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ABSTRACT
We study the problem of efficiently retrieving large entries in
the product of two given matrices, which arises in a number
of data mining and information retrieval tasks. We focus on
the setting where the two input matrices are tall and skinny,
i.e., with millions of rows and tens to hundreds of columns.
In such settings, the product matrix is large and its complete
computation is generally infeasible in practice. To address
this problem, we propose the LEMP algorithm, which effi-
ciently retrieves only the large entries in the product matrix
without actually computing it. LEMP maps the large-entry
retrieval problem to a set of smaller cosine similarity search
problems, for which existing methods can be used. We also
propose novel algorithms for cosine similarity search, which
are tailored to our setting. Our experimental study on large
real-world datasets indicates that LEMP is up to an order
of magnitude faster than state-of-the-art approaches.

1 Introduction
Low-rank matrix factorization methods, such as singular
value decomposition (SVD), non-negative matrix factoriza-
tion (NMF), or latent-factor models, have recently gained
traction for a number of prediction tasks [1]. In the context
of recommender systems, for example, latent-factor mod-
els are a popular and successful approach for predicting the
preference of users for items from available feedback; see [2]
for an excellent overview. Fig. 1a shows a feedback ma-
trix D, which contains ratings (1–5 stars) that users gave
to movies they had watched. To predict the ratings of the
movies users did not yet watch, latent-factor models build
two factor matrices: a user matrix Q and an item matrix
P , in which columns correspond to users and items, respec-
tively, and rows to latent factors. Fig. 1b shows an example
with r = 2 latent factors, which roughly correspond to action
and romance. The predicted preference of user i for item j
is given by the (i, j) entry of matrix product QTP , i.e., by
the inner product qTp =

∑r
i=1 qipi of the i-th row qT of QT

and the j-th column p of P . The goal of a recommender

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2747647.

system is to recommend high-preference items (among other
criteria); we thus need to determine which entries are large.
In Fig. 1b, e.g., we marked in bold face all entries > 3.

Another recent application of matrix factorization models
is in open information extraction, which extracts and rea-
sons about statements made in natural language text. Riedel
et al. [3], for example, construct a fact matrix which con-
sists of verb phrases in one dimension (e.g., “was born in”)
and subject-object-pairs in the other dimension (e.g., (“Ein-
stein”, “Ulm”)). A nonzero entry indicates that the corre-
sponding fact (a verbal phrase with its subject and object)
was observed in a document collection. Matrix factorization
techniques are used to predict additional facts, spot unlikely
facts, and reason about verbal phrases. As in recommender
systems, these methods create factor matrices using a suit-
able model and subsequently determine the large entries in
their product; here large entries correspond to facts with a
high predicted confidence.

In this paper, we study the problem of efficiently retriev-
ing large entries in the product of two given factor matrices,
which we refer to as large-entry retrieval problem. As in the
above examples, the rows and columns of the product ma-
trix often correspond to objects or attributes; large entries
indicate strong interactions between objects and are often of
particular interest in applications. In general, we consider
an entry large, if it exceeds a threshold value or if it belongs
to the set of largest entries of a row of the matrix. We fo-
cus on the setting in which the factor matrices are tall and
skinny, each with millions of rows and tens to hundreds of
columns.

In applications such as the ones above, the matrix prod-
uct is significantly larger than the factor matrices themselves
and its complete computation is generally infeasible in prac-
tice. E.g., the product of two 10M-by-50 factor matrices has
100 trillion entries—each formed by an inner product—and
is 100 000 times larger than the factor matrices themselves.
If an inner product computation takes about 100 ns on av-
erage (as in our experimental study), it takes more than
100 days to multiply the factor matrices (ignoring any other
costs such as I/O costs). To avoid the computation of the full
matrix product, we propose LEMP, an efficient algorithm
to retrieve only the Large Entries of the Matrix Product.
LEMP takes as input two sets of vectors (the columns of
the factor matrices) and finds pairs of vectors having a large
inner product (the entries of the product matrix).

