the code and other data, is pub-
licly available.2 The results of this work are therefore replicable.

3 METHODOLOGY
In this section we present our system and evaluate alternative ap-
proaches for the individual components of the pipeline. As shown
in Figure 1, the pipeline begins with the web tables and ends with
entities being added to the knowledge base as new instances.
In between, the pipeline consists of four components: schema
matching, row clustering, entity creation and new detection.

We iterate over the pipeline twice. During the second run, we
utilize the output of the row clustering and the new detection to
generate a refined schema mapping. The attribute-to-property
correspondences derived by the schema matching are important,
because they allow us to extract for a row a set of values which
correspond to the schema of the knowledge base. These values
are utilized by the row clustering and new detection components
with a positive impact on performance. More importantly, these
values are required to create descriptions for new instances.

During the schema matching phase, we also match each table
to a class in the knowledge base. Afterwardswe run the remainder
of the pipeline for each class separately.

3.1 Schema Matching
The first step in the pipeline is to create a mapping between
the schemata of the individual web tables and the schema of the
knowledge base. As the web tables have heterogeneous schemata,
this task is non-trivial. Overall there are four steps necessary: (1)
data type detection, (2) label attribute detection, (3) table-to-class
matching and (4) attribute-to-property matching.

Data Type Detection
Throughout our pipeline we utilize a number of data types to
type individual values, facts, attribute columns or knowledge base
properties. Each type has a corresponding similarity function,
and an equivalence threshold, which is used to determine if the
compared values are equal. We employ overall six data types:

• Text: string, where two strings do not have to be exactly
equal to be similar, e.g. label of an instance.

• Nominal String: string, where two strings are either
completely equal or unequal, e.g. ISO code of a country.

• Instance Reference: reference to an instance, e.g. team
of an athlete or musical artist of a song.

• Date: date with two possible granularities: year or specific
day, e.g. release date of song, or birth date of a person.

• Quantity: numeric quantity, where numeric closeness
has a semantic relevance, e.g. population of a settlement.

• Nominal Integer: integer, where numbers close to each
other are not semantically related. This include e.g. num-
bers or draft rounds of athletes. Typing nominal integers
in addition to nominal strings allows some components, es-
pecially the attribute-to-property matcher, to use methods
tailored for this type.

We run a data-type detection algorithm [26] that assigns to each
table attribute one of the following types: text, date and quantity.
Detecting the other three types requires an understanding of the

2http://data.dws.informatik.uni-mannheim.de/expansion/LTEE/



Table 5: Overview of the gold standard.

Existing New Matched Value Correct
Class Tables Attributes Rows Clusters Clusters Values Groups Value Present

GF-Player 192 572 358 81 19 1,207 475 444
Song 152 248 193 34 63 425 231 212
Settlement 188 162 376 49 25 451 152 124

actual semantics of an attribute, so that they are assigned by the
attribute-to-property matcher, after an attribute has successfully
been matched to a knowledge base property.

The data type detection is performed using manually defined
regular expressions. We decide the data type of an attribute based
on the majority data type among its values.

Label Attribute Detection
For each table we assign one column as the label attribute, which
contains natural language labels for the entities described in the
table rows [26]. For this we find the column with the data type
text and the highest number of unique values. In case there is
a tie between multiple columns, we choose the column that is
furthest to the left [26].

Table-to-Class Matching
We utilize an approach that performs both row-to-instance and
attribute-to-property matching to find the class of a table.

We first extract from the label attribute a label for each row,
and use the label to find candidate instances from the knowledge
base. A class, for which many rows of a table have a candidate
instance, is chosen as a possible candidate class of that table. We
assign the number of rows with a match as a score to that class.

Given these candidate classes, we then evaluate how well
their properties match. We compare the values in the rows with
facts of their candidate instance in the knowledge base, to find if
they match a certain property of the candidate class. We block
comparisons based on data type as detected above. Using the
matched values we are able to perform duplicate-based attribute-
to-property matching [5], where we chose the property with the
highest number of matched cells as the property of the attribute,
and assign the number as the score of the correspondence.

Per candidate class, we aggregate all scores to compute a
ranked list of candidate classes. We choose the class with the
highest score as the class of the table. This approach was pro-
posed and evaluated by Ritze et al., where authors find that it
can achieve an F1 score of 0.97 on a web table corpus [26].

Attribute-to-Property Matching
Our attribute-to-property matching approach consists of three
steps. We first select candidate properties from the knowledge
base schema based on data types. For text attributes, we choose
all properties with types instance reference, nominal string and
text, for quantity attributes we choose properties with types
quantity and nominal integer and finally for date attributes, we
choose properties with types date, quantity and nominal integer
as candidates. After matching, the data type of the attribute is
changed to the data type of the matched property and the values
are accordingly normalized.

Secondly, we use various matchers, described further below,
to compute matching scores. Given a candidate knowledge base
property, a matcher finds a score from 0.0 to 1.0 that measures

Table 6: Attribute-to-property matching performance by
iteration.

Iteration P R F1

First 0.929 0.608 0.735
Second 0.924 0.916 0.920
Third 0.929 0.916 0.922

the likelihood that the attribute matches the property. Scores
of multiple matchers are then aggregated based on a weighted
average, where weights are learned for each class individually.

We then utilize thresholds on the aggregated scores to de-
termine if a certain candidate property matches an attribute.
The thresholds are learned per property of the knowledge base
schema. An attribute is matched to a property if it is both, a prop-
erty that achieves a score above the property-specific threshold,
and the property with the highest aggregated score.

Overall we implement five matchers, three of which exploit
the knowledge base. KB-Overlap computes the proportion of
values in the attribute that generally fit the candidate property in
the knowledge base. KB-Label compares the label in the attribute
header row to the labels of the candidate property in the knowl-
edge base. KB-Duplicate computes the proportion of values in
the attribute that is equal to the fact of the candidate property
in the knowledge base, based on the instance correspondences
generated by the new detection component.

We further implement two matchers that exploit the large web
table corpus. For this, we first match attributes using the above
described matchers for a preliminary mapping. We then rerun
the matching using two additional matchers that exploit the pre-
liminary mapping and the web table corpus. WT-Label utilizes
the column headers of columns matched in the preliminary run,
to derive label-to-property scores, where the score represents
the likelihood that an attribute with a certain header row label
corresponds to a certain candidate property of the knowledge
base. WT-Duplicate knows through a previous row clustering
run which rows in the tables describe the same instances. Using
the preliminary mappings, we can find values in the corpus that
are matched to same instance and property. This matcher mea-
sures and returns the proportion of values in an attribute, for
which an equal value matched to same instance exists.

Table 6 shows by iteration the performance of an attribute-
to-property matching method that aggregates all matchers. The
duplicate-based methods are not included in the first iteration,
as they require output from the other pipeline components. We
evaluated the methods on the attribute annotations in the gold
standard. We split the annotations first into a learning and a test-
ing set, where the learning set contains two third of annotations.

From the table we can see that a second iteration and the uti-
lization of the output of the row clustering and the new detection
components have a large positive effect on schema matching



performance. The table also shows that a third iteration has only
a marginal positive effect, so that two iterations suffice.

To determine the usefulness of each individual matcher, we
evaluate the weights assigned in the aggregated method of the
second iteration. As we learn weights per class, the following
weights are averages. The duplicate-based matchers have a com-
bined weight of 0.43, where the KB-Duplicate matcher with
a weight of 0.25 is more important. The label-based matchers
achieve a higher combined weight of 0.46 where the WT-Label
with a weight of 0.25 is very effective. Finally the KB-Overlap
method is the least important method with a weight of 0.10. Ad-
ditionally, the distribution of weights for the individual classes
were similar to the here mentioned averages.

From the weights we can first of all see, that the attribute
label is quite an effective method for schema matching. More
importantly, we can conclude, that the most effective approach
is one that combines various matchers and thereby exploits the
highest number of individual signals for schema matching.

3.2 Row Clustering
After matching tables to classes and table attributes to properties
of the knowledge base, we cluster rows that describe the same
instance together. This step is especially important, as it reveals
the overall number of unique instances described in the tables.

Our row clustering methods consist of a row similarity metric,
which measures the likelihood that two rows describe the same
instance, and a clustering algorithm, that utilizes the similarity
metric to create clusters of rows.

In earlier work [25–27], we determined which rows describe
the same instance by matching them to existing instances in the
knowledge base. As a result, our earlier methods were unable
to cluster rows of new instances, unlike in this work, where we
perform clustering independently from existing instances.

Clustering Algorithm
In the context of this work, a required feature of the clustering
algorithm is its ability to determine the number of clusters. In
case of a perfect clustering, this number would correspond to the
exact number of instances described by the rows of all tables.

Correlation clustering approaches [1, 2, 6, 10] fulfill this re-
quirement. Clustering here is viewed as an optimization problem
that aims to find the optimal partitioning of a set of vertices by
maximizing a fitness function that aggregates similarities within
a partition and dissimilarities between partitions.

Due to the large number of rows that need to be clustered (see
Table 11), we need clustering methods that scale. As correlation
clustering approaches try to find the globally optimum solution,
they do not scale for the task at hand. We therefore utilize a
greedy correlation clustering algorithm [15, 16], which solves
the optimization problem locally for each decision made by the
clusterer. The algorithm employs a row similarity function with
a normalized output from −1.0 to 1.0 and sequentially tries to
assign each row to the optimum cluster by summing the similarity
scores of the current row with all individual rows in already
created clusters in order to compute aggregated row-to-cluster
scores. If there are scores larger than zero, the row is assigned
to the cluster with the highest score. If no score is larger than
zero, a new cluster is created, and the row is assigned to it. While
every row assignment or cluster creation would maximize the
fitness function locally, this does not ensure global optimization.

To achieve further scalability, we perform the row assignment
in parallel instead of sequentially. While this is much faster, it
can results in errors during clustering. We therefore run the
Kernighan-Lin with joins (KLj) [19] clustering algorithm as a
secondary step. The algorithm improves an existing preliminary
clustering, in our case the output of the parallelized greedy clus-
tering, by comparing cluster pairs and attempting to move indi-
vidual rows between those clusters or merging the clusters fully.
Similarly, each cluster is compared with an empty set to find
whether splitting a cluster increases the fitness function locally.
The operations are repeated until no further operation is able to
increase the local fitness function.

As a result, we are able to quickly build a preliminary cluster-
ing with complete parallelization, while with a second step, we
ensure that clustering quality is still high. Scalability is further
ensured by the blocking approach described below.

Row Similarity Metrics
A row similarity metric compares two rows and returns a score
that measures the likelihood that the two rows describe the same
instance. Depending on the exact implementation, other input,
e.g. from the knowledge base or the web table corpus, might be
utilized. We implement six different similarity metrics:

• LABEL:We use the label attribute of a table to derive labels
for all rows to then derive a similarity score by comparing
labels using the Monge-Elkan similarity with Levenshtein
as the inner similarity function.

• BOW: For each row we create a bag-of-words binary term
vector that contains the terms that occur in all cells of
a row. For this, cell values are cleaned, normalized and
tokenized. To compare two rows, we compute the cosine
similarity of their vectors.

• PHI: This approach allows us to compare two rows by
comparing their tables. It derives a similarity between two
tables using the PHI correlation of row labels, which we
first compute using the following formula:

PHI (x,y) =
n × nxy − nx × ny√

nx × ny × (n − nx ) × (n − ny )
,

where n = total number of unique labels,
nab = occurrence of labels a and b in same table,
na = occurrence of label a in a table.

For each label we therefore have a vector that measures
its correlation with all other labels in the corpus. We then
create such a vector for each table, by averaging the vectors
of the table’s row labels. With this we attempt to derive a
vector that captures semantic information about all rows
described in the table. When comparing two rows, we
return the cosine similarity of the vectors of their tables.