The large-entry retrieval problem is closely related to the
problems of top-k retrieval with linear scoring functions and
cosine similarity search. The well-known threshold algo-
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(b) Factor matrices for users (Q) and movies (P ) as
well as corresponding predictions (QTP )

Figure 1: Example of a simple matrix factorization model

rithm (TA, [4]) can be used with small modifications (see
Sec. 5) to retrieve from an inverted list index those vec-
tors p that have the highest inner product with a specific
query vector q. TA works particularly well for vectors of
low dimensionality (say less than 10). Cosine similarity
search is also related to, but not equal to, the large-entry
retrieval problem: both problems are equivalent when all
vectors have unit length. When vector lengths differ, as in
our setting, methods for cosine similarity search —such as
all-pairs similarity search [5, 6, 7, 8] or locality sensitive
hashing (LSH, [9])—cannot be directly used.

Our LEMP algorithm is inspired by TA and techniques
from cosine similarity search. It makes use of the simple
observation that both the length and the direction of two
vectors influence the value of their inner product. In partic-
ular, LEMP groups the input vectors into buckets of similar
lengths and subsequently solves a smaller cosine similarity
search problem for each bucket. In this way, LEMP (i) ex-
ploits vector lengths for early pruning, (ii) is able to choose
a suitable search technique separately for each bucket (and
query), and (iii) improves cache locality by fitting the small
problem instances into cache. LEMP is able to leverage
existing methods for cosine similarity search to process its
buckets. We also propose two novel methods termed CO-
ORD (for coordinate-based pruning) and INCR (for incre-
mental pruning), which are tailored to our setting of inter-
mediate dimensionality of the input vectors (say, 10–500),
i.e., higher than usual for TA and lower than usual for co-
sine similarity search.

A number of previous approaches to solve the large-entry
retrieval problem have been proposed in the literature; most
recently the cover tree algorithm in [10]. In contrast to
LEMP, none of the existing techniques separates length and
direction information from the input vectors. We performed
an experimental study on multiple large real-world datasets,
where we compared LEMP to existing techniques and also
studied the performance of various algorithms for bucket
processing. We found that LEMP consistently outperformed
existing methods by up to an order of magnitude and was
multiple orders of magnitude faster than a naive approach.
Although the performance of existing approaches for large-

entry retrieval (TA, cover trees) often increased when used
within the LEMP framework, LEMP with a variant of our
specialized INCR algorithm performed best overall.

2 Problem Statement and Naive Solution
We denote matrices by bold upper-case letters, vectors by
bold lower-case letters, and scalars by non-bold lowercase
letters. Denote by Q and P two real-valued factor matrices
of dimensions r×m and r×n, respectively. We are interested
in large entries in the m × n product matrix QTP . We
assume throughout that r � m,n so that (the transposes of)
both factor matrices are tall and skinny; this setting arises,
for example, when the input matrices have been obtained by
low-rank matrix factorization methods as in Sec. 1. More
specifically, we focus on cases where r is in the range of
10–500 and m as well as n take values that are orders of
magnitudes larger, e.g., in the order of millions. We write Aj

for the j-th column of matrix A, v ∈ A to indicate that v is a
column of A, and vi for the i-th entry of v. We use shortcut
notation to omit the range of indexes in summations when
clear from context; e.g., for q ∈ Q and p ∈ P , we write
qTp =

∑
i qipi for

∑r
i=1 qipi. Let [n] = { 1, . . . , n }.

We study two variants of the large-entries problem. The
first one, termed Above-θ, asks to retrieve all entries that
take values above some application-defined threshold θ. This
problem is useful, for example, to retrieve all high-confidence
facts in an open information extraction scenario.

Problem 1 (Above-θ). Given a threshold θ > 0, de-
termine the set of large entries

{ (i, j) ∈ [m]× [n] | [QTP ]ij ≥ θ }.

The second problem asks to retrieve the k largest entries
on each row of the product matrix, where k is application-
defined. This problem is more suited to recommender sys-
tems, where we want to retrieve the most relevant items
(columns of P ) for each user (column of Q).

Problem 2 (Row-Top-k). Given an integer k > 0,
find for every q ∈ Q the set J ⊆ [n] of the k columns of
P that attain the k largest values in qTP . Ties are broken
arbitrarily.

Note that if Q has only one column, the Row-Top-k prob-
lem is equivalent to top-k scoring with linear scoring function
f(p) = qTp. In the general case, in which Q has multiple
columns, it is equivalent to multi-query top-k scoring. In
analogy to top-k scoring, we refer to Q as the query matrix
and to P as the probe matrix. Similarly, we refer to vectors
q ∈ Q as query vectors (or simply queries) and to vectors
p ∈ P as probe vectors. The top-k values in each column of
QTP can be found by reversing the roles of Q and P .