• ATTRIBUTE: Using the attribute-to-property correspon-
dences we can derive for each row values matched to
the knowledge base schema. This allows us to perform
value normalization and apply data-type-specific similar-
ity functions to compare row values. If the two rows being
compared have overlapping value pairs, so that both val-
ues are matched to same property, we use the data type
similarity function to determine if those values are equal,
assigning them a score of either 1.0 or 0.0. As there are
possibly more than one overlapping value pair, the simi-
larity returned equals to the average similarity scores of
all pairs. Additionally, a confidence score is attached that



equals the number of pairs compared. This confidence
score is used by the aggregation methods described below.

• IMPLICIT_ATT: Many tables have rows that describe in-
stances that are similar, e.g. cities in Germany or athletes
drafted in 2010. This information is not stated explicitly
in any of the row cells. Using the following approach, we
attempt to derive for a table implicit property-value com-
binations that apply to all instances described by the table.
We can then use these implicit property-value combina-
tions to compare rows with each other.
We first use the row labels to find candidate instances
for all rows, and then for each row all property-value
combinations that exist for at least one candidate in the
knowledge base. For each property-value combination we
then derive a score for the whole table, which equals the
proportion of rows that have this combination. We keep
only combinations with a score above a certain threshold.
The remaining combinations are the implicit attributes of
a table and their score is assigned as a confidence score.
Given two rows we compare the implicit attributes of
one row with overlapping implicit attributes and column
attributes of the other row and vice versa. We return the
average of the similarities of all compared pairs and the
sum of the implicit attribute scores as the confidence.

• SAME_TABLE: This metric builds on the observation that
rows in a single table usually describe different entities.
The metric assigns two rows of the same table a similarity
of 0.0, otherwise 1.0.

Similarity Score Aggregation
We implement two approaches to aggregate the row similarity
scores. We first utilize a weighted average, where the weights
assigned to each metric are learned. In this case, attached confi-
dence scores are not considered. We also learn a threshold, where
scores above the threshold indicate that the rows describe the
same instance. This threshold is used to normalize the similar-
ity metric to −1.0 and 1.0. To learn the weights, we model the
data in the learning set as row-pairs that either match or not, i.e.
with scores of either 1.0 or 0.0. When learning weights we uti-
lize a genetic algorithm that attempts to maximize the matching
performance on the learning set.

As a second, alternative aggregation approach, we use random
forest regression tree [7], where as features we include both
similarity and confidence scores. We again model the data as
row-pairs, where non-matching row-pairs are assigned a score
of −1.0, while matching pairs a score of 1.0. To learn the random
forest regression tree we utilize the WEKA library. We learn the
hyperparameters of the algorithm by using the out-of-bag error
with different out-of-bag rates on the learning set.

As a third aggregation approach, we combine both aggregation
methods using a weighted average, where the weights are also
learned as described above. In all cases we upsample to balance
the number of matching and non-matching row pairs.

Blocking
To ensure the scalability of the row clustering for large web
table corpora, we implement a blocking algorithm. We block
comparisons by first limiting the number of clusters a row is
compared to during the parallel greedy clustering, and, secondly,
limiting the cluster pairs that are compared with each other
during the KLj clustering.

Table 7: Average clustering performance and metric im-
portance scores for alternative row clustering methods.

Run PCP AR F1 MI

LABEL 0.71 0.83 0.76 0.33
+ BOW 0.73 0.84 0.78 0.18
+ PHI 0.74 0.84 0.78 0.05
+ ATTRIBUTE 0.75 0.85 0.80 0.21
+ IMPLICIT_ATT 0.78 0.87 0.82 0.17
+ SAME_TABLE 0.79 0.87 0.83 0.07

We utilize the row labels for the blocking mechanism. We first
normalize the labels of all rows and use them to build a Lucene
index. Each label in the index forms a block, which includes all
rows with that exact label. For each row we use the index to
retrieve a number of labels similar to the row’s label, and assign
their blocks to the row.

During the parallelized greedy clustering, we compare a row
only to clusters with which the row shares a block. The blocks
of a cluster are the union of the blocks of all rows in that clus-
ter. Similarly, during the KLj clustering, two clusters are only
compared when they share a block.

Evaluation
To evaluate the performance of the row clustering, we employ
the evaluation approach proposed by Hassanzadeh et al. [17]. We
use the set of clusters annotated in the gold standard, denoted as
G, and the set of clusters returned by our method, denoted as C ,
to first compute a one-to-one mapping between the clusters inG
and the clusters inC . We map a cluster inC to a cluster inG , if it
contains the highest fraction of rows that are from that cluster
in G. In case two clusters in C have the same proportion, we
take the cluster with the highest absolute number of overlapping
rows. We denote the mapping asM .

Using this mapping we compute average recall, penalized
clustering precision and their F1 score. Average recall is the
average of the individual recalls of the clusters inG . The recall of
a cluster in G is equal to the ratio of rows in the mapped cluster
from C that are also in G to the number of total rows in G. If no
cluster from C was mapped to a cluster in G, the recall of that
cluster is zero.

To compute the clustering precision we compute the precision
of all pairs of rows that are part of the same cluster inC . A pair is
determined to be correct if both rows are part of the same cluster
in G. Unlike the average recall, this does not measure how well
we find cluster, but how well we place rows in the same cluster.

As finding the correct number of unique instances described in
the web tables is important, finding the correct number of clusters
is important. We therefore penalize the clustering precision, as is
also suggested by [17], if the number of returned clusters deviates
from the correct number of clusters. We penalize by multiplying
the clustering precision by a penalizing factor. This factor is
computed by finding the sizes of C , G orM and dividing lowest
by the highest size. We take this penalized clustering precision
as the main precision-based score to evaluate our clustering.

Results and Lessons Learned
We will first evaluate the effectiveness of the individual row
similarity metrics, and afterwards take a look at the effect of
different aggregation methods as well as the blocking.



Table 7 shows the average performance of various row clus-
tering methods using the third aggregation method, which com-
bines random forest and weighted average. The first row contains
the results when using only the LABEL metric. For every follow-
ing row we aggregate one additional similarity metric. The last
column of the table shows the metric importance, which is the av-
erage of the relative importance of the metric inside the learned
random forest regression tree and the weights in the learned
weighted average function. The importance scores shown are
derived for the method that aggregates all metrics, i.e. the one
that corresponds to the last row of the table.

The table shows that the similarity of row labels is the best
indicator if two rows describe the same instance, as it has the
highest average metric importance of 0.33 and with it we are able
to achieve a moderate F1 of 0.76. At the same time, it alone is
not enough and all other similarity metrics positively impact the
row clustering performance when aggregated. This applies espe-
cially to the metrics BOW, ATTRIBUTE and IMPLICIT_ATT, which
increase the F1 score by 2 percentage points each.

Both PHI and SAME_TABLE have smaller effects, as both only
increase precision by 1 percentage point without an effect on
recall. PHI likely achieves a low impact because it does not mea-
sure the similarity of two rows directly, but rather compares their
tables. On the other hand, the same applies to IMPLICIT_ATT and
it has a significantly higher impact. This shows the likely benefit
of utilizing the knowledge base as background knowledge.

From the overall results, we can conclude that the best ap-
proach is to aggregate multiple metrics, thereby combining the
different signals exploited by the individual metrics. The LABEL
method utilizes the output of the label attribute detection, while
the ATTRIBUTE method utilizes the knowledge base as back-
ground knowledge to semantically understand the attributes
of the table. The IMPLICIT_ATT also exploits a knowledge base,
but to assign semantic property-value combinations to its rows.
Finally, the BOW method includes all information of a row, poten-
tially covering information that couldn’t be mapped to a schema.

The last row in Table 7 shows the clustering method that
aggregates all metrics using a combination of random forest and
weighted average. Applying both aggregationmethods separately
would have achieved an F1 score of 0.81 for weighted average
and 0.82 for random forest.

Finally, the blocking yields no decrease in F1, which shows
that it is an effective approach with minimal loss in recall.

3.3 Entity Creation
The entity creation component receives clusters of rows and
transforms each cluster into an entity. First, an entity consists of
one or more labels, which we extract from the label attribute of
the entity’s rows. More importantly, an entity contains a set of
values mapped to the properties of the knowledge base. Given
that at the row-level, each row can have multiple values matched
to certain knowledge base properties, and that we have multiple
rows in a cluster, there are likely to be multiple candidate values
for one property when creating an entity. We therefore apply the
following four-step method to fuse candidate values:

(1) Scoring:We score candidate values using one of the three
alternative approaches described below.

(2) Grouping: We group equal values together. This is done
using the data type specific similarity functions.

(3) Selection:We then select the group with the highest sum
of individual candidate value scores.

(4) Fusion: We fuse a group into a fused value by using data
type specific fusers. For text and instance reference types
we utilize the majority value in a group, whereas for quan-
tity and date types we use a weighted median approach.
For nominal string and nominal integer, no fusion is nec-
essary, as all values in a group will be equal.

We test three different scoring approaches. VOTING assigns all
candidate values equal scores of 1.0. In the KBT [13] approach
we measure for a certain table attribute the correctness of its
overlapping values, i.e. those matched to an existing fact in the
knowledge base, to estimate the trustworthiness of the whole
attribute. Finally, the MATCHING approach utilizes the scores at-
tached to a column by the attribute-to-property component. We
measure the effect of the scoring approach using the output at
the end of the pipeline. The results are discussed in Section 4.2.

The methods presented here are similar to those in our earlier
works [22, 23, 27]. In this work, we additionally apply scores
derived from the schema matching component for fusion.

3.4 New Detection
After creating entities from row clusters, we now determine
whether a created entity describes a new instance, not yet present
in the knowledge base. This is done by attempting tomatch the en-
tities to existing instances by exploiting various features through
entity-to-instance similarity metrics. If there are no instances
found or the distance between an entity and an instance is large
enough, the entity is determined to be new.

Additionally, for entities not classified as new, we attempt to
match them to an existing instance in the knowledge base. These
correspondences to existing instances are fed back into a second
iteration of the pipeline to refine the schema mapping.

Our new detection approach consists of three steps:
Candidate Selection: We find a list of candidate instances

from the knowledge base using a Lucene index built from the
labels of knowledge base instances. To search candidates for an
entity we utilize the labels attached to the entity in the entity
creation component. Additionally candidates found must be of
the class of the created entity or share one parent class.

Similarity Score Computation:We compute a score to mea-
sure the similarity between the created entity and a candidate
instance. Multiple entity-to-instance similarity metrics are im-
plemented and tested below.

Classification: If the highest similarity for any candidate
instance is lower than a learned threshold, we classify the entity
as new. Otherwise we find the candidate instance with the highest
similarity score, and in case its score is higher than another
threshold, the entity is classified as existing and a correspondence
from the entity to that instance is generated.

In earlier work we presented methods that are solely con-
cerned with matching rows to existing instances of a knowledge
base, whereas with the methods presented here, we also deter-
mine whether rows have a match at all. Additionally, we do not
match rows directly, but first create entities from row clusters,
which allows us to exploit more information for matching.

Entity-To-Instance Similarity Metrics
As described above, the following metrics compute a similarity
score between a created entity, and a one candidate instance of
the knowledge base. We implement overall six different metrics:

• LABEL: We compute the similarity between the labels of
the created entity and the labels of the candidate instance



using Monge-Elkan with Levenshtein as the inner similar-
ity function.

• TYPE: In DBpedia every class is part of a hierarchy with a
certain number of parent classes. We compute the overlap
of the classes of the candidate instance with the class of
the entity and its parent classes.