A simple solution to the above problems is to first com-
pute the full product matrix QTP , and then select from this
product all entries above the threshold (for Above-θ) or the
k largest entries in each row (for Row-Top-k). We refer to
this approach as Naive; it has time complexity O(mnr) and
is infeasible for large problem instances.

3 The LEMP Algorithm
In this section, we outline the LEMP algorithm for retrieving
large entries in matrix products. We focus on the Above-θ
problem throughout and discuss the Row-Top-k problem in
Sec. 4.5.



3.1 Length and Direction
LEMP makes use of the decomposition of an inner product
of two vectors q and p into a length and a direction part.

Denote by ‖v‖ =
√∑

f v
2
f the length (Euclidean norm) of

vector v 6= 0, and by v̄ = v/‖v‖ its normalization, i.e., the
unit vector pointing in the direction of v. Then

qTp = ‖q‖ ‖p‖ cos(q,p), (1)

where cos(q,p) = q̄T p̄ ∈ [−1, 1] denotes the cosine similar-
ity between vectors q and p. As mentioned previously, the
inner product coincides with the cosine similarity if q and p
have unit length. The problem of cosine similarity search is
thus a special case of the large-entry retrieval problem.

By rewriting Eq. (1), we obtain

qTp ≥ θ ⇐⇒ cos(q,p) ≥ θ

‖q‖ ‖p‖ . (2)

The inner product thus exceeds threshold θ if and only if
the cosine similarity exceeds the modified threshold θ

‖q‖ ‖p‖ ,

which depends on the lengths of q and p. Our goal is to find
pairs (q,p) ∈ Q × P such that qTp ≥ θ. From Eq. 2, we
conclude that:

1. If q and p are short in that ‖q‖‖p‖ < θ, we cannot have
qTp > θ since cos(q,p) ∈ [−1, 1] and θ/(‖q‖ ‖p‖) > 1.
Such pairs do not need to be considered.

2. If q and p are of intermediate length in that ‖q‖‖p‖ ≈
θ, then qTp > θ if the cosine similarity cos(q,p) is
large. Such pairs are best found using a cosine simi-
larity search algorithm.

3. If q and p are long in that ‖q‖‖p‖ � θ, then qTp > θ
if their cosine similarity is not too small. Such pairs
are best found using naive search.

This indicates that vectors of different lengths are best treated
in different ways. LEMP exploits this observation as follows.
It first groups the vectors of the probe matrix P into a set of
small buckets, each consisting of vectors of roughly similar
length, and then solves a cosine similarity search problem
for each bucket. In particular, we ignore buckets with short
vectors, use a suitable cosine similarity search algorithm for
buckets with vectors of intermediate lengths, and use (a vari-
ant of) naive retrieval for buckets with long vectors. This
allows us to prune large parts of the search space and handle
the remaining part efficiently.

In more detail, denote by P 1, P 2, . . ., P s a set of s buckets
and assume that the vectors in each bucket have roughly
similar (but not necessarily equal) length. For each bucket
P b, 1 ≤ b ≤ s, denote by lb = maxp∈P b‖p‖ the length of its
longest vector. Under our assumption, lb ≈ ‖p‖ for all p ∈
P b. Fig. 2 shows an example in which P has been divided
into three buckets: P 1 holds long vectors (approximate and
maximum length 2), P 2 medium-length vectors (1), and P 3

short vectors (0.5).
Fix some bucket P b. From Eq. (2), we obtain that a

necessary condition for qTp ≥ θ for p ∈ P b is that

cos(q,p) = q̄T p̄ ≥ θb(q)
def
=

θ

‖q‖ lb
. (3)

We refer to θb(q) as the local threshold of query q for bucket
P b. Our goal is thus to find all vectors p ∈ P b with a cosine
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Figure 2: Illustration of LEMP’s bucketization

similarity to q of at least θb(q). The local threshold allows
us to determine how to best process bucket P b, analogous
to the discussion above. If θb(q) > 1, we can prune the en-
tire bucket since none of its vectors can potentially pass the
threshold. If θb(q) ≈ 1, we use a suitable cosine similarity
search algorithm for the bucket. Finally, if θb � 1, we use
naive retrieval.