• BOW: We create a bag-of-words binary term vector for the
entity by combining the vectors of all its rows, which
themselves are created as described in the row clustering
approach. We then create a vector for the candidate in-
stance in the knowledge base, using its labels, abstract and
facts. We return the cosine similarity of both vectors.

• ATTRIBUTE: For each property, where a fact exists in both
the created entity and the candidate instance in the knowl-
edge base, we determine if the fused fact is equal to the
fact in the knowledge base. As there could be multiple
overlapping properties, we return an average similarity
and a corresponding confidence score, which equals the
number of overlapping properties.

• IMPLICIT_ATT:We utilize the implicit attributes derived
for tables, as described in Section 3.2, to derive implicit
attributes for a created entity. We sum up the confidence
scores of equal implicit attributes for the tables of all rows
in the entity and divide by the total number of rows to
compute an entity-level confidence score. We then com-
pare these property-value combinations at the entity level
with overlapping facts of a candidate instance.

• POPULARITY: We use a dataset of Wikipedia page links to
rank all candidate instances of an entity by their number
of incoming page links. A similarity score is assigned to
each candidate based on its rank. If an entity has only one
candidate instance, we assign it a score of 1.0.

Similarity Score Aggregation
We aggregate various similarity scores using the same aggrega-
tion approaches utilized for row clustering.

Evaluation
We evaluate the new detection component using the clusters
annotated in the gold standard. Before we run new detection
on those clusters, we create entities from them as outlined in
Section 3.3 above. From the gold standard we know whether a
certain created entity describes a new instance or not. In case it
describes an existing instance, we additionally know from the
gold standard the exact instance it describes.

When running the new detection component on those entities,
we receive a set of entities classified as new, and another set
classified as existing with additional correspondences to existing
instances in the knowledge base. We can now use the gold stan-
dard to determine the accuracy of those classifications, which
equals the fraction of correctly classified entities. Existing enti-
ties must additionally be matched to the correct instance in the
knowledge base to be counted as correctly classified.

As the accuracy measures the classification performance for
both the new and existing instances, we additionally evaluate
both separately using F1. The precision of the new entities equals
the fraction of entities returned with a new classification that
were correctly classified as new, whereas recall is equal to the
fraction of total new entities in the gold standard that were cor-
rectly classified as new. The same applies to the existing entities,
with a second condition that the entity must be matched to the
correct instance in the knowledge base as well.

Table 8: Average performance and metric importance
scores for alternative new detection methods.

Run ACC F1Existing F1New MI

LABEL 0.69 0.66 0.67 0.20
+ TYPE 0.79 0.75 0.82 0.26
+ BOW 0.85 0.84 0.83 0.17
+ ATTRIBUTE 0.85 0.86 0.84 0.20
+ IMPLICIT_ATT 0.88 0.87 0.89 0.11
+ POPULARITY 0.89 0.88 0.88 0.06

Results and Lessons Learned
Table 8 shows the performance of various new detection methods.
All numbers in table are averages of all classes and folds. The
first row shows a method that only utilizes the label. For each
following row we aggregate an additional similarity metric into
themethod using the combined aggregation approach. Themetric
importance shown in the last column reflects a score derived from
the random forest and the weights in a method that aggregates
all metrics, i.e., the method described in the last row.

From the table we can see that with an accuracy of 0.89, the
final aggregated method performs quite well. It achieves a perfor-
mance considerably better than the LABEL method, which only
has an accuracy of 0.69. Additionally we can see that all similarity
metrics are important and contribute positively to the overall
performance. This shows that the combined approach is able to
leverage the different features exploited by the individual met-
rics. The LABEL metric does however have a high importance
score, even though the candidate selection already only returns
candidates with similar labels.

The later a metric is aggregated, the more difficult it is to yield
a large absolute increase in performance. As such, the metrics
TYPE and BOW increase accuracy by 10 and 6 percentage points
respectively, which is much larger than for metrics added later.
At the same time we see, that ATTRIBUTE, which has a higher
importance score than BOW, does not increase accuracy at all. It
does however increase the individual F1 scores.

Noticeable is also the increase achieved by the IMPLICIT_ATT
metric. It is able to improve the accuracy by further 3 percentage
points, even though it is the second to last metric to be aggre-
gated. This means, that we are successfully able to leverage the
knowledge base as background knowledge to derive semantically
relevant property-value combinations per table and entity.

The POPULARITY metric only impacts performance for the
Settlement class. This means that, given just the name of a settle-
ment, it is safe to assume that the most well-known settlement
is meant. This makes sense, as this assumption is typically made
when speaking about cities in general.

The last row shows the performance of a new detectionmethod
that aggregates all metrics using a combined approach ofweighted
average and random forest. When using the aggregation methods
separately, we achieve an accuracy of 0.85 and 0.86 respectively.
The combined approach is therefore able to exploit both aggre-
gation methods to achieve a higher performance.

4 OVERALL RESULTS ON THE GOLD
STANDARD

In this section, we choose the best methods for clustering and
new detection, and evaluate the output of a complete run of
our system using our gold standard. We will first evaluate how



Table 9: Results of new instances found evaluation.

Class Clust. New Det. P R F1

GF-Player GS ALL 0.89 0.95 0.91
GF-Player ALL ALL 0.82 0.95 0.87

Song GS ALL 0.92 0.88 0.90
Song ALL ALL 0.72 0.72 0.72

Settlement GS ALL 0.84 0.90 0.87
Settlement ALL ALL 0.74 0.87 0.80

Average ALL ALL 0.76 0.85 0.80

many of the new instances were correctly found, while in the
second part, we will evaluate how many correct facts were found.
Throughout this evaluation we utilize three fold cross-validation.

4.1 New Instances Found Evaluation
To evaluate how well new instances were found, we utilize preci-
sion and recall. First, we determine the number of new instances
annotated in the testing sets, for which an entity was correctly
returned by the system. For this, three conditions must be met.
First, a majority of the rows of an entity must correspond to the
same new instance in the gold standard, while at the same time
the entity must also contain the majority of the rows that actually
describe that instance. Lastly, the entity must be classified as new
by the new detection component. Based on this, recall is defined
as the fraction of new instances in the gold standard for which a
correct entity was returned. Precision, on the other hand, is the
fraction of entities returned by the system as new, that correctly
match an instance in the gold standard.