Consider again the example of Fig. 2 and assume a global
threshold of θ = 0.9. The figure highlights three query vec-
tors q1, q2, and q3 of decreasing lengths and gives the val-
ues of all local thresholds (or “-” if above 1, also indicated by
dashed lines). For q1, which is very long, all local thresholds
are small so that naive retrieval is well suited for all buck-
ets. For q2, which is shorter, the local threshold is small
for bucket P 1 (long vectors), large for bucket P 2 (medium-
length vectors), and above 1 for bucket P 3 (short vectors).
We use naive retrieval for P 1 and a suitable cosine similarity
search algorithm for P 2. Bucket P 3 is pruned. Finally, for
q3, which is very short, all local thresholds exceed 1 so that
all buckets are pruned.

3.2 Algorithm Description
Alg. 1 summarizes LEMP. It consists of a preprocessing phase
(lines 1–6) and a retrieval phase (lines 8–19).

The preprocessing phase groups the columns of P into
buckets of similar length (line 2). There are a number of
ways to do this, but we chose a simple greedy strategy in
our implementation. In particular, we first sort the columns
of P by decreasing length,1 scan the columns in order, and
start a new bucket whenever the length of the current col-
umn falls below some threshold (e.g., 90% of lb). We also
make sure that buckets are neither too small nor too large.
First, small buckets reduce the efficiency of LEMP due to
bucket processing overheads; we thus ensure that buckets
contain at least a certain number of vectors (30 in our imple-
mentation). The bucket processing overhead of large buckets
is negligible. However, when buckets grow larger than the
cache size, processing time is negatively affected. For this
reason, we select a maximum bucket size that ensures that
all relevant data structures fit into the processor cache.

1We also sort and normalize query vectors in a manner sim-
ilar to the bucketization of P .



Algorithm 1 LEMP for the Above-θ problem

Require: Q,P , θ
Ensure: S =

{
(i, j) | [QTP ]ij ≥ θ

}
1: // Preprocessing phase
2: Partition P into buckets P 1, . . . ,P s of similar length
3: for all b ∈ 1, 2, . . . , s do // for each bucket
4: Sort, normalize, and index P b

5: lb ← maxp∈P b‖p‖
6: end for
7:
8: // Retrieval phase
9: S ← ∅

10: for all b ∈ 1, 2, . . . , s do // for each bucket
11: for all qi ∈ Q do // for each query
12: θb(qi)← θ / (‖qi‖ lb) // local threshold
13: if θb(qi) ≤ 1 then // prune?
14: Pick a suitable retrieval alg. A based on θb(qi)
15: Use A to obtain a set of candidates

Cb ⊇
{
pj ∈ P b | q̄Ti p̄j ≥ θb(qi)

}
16: S ← S ∪

{
(i, j) | pj ∈ Cb and qTi pj ≥ θ

}
17: end if
18: end for
19: end for

After bucket boundaries have been obtained, we represent
each vector p by two separate components: its length ‖p‖
and its direction p̄. We also store the vectors’ column num-
ber in the original matrix (denoted id) and in the bucket
(denoted lid for “local id”); see Fig. 4a for an example. This
layout allows us to access for each p ∈ P b both ‖p‖ and p̄
without further computation. We then create indexes on the
contents of each bucket; we defer the discussion of indexing
to Sec. 4. For our choice of indexes (Sec. 4.2 and 4.3), the
overall preprocessing time, including index computation, is
O(rn logn).

The retrieval phase then iterates over buckets and query
vectors. For each query, we compute the local threshold
θb(q) (line 12) and prune buckets based on their length
(line 13). For each remaining bucket P b, we select a suit-
able retrieval algorithm based on the local threshold (line 14,
cf. Sec. 4). The selected retrieval algorithm computes a set
Cb of candidate vectors, potentially making use of the index
data structures created during the preprocessing phase. The
candidate set is guaranteed to contain all vectors in p ∈ P b

that pass the threshold (qTp ≥ θ), but it may additionally
contain a set of spurious vectors (q̄T p̄ ≥ θb(q) but qTp < θ).
A verification step (line 16) filters out these spurious vectors
by computing the actual values of the inner products qTp
for all p ∈ Cb.

The order of the two loops in the retrieval phase of Alg. 1
is chosen to be cache friendly. Since we process probe buck-
ets in the outer loop and since probe buckets are small, their
content remains in the cache for the entire inner loop. The
inner loop itself scans query vectors sequentially; these vec-
tors generally do not fit into the cache, but the sequential
access pattern makes prefetching effective.

The power of LEMP to prune entire buckets in line 12 de-
pends on the length distribution of the input vectors: gen-
erally, the more skewed the length distribution, the more
probe buckets can be pruned. Even if bucket pruning is not
particularly effective for a given problem instance, however,
the organization of the probe vectors into buckets is still

beneficial: it allows cosine similarity search algorithms to
be applied and is cache-friendly.

4 Retrieval Algorithms
In this section, we propose and discuss a number of algo-
rithms for the retrieval phase of LEMP (line 15 of Alg. 1).
Each algorithm takes as input a query vector q ∈ Q and a
bucket P b, and outputs a candidate set Cb ⊆ P b using some
pruning strategy. All algorithms first compute ‖q‖ and q̄;
cf. Fig. 4d.

We discuss two kinds of algorithms: those that make use
of only the length information to prune candidate vectors
and those that use the normalized vectors as well. For the
first category, we propose the LENGTH algorithm (Sec. 4.1),
which is a simple variant of the naive algorithm that takes
length information into account. Existing cosine similarity
search algorithms (e.g., [5]) as well as TA fall in the second
category. Here we additionally present two novel methods,
which are specially tailored to the matrix-product setting.
The COORD algorithm (Sec. 4.2) applies coordinate-based
pruning strategies. The INCR algorithm (Sec. 4.3) is based
on COORD but uses a more effective (but also more expen-
sive) incremental pruning strategy that also takes length into
account.

4.1 Length-Based Pruning
Recall that the vectors in bucket P b are sorted by decreas-
ing length during preprocessing (see also Fig. 4a). Fur-
ther observe from Eq. (1) that whenever ‖q‖ ‖p‖ < θ, so
is qTp. Putting both together, LENGTH scans the bucket
P b in order. When processing vector p, we check whether
‖p‖ ≥ θ/‖q‖; we precompute θ/‖q‖ to make this check ef-
ficient. If p qualifies, we add it to the candidate set Cb.
Otherwise, we stop processing bucket P b and immediately
output Cb.

Consider for example a bucket P b as shown in Fig. 4a,
query vector q = (1, 1, 1, 1)T , and threshold θ = 3.8. We
have ‖q‖ = 2 and θ/‖q‖ = 1.9 so that we obtain Cb =
{ 1, 2, 3 }. (Here and in the following, we give Cb in terms of
local identifiers (lid) for improved readability.)

Since LEMP already organizes and prunes buckets by
length, we do not expect LENGTH to be particularly effec-
tive. In fact, LENGTH degenerates to the naive algorithm
in all but one bucket (the “last” bucket that has not been
pruned). Nevertheless, since LENGTH has low overhead
and a sequential access pattern, it is an effective method
when buckets are small or the local threshold is low (i.e.,
when coordinate-based pruning is not effective).

4.2 Coordinate-Based Pruning
We now proceed to pruning strategies based on the direction
(but not length) of the query vector. The key idea is to retain
only those vectors from P b in Cb that point in a similar
direction as q. In particular, we aim to find all p ∈ P b with
high cosine similarity to q, i.e.,

q̄T p̄ = cos(q,p) ≥ θb(q). (4)

Note the usage of normalized vectors here; length infor-
mation is not taken into account.

Let q̄ = (q̄1, . . . , q̄r)
T and p̄ = (p̄1, . . . , p̄r)

T . Note that
q̄T p̄ achieves its maximum value for p̄ = q̄ since then q̄T p̄ =
q̄T q̄ = ‖q̄‖2 = 1. In other words, q̄T p̄ is maximized when



both vectors agree on all their coordinates. Based on this
observation, the key idea of the COORD algorithm is to
prune p̄ if one of its coordinates deviates too far from the
respective coordinate in q̄. In more detail, we obtain for
each coordinate f ∈ [r] a lower bound Lf (q̄) and an upper
bound Uf (q̄) on p̄f . If Lf ≤ p̄f ≤ Uf , we say that p̄f is
feasible; otherwise p̄f is infeasible. The bounds are chosen
such that whenever a coordinate f of p is infeasible, then
q̄T p̄ < θb(q) so that p can be pruned from the candidate set.
Such pruning is particularly effective when θb(q) is large or
when the query vector is sparse.