Table 9 shows the performance of our system for the three
classes separately. To evaluate the individual impact of row clus-
tering and new detection, we once evaluate using the clustering
from the gold standard, denoted GS, and once with the aggregated
clustering method containing all similarity metrics, denoted ALL.
For new detection we run in both cases the aggregated method
containing all similarity metrics, also denoted ALL.

Generally, we achieve good performance for football players
and settlements, while for songs the performance is less convinc-
ing. This is likely, because for songs, the homonym problem is
much larger. It is much more likely that there exist songs of the
same name by various artists. Sometimes these homonyms even
represent cover versions, so that they are highly similar in their
descriptions, e.g. in runtime or writer.

When investigating how much performance is lost by the
individual components, we find that for football players and
settlements the new detection component is causing a larger
decrease than the row clustering. More specifically, the drop is
mainly caused by classifying entities as new even though they
should be matched to existing instances. This is confirmed by
the recall being higher than precision. For songs, the clustering
causes a much larger decrease in performance, showing that the
clustering task is more difficult for songs, and that we require
more sophisticated clustering methods.

4.2 Facts Found Evaluation
In this section we evaluate how well we can generate facts from
web tables for new entities. Again, we need a mapping between
entities returned and instances in the gold standard, for which
we utilize the approach described above. For wrongly created

Table 10: Results of the facts found evaluation.

New F1 F1 F1
Class Clust. Det. VOTING KBT MATCHING

GF-Player GS GS 0.82 0.82 0.82
GF-Player GS ALL 0.81 0.81 0.81
GF-Player ALL ALL 0.81 0.81 0.81

Song GS GS 0.80 0.81 0.81
Song GS ALL 0.74 0.73 0.74
Song ALL ALL 0.67 0.69 0.68

Settlement GS GS 0.98 0.98 0.98
Settlement GS ALL 0.93 0.93 0.93
Settlement ALL ALL 0.91 0.91 0.91

Average ALL ALL 0.80 0.80 0.80

entities, or entities incorrectly determined to be new, i.e. they
could not be mapped to a new cluster in the gold standard, their
facts are counted as wrong and therefore reduce precision. To
determine if returned facts for matched entities are correct, they
are compared to the facts in the gold standard using data type
specific similarity functions and a learned tolerance range. To
measure recall, we utilize the number of annotated facts for which
a correct value is present in the web tables, as seen in Table 5.

Table 10 shows fusion performance per class. In order to mea-
sure the individual impact of the new detection and the row
clustering on the overall performance, we again perform multi-
ple runs. For the first run, we utilize for both components the
correct annotations from the gold standard. In the following
run we use our new detection methods, while for the third run
we additionally use our clustering methods, in both cases using
the methods that aggregate all similarity metrics. Additionally
we test performance for the different fusion scoring methods,
VOTING, KBT and MATCHING, described in Section 3.3.

From the table we can see that for football players and songs
we lose 18 and 19 percentage points of F1 score even when row
clustering and new detection are perfect. We looked at a sample
of errors and were able to identify two main causes. The largest
amount of errors is due to the attribute-to-property matching
component, where the proportion of errors caused by wrong
or missing column matches makes up 43 % of all errors. This is
followed by 35 % of errors that occurred as a result of wrong or
outdated data in the tables.

In addition, we evaluate various fusion scoring approaches.
We find that all performances are very close, so that the choice
of scoring approach is of low relevance.

Finally, we can deduce from the table the individual impacts
of the pipeline components on the performance. The largest
negative impact is due to errors in finding facts as described above,
of which the attribute-to-property matching is a large contributor.
Not as large are the individual impacts of the row clustering and
new detection components, but they are still significant ranging
from 1 to 13 percentage points. Overall, the way errors compound
throughout the pipeline shows the difficult nature of the task at
hand. Every individual component has to perform very well for
there to be good performance at the end of the pipeline.

5 LARGE-SCALE PROFILING
In this section we try to estimate the potential of web tables for
extending knowledge bases with new instances, by running our



system on not only the tables of the gold standard, but on all
tables of a specific class within the whole corpus (see Table 4).
We are especially interested in how many new instances we can
correctly add per class and how that compares to the number
of existing instances in the knowledge base. We additionally are
interested in the descriptions of these new instances, the number
and accuracy of facts, and property densities of the new instances.

Evaluation
From the entities returned as new by the system, we pull a strati-
fied sample of 50 entities for each class. We group the returned
entities by the number of facts generated for each entity. We then
pull from each group a number of entities proportional to the
size of the group in relation to the total number of new entities.

The accuracy of new entities equals the fraction of entities
that were correctly identified as new when compared to the
2014 release of DBpedia, while the accuracy of facts equals the
proportion of facts within those new entities that are correct.

Results and Lessons Learned
Table 11 shows the results of the large-scale profiling per class.
The second column lists the number of rows of all tables matched
to the given class. The three columns afterwards describe existing
entities found, to how many unique instances in the knowledge
base they were matched, and the ratio of the two numbers. The
remaining columns contain the number of new entities, their
facts, the relative increases when compared to Table 1 and the
accuracies of new entities and facts of the extracted sample.

First of all, we find that the ratio of existing entities to matched
instances in the knowledge base differs by class. While for players
and settlements the number is good, it is less so for songs. Song
was the class with the worst performance at row clustering, i.e.
identifying the exact number of unique instances. This shows,
that we need to implement more sophisticated row clustering
methods or, alternatively, perform deduplication after clustering.

For the class Song we have a very large number of new entities
and facts, even if we would correct the number of new entities
by the ratio in the fifth column. For Settlement, there are in
comparison very few new entities. When considering that only
26 % of them are correct, we would actually achieve a relative
increase in knowledge base instances of 0.3 %. The difference can
be explained by understanding the notability rules of Wikipedia.