In what follows, we provide lower and upper bounds, dis-
cuss their effectiveness, and propose the COORD algorithm
that exploits them.

Bounding Coordinates. Pick some coordinate f ∈ [r]; we
refer to f as a focus coordinate. Denote by
q̄-f = { q̄1, . . . , q̄f−1, q̄f+1, . . . , q̄r } the vector obtained by
removing coordinate f from q̄, similarly p̄-f . Note that q̄-f

and p̄-f generally have length less than 1. Now we rewrite
Eq. (4) as follows

θb(q) ≤ q̄T p̄ =
∑
i q̄ip̄i = q̄f p̄f +

∑
i 6=f p̄iq̄i

= q̄f p̄f + q̄T-f p̄-f

= q̄f p̄f + ‖q̄-f‖ ‖p̄-f‖ cos(p̄-f , q̄-f )

≤ q̄f p̄f + ‖q̄-f‖ ‖p̄-f‖

= q̄f p̄f +
√

1− q̄2f
√

1− p̄2f ,

where we used Eq. (1), the fact that the cosine similarity
cannot exceed 1, and the property ‖q̄‖ = ‖p̄‖ = 1.

We now solve the resulting inequality θb(q) ≤ q̄f p̄f +

(1− q̄2f )1/2(1 − p̄2f )1/2 for p̄f and obtain the bounds Lf ≤
p̄f ≤ Uf , where:

L′f = q̄fθb(q)−
√

(1− θb(q)2)(1− q̄2f ),

U ′f = q̄fθb(q) +
√

(1− θb(q)2)(1− q̄2f ),

Lf =

{
L′f q̄f ≥ 0 or L′f > θb(q)/q̄f

−1 otherwise,

Uf =

{
U ′f q̄f ≤ 0 or U ′f < θb(q)/q̄f

1 otherwise.

Note that if the lengths of the vectors within a bucket
vary strongly, we are forced to use a low local threshold
θb(q), which in turn results in looser bounds. This undesir-
able behavior is avoided by LEMP since it constructs buck-
ets that contain vectors of similar length. The effectiveness
of our bounds—and of using normalization and subsequent
coordinate-based pruning in general—is thus particularly ef-
fective in the context of our LEMP framework.

Effectiveness of Bounds. To gain some insight into the ef-
fectiveness of our bounds, we plot the feasible region [Lf , Rf ]
for various choices θb(q) in Fig. 3. The x-axis corresponds
to the value of q̄f , the y-axis to the lower and upper bounds,
and the various oval-shaped gray regions to the feasible re-
gions. Note that −1 ≤ q̄f , p̄f ≤ 1.

The pruning power of our bounds depends on both the
value of θb(q) and on the properties of matrices Q and P .
First, the larger the local threshold θb(q), the smaller the
feasible region and the more vectors can be pruned. In fact,
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Figure 3: Feasible regions for various values of θb(q)

for large values of θb(q), the feasible region is small across
the entire value range of q̄f . Second, the size of the feasible
region decreases as the magnitude of q̄f increases. This de-
crease is more pronounced when the local threshold is small.
Note that a small feasible region may or may not lead to
effective pruning; the value distribution of P b is also impor-
tant. Nevertheless, the smaller the feasible region, the more
effective the pruning will be.

Based on the observations above, we conclude that our
bounds can effectively prune a vector p̄ with q̄T p̄ < θb(q)
when θb(q) is large or when there is some coordinate f for
which only one of q̄f or p̄f takes a large value. Since all
vectors are length-normalized, the latter property holds if q̄
or p̄ is sufficiently sparse or has a skewed value distribution.
If neither holds and θb(q) is small, an algorithm such as
LENGTH or INCR may be a more suitable choice.

Exploiting Bounds. The COORD algorithm makes use of
the feasible region derived in the previous section to prune
unpromising candidates. To do so, LEMP creates indexes for
each probe bucket P b during its preprocessing phase. In the
case of COORD, we create r sorted lists I1, . . . , Ir, one for
each coordinate of the vectors in P b. Each entry in list If is
a (lid, p̄f )-pair, where as before lid is a bucket-local identifier
for the corresponding vector p̄. As in Fagin et al.’s threshold
algorithm (TA, [4]), the lists are sorted in decreasing order
of p̄f . Fig. 4c shows the sorted-list index for the example
bucket given in Fig. 4a. Although index construction is gen-
erally light-weight and fast, LEMP constructs indexes lazily
on first use to further reduce computational cost. Buckets
with very short vectors, for example, will always be pruned
and thus do not need to be indexed.