There are a very large number of obscure songs. It is very
common, even for well-known artists, to release for example only
a few songs from an album as singles, which are the only ones
that become popular. And here the notability rules compound
the issue, as songs only receive their own Wikipedia article if
they are notable, e.g. because they were independently released.

For Settlement, almost the opposite is true. While there are
many small villages, they are never irrelevant, as there are al-
ways enough people living in them, who might contribute to a
Wikipedia article. More importantly, Wikipedia deems any place
notable if it has legal recognition. As a result, Wikipedia covers
a lot of settlements, and it is difficult to find new ones.

Football players are in the middle of both classes. There are not
as many obscure football players, as, theoretically speaking, the
number of teams is limited, but there are many that are obscure
enough, not to be covered in a Wikipedia article. And while the
absolute number of newly added players is not high, compared
to the number of existing instances in the knowledge base, we
achieve an increase of 67 % for instances and 32 % for facts.

Table 12 shows the property densities for new entities. As one
would expect, the properties are not as dense as in Table 2. More
importantly, the distribution of densities differs significantly. For
football players, personal properties like birthDate and birthPlace
have a very low density for new instances, but high for the
knowledge base. This might be, because in Wikipedia one is
interested in describing a person, whereas in web tables, the
games, teams and drafts are more in focus. For those tables, a
property like position might be more relevant, which explains
why its density is even higher than in the knowledge base.

For songs, the properties writer, genre, and record label have
very low densities compared to the knowledge base. It is likely
that for genre, this is a column matching issue, as song genres are
not always objectively defined. For writer and recordLabel there
could be two causes. First, they might be uninteresting properties,
and secondly, there are often multiple correct facts. The record
label might even differ by country. This makes these properties
difficult to match, and, more importantly, unlikely to be included
in a table. We can confirm the latter, as these properties occurred
very rarely in the tables we annotated for the gold standard.

When looking at the accuracies of new entities we also find
differences per class. We achieve a moderate accuracy for songs, a
sub-par accuracy for players and a low accuracy for settlements.

The primary reason for the low accuracy for settlements are
conflicting values in an entity of an existing instance and the
instance in the knowledge base. This includes outdated popula-
tion numbers, but also isPartOf values, where the values in the
entity and in the knowledge base are both correct, but different,
preventing the entity from matching. This problem makes up
36 % of all errors. 25 % of errors are because the new entity does
not describe a settlement, but a different place, like a region or a
mountain. This error is caused by incorrect table-to-class match-
ing. These problems are magnified because there are so few new
entities to begin with, so that these corner cases make up a huge
proportion of the new entities returned.

For GF-Player, the sources of errors include bad column-to-
attribute matching, entities not being football players due to bad
table-to-class matching, and incomplete information in DBpedia.
The latter happened primarily when a football athlete was not
assigned the correct class in DBpedia. The accuracy for entities
with a higher number of values is however much higher. If we
do not consider entities with one value, the accuracy of new
entities rises to 0.72. If we further do not consider entities with
two values, we achieve an accuracy of 0.85. This would mean
excluding 6,360 entities, but also that with an accuracy of 0.85
we can add 7,623 entities with 34,922 facts to the knowledge base,
an increase of 37 % for instances, and 25 % for facts.

For songs, the sources of errors are versatile. The main contrib-
utors are bad new detection, incorrect table-to-class matching,
and bad clustering. The latter meaning that an entity was incor-
rectly detected as new, as a result of being created from rows
that describe different instances.

We generally notice that the performance does not correlate
with the performance on the gold standard. This might indicate
that the gold standard either does not completely reflect the
nature of the task, or the gold standard is not large enough. On
the other hand, we achieve a consistently high accuracy for new
facts, similar to the high performance on the gold standard, as
seen in Section 4.2. This means that when it comes to finding
descriptions, our performance is quite good, even if the density
is lower when compared to the knowledge base.



Table 11: Results and evaluation of a system run on all tables matched to a class.

Total Existing Matched Matching New New N. Entities N. Facts
Class Rows entities KB instances Ratio Entities Facts Accuracy Accuracy

GF-Player 648,741 30,074 24,889 1.21 13,983 (+67%) 43,800 (+32%) 0.60 0.95
Song 2,173,536 40,455 29,140 1.39 186,943 (+356%) 393,711 (+125%) 0.70 0.85
Settlement 1,472,865 28,628 27,365 1.05 5,764 (+1%) 7,043 (+0%) 0.26 0.94

Table 12: Property densities for new entities returned by
the full run.

Class Property Facts Density

GF-Player position 9,204 65.82%
GF-Player team 7,637 54.62%
GF-Player college 6,849 48.98%
GF-Player weight 5,915 42.30%
GF-Player height 4,253 30.42%
GF-Player number 2,951 21.10%
GF-Player birthDate 2,537 18.14%
GF-Player draftPick 2,404 17.19%
GF-Player draftRound 1,538 11.00%
GF-Player draftYear 386 2.76%
GF-Player birthPlace 126 0.90%

Song musicalArtist 143,656 76.84%
Song runtime 115,652 61.86%
Song album 52,664 28.17%
Song releaseDate 47,377 25.34%
Song genre 23,814 12.74%
Song recordLabel 10,278 5.50%
Song writer 270 0.14%

Settlement isPartOf 2,889 50.12%
Settlement postalCode 1,605 27.85%
Settlement country 1,232 21.37%
Settlement populationTotal 1,214 21.06%
Settlement elevation 103 1.79%

Overall we find that for some classes there is high potential
for finding new instances using web tables. Additionally, we
also find that the performance of our system for these classes is
generally good. Yet, it is clear that more sophisticated approaches
are necessary for row clustering, new detection and table-to-class
matching.

6 RELATEDWORK
This section compares our method to the related work. As we
investigate a new problem, we compare to research on similar
tasks as well as on specific subtasks, including slot filling, set
expansion, schema matching and identity resolution.