COORD is summarized as Alg. 2. It takes as input a
bucket P b, a query q, the global and local thresholds (θ, θb(q)),
the bucket indexes I1, . . . , Ir, and a set of focus coordinates
F ⊆ [r]. We discuss the algorithm using the example of
Fig. 4 with θ = 0.9. Consider the query q shown in Fig. 4d
as well as the corresponding inner products shown in Fig. 4b.
We have θb(q) = 0.9/(0.5 · 2) = 0.9, coincidentally agreeing
with the global threshold. Observe that vectors 1 and 5 pass
the local threshold q̄T p̄ ≥ θb(q), but only vector 1 addition-
ally passes the global threshold qTp ≥ θ.

COORD does not compute and enforce the bounds for
each coordinate but uses a suitable subset F ⊆ [r] of focus
coordinates; see below. For each focus coordinate f ∈ F ,
COORD computes the feasible region [Lf , Uf ] (line 3) and
determines the start and end of the corresponding scan range



lid id ‖p‖ p̄
1 23 2.0 0.58 0.50 0.40 0.50
2 43 1.9 0.98 0 0 0.20
3 12 1.9 0.53 0 0 0.85
4 54 1.8 0.35 0.93 0 0.10
5 18 1.8 0.58 0.50 0.40 0.50
6 20 1.8 0.30 -0.40 0.81 -0.30

(a) Organization of bucket P b

q̄T p̄ qTp
0.97 0.97
0.79 0.75
0.80 0.76
0.56 0.52
0.97 0.87
0.26 0.23

(b) Results for
query q of (d)

I1
lid p̄1
2 0.98
1 0.58
5 0.58
3 0.53
4 0.35
6 0.30

I2
lid p̄2
4 0.93
1 0.50
5 0.50
2 0
3 0
6 -0.40

I3
lid p̄3
6 0.81
1 0.40
5 0.40
2 0
3 0
4 0

I4
lid p̄4
3 0.85
1 0.50
5 0.50
2 0.20
4 0.10
6 -0.30

(c) Sorted-list index (bold rows show scan range for q)

‖q‖ q̄
0.5 0.70 0.3 0.4 0.51

[Lf , Uf ] [0.32, 0.94] - - [0.09, 0.83]

(d) Query q and feasible region for focus coordinates

lid c
1 2
2 1
3 1
4 2
5 2
6 0

Cb = { 1, 4, 5 }
(e) CP array

lid c q̄TF p̄F ‖pF ‖2 u θp(q)
1 2 0.66 0.59 0.32 0.9
2 1 0.10 0.04 0.49 0.95
3 1 0.37 0.28 0.43 0.95
4 2 0.30 0.13 0.47 1
5 2 0.66 0.59 0.32 1
6 0 - - - 1

Cb = { 1 }
(f) Extended CP array

Figure 4: Illustration of LEMP as well as the COORD and
INCR retrieval algorithms for θ = 0.9 and F = { 1, 4 }

in sorted list If via binary search for Uf and Lf , respectively
(line 4). Vectors outside the scan range violate the bound on
coordinate f . In the example of Fig. 4, we used F = { 1, 4 }.
The bounds are shown in Fig. 4d and the corresponding scan
ranges in I1 and I4 are shown in bold face in Fig. 4c.

COORD subsequently scans the scan range of each sorted
list If , f ∈ F , in sequence (line 5) and maintains a candidate-
pruning array (CP array, line 6). The CP array contains for
each vector p̄ ∈ P b with local identifier lid a counter c[lid]
that indicates how often the vector has been seen so far. The
CP array of our running example is shown in Fig. 4e (with an
additional lid column for improved readability). After com-
pleting all scans, COORD includes into Cb all those vectors
p̄ ∈ P b that qualified on all focus coordinates, i.e., for which
c[lid] = |F | (line 9). In our example, Cb = { 1, 4, 5 } since
only those three vectors occurred in both scan ranges. In
particular, vectors 2 and 3 are (correctly) excluded because
they appear in only one scan range.