Slot Filling
Many works that exploit web table data for knowledge base aug-
mentation [11, 25–29] focus on the task of slot filling, i.e. adding
missing facts for existing instances. One prominent state of the
art work by Dong et al. [11] introduces a probabilistic approach
that exploits background knowledge, in their case Freebase, to
construct a large knowledge base using web data, including web
tables. The extracted facts however only describe instances that
already exist in Freebase [11, 12].

While slot filling is a different task, we can still generally
compare the numbers of generated facts. In a previous work,
where we use web tables to perform slot filling for DBpedia [27],
we are able to find 378, 892 facts, 64, 237 of which are new facts
for existing instances. We reach an F1 score of 0.71. Compared to
that work, we are able to achieve better numbers and accuracy. In
the work by Dong et al., the authors are able to find 271 M facts
for instances in Freebase with an expected correctness higher
than 90 %. Of those facts, 90 M are new facts for existing instances.
While the amount of facts that we discover are much smaller, we
are only dealing with three classes and looking at facts only for
new instances. Additionally we only use web tables to extract
new facts, while Dong et al. also use free text, HTML DOM trees
and schema.org annotations. Our average accuracy of 0.91 for
facts of new entities is comparable.

Set Expansion
Set expansion is a task, where new instances are retrieved to
complete a set [24, 31, 32]. Set expansion methods, however, only
focus on finding the labels of new instances. The methods rely on
seeds from that set to perform set expansion. Both, the complete
sets and the number of seeds, are often small. In contrast, we focus
on a scenario in which large sets of entities, already contained
in the knowledge base, are extended with potentially large sets
of new instances. Finally, most set expansion methods make use
of ranked evaluation, where the precision of the top k instances
is measured. In contrast, our evaluation not only focuses on
precision, but also considers recall.

One set expansionmethod exploits a corpus of relational tables
to augment an incomplete relational table with new instances
and their descriptions [33]. The methodology differs significantly
from ours. To find more instances, the method uses sets of 1 to
5 seed instances to first search for candidates in the tables. For
this, it exploits the labels of the seeds and the caption of the
seed table. Candidates are then ranked based on how often they
co-occur with the seeds and how similar their tables’ captions
are. Similarly, the method searches for candidate columns in the
corpus and ranks them based on how well they fit the seed table.
The method then returns a fixed number of entities, where the au-
thors use 256 as their cut-off. While this approach does generate
descriptions, it does not resolve any of the following problems of
set expansion. Their approach still ranks candidate entities based
on their similarity to the seeds, and, more importantly, always
returns a fixed number of instances. Especially the latter makes
this approach not applicable to our task, as we are interested in
generating as many new instances as possible.

To compare our work with works of set expansion, we need to
utilize ranked evaluation and therefore need to implement a rank-
ing algorithm for new entities. We rank based on the similarity
scores returned by the new detection. These scores measure the
distance between one or more existing instance in the knowledge
base, and an entity generated from the web tables. We rank new



entities higher, the higher their lowest distance to the closest
existing instance is. Using this, we achieve a MAP, with a cut-off
at 256, of 0.88, while related works achieve 0.63 [33], 0.95 [32]
and 0.78 [31]. For precision at 5 and 20 we achieve 0.84 and 0.78
respectively, while a related work achieves 0.94 and 0.91 [33].
We find that our performance is comparable, even though the
task we are solving is more difficult.

Schema Matching and Identity Resolution
Throughout the components of the pipeline, we apply approaches
for which a large corpus of related work exists. This includes
schema matching methods, which are surveyed in [3]. For row
clustering and new detection we essentially exploit identity reso-
lution methods, which are extensively surveyed in [9, 14].

For the specific use case of matching web table attributes to
DBpedia properties, authors from our research group were able
to achieve an F1 score of 0.81 [25]. While our performance of 0.92
is higher, we consider a smaller number of classes and properties.

There exists a large corpus of research on the task of matching
web table rows to existing knowledge base instances. While this
task is not a primary objective of this paper, we are able to evalu-
ate our pipeline by comparing how well we are able to perform
this task. We achieve an average F1 score of 0.83, compared to
0.80 [25] and 0.87 [34] in the related work, and we achieve an
accuracy of 0.78, compared to 0.83 [21] and 0.93 [4] in the related
work. While for F1, our performance is comparable to the related
work, it is lower when it comes to accuracy.

7 CONCLUSION
This paper explored the potential of web table data for extending
a cross-domain knowledge base with new long tail entities and
their descriptions according to the schema of the knowledge base.
To the best of our knowledge, this specific task has to this date not
been handled in related research. For this task, we present and
evaluate a complete system. It consists of a pipeline with multiple
components, including schema matching, row clustering, entity
creation and new detection.

We evaluated our pipeline using a manually annotated gold
standard of web tables. We find that the task is non-trivial, as
it requires good performance in all steps of the process. For all
components of the pipeline we implemented and evaluated mul-
tiple alternative methods. We find that aggregating the similarity
scores of multiple metrics that exploit different features yields
the best results. We also find that metrics that make use of label
similarity, while highly important, are not sufficient to yield a
good performance. Additionally, we are able to show that metrics
that use the knowledge base as background knowledge, e.g. to
semantically understand cell values or to derive semantic infor-
mation about web tables, have a positive impact on performance.
Finally, we are able to utilize the output of the pipeline in a second
iteration to achieve a large improvement in schema matching
performance, while any further iteration has negligible impact.

We are successfully able to utilize our pipeline and our pro-
posed implementations of the pipeline’s components to find new
instances and their descriptions from the web tables. At the same
time, there remains room to further improve the quality of the
generated data.

Finally we run the method on the complete web table corpus
to profile the overall potential of web tables in augmenting a
knowledge base class with new instances. We find that this po-
tential differs per class, but at the same time, we find that for

some classes a large number of instances and facts with a high
accuracy can successfully be added to the knowledge base.
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