We now turn to the question of how to choose the focus
set F . One option is to simply set F = [r]. However, pro-
cessing sorted lists can get expensive if F is large or contains
coordinates for which pruning is not effective, i.e., for which
a large fraction of the corresponding sorted lists needs to

Algorithm 2 The COORD algorithm

Require: q,P b, θ, θb(q), F ⊆ [r], I1, . . . , Ir
Ensure: Cb ⊇

{
pj ∈ P b | q̄T p̄j ≥ θb(q)

}
1: c← empty CP array
2: for all f ∈ F do
3: Calculate feasible region [Lf , Uf ]
4: Determine corresponding scan range in sorted list If
5: for all lid in scan range of If do
6: c[lid]← c[lid] + 1 // maintain CP array
7: end for
8: end for
9: Cb = { lid | c[lid] = |F | } // filter

be scanned. We make use of a focus-set size parameter φ,
typically in the range of 1–5; we discuss the choice of φ in
Sec. 4.4. COORD then uses the φ coordinates of q̄ with
largest absolute value as focus coordinates. The reasoning
behind this choice is that large coordinates will lead to the
smallest feasible region (cf. Sec. 4.2); the hope is that they
also lead to a small scan ranges and a small candidate set.

To summarize, COORD builds indexes only if needed and
uses only a subset of the entries in a subset of the sorted-
list indexes. The index scan itself is light-weight; it accesses
solely the lid part of the lists and increases the counters of
the CP array. Also note that the bounds we use for deter-
mining the scan range of the lists are simple and relatively
cheap to compute. This is important since these bounds
need to be computed per query, per bucket, and per focus
coordinate. See Appendix A for implementation details.

4.3 Incremental Pruning
COORD scans the sorted-list indexes to find the set of vec-
tors that qualify in each coordinate f ∈ F , i.e., fall in region
[Lf , Uf ]. Other than checking feasibility, the actual values
in the scanned lists are ignored. In contrast, our incremental
pruning algorithm INCR makes use of the p̄f values as well:
It maintains information that allows it to prune additional
vectors. Such an approach is generally more expensive than
COORD, but the increase in pruning power may offset the
costs.

When we derived the bounds of a coordinate f of CO-
ORD, we assumed that cos(q̄-f , p̄-f ) = 1. This is a worst-
case assumption; in general, cos(q̄-f , p̄-f ) will be less (and
often much less) than 1. Intuitively, a vector p̄ that qualifies
barely in all coordinates often does not constitute an actual
result. Recall our ongoing example of Fig. 4. Here vector
4 barely qualifies in both indexes I1 and I4 and is thus in-
cluded into the candidate set of COORD. Vector 4 does not
pass the local threshold, however, since q̄T p̄4 = 0.56 < 0.9.
COORD is blind to this behavior.

Another potential drawback of COORD is that it does not
(and cannot) take into consideration the length distribution
of the vectors in each bucket. In the example of Fig. 4,
normalized vectors 1 and 5 are identical and both pass the
local threshold. However, since vector 1 is slightly longer
than vector 5, only vector 1 passes the global threshold and
thus the verification step of LEMP.

Similar to COORD, INCR scans the scan ranges of the
sorted lists of the focus coordinates. To address the above
issues, however, INCR additionally maintains a partial inner
product for each of the vectors that it encounters. General-
izing our previous notation, denote by q̄F (q̄-F ) the values of



the focus coordinates (of all other coordinates) of the query
vector; similarly, p̄F and p̄-F . We obtain

q̄T p̄ = q̄TF p̄F + q̄T-F p̄-F ≤ q̄TF p̄F + ‖q̄-F ‖ ‖p̄-F ‖.

Since vectors are normalized, the latter can be computed
from q̄F and p̄F only. Denote the resulting upper bound on
the “unseen” part q̄T-F p̄-F of the inner product q̄T p̄ by

u(q̄F , p̄F ) = ‖q̄-F ‖ ‖p̄-F ‖ =
√

1− ‖q̄F ‖2
√

1− ‖p̄F ‖2.

Then q̄T p̄ ≤ q̄TF p̄F + u(q̄F , p̄F ). In order to compute this
bound, INCR uses an extended CP array, which maintains
for each probe vector in addition to the frequency counters of
COORD (line 6 of Alg. 2) the quantities q̄TF p̄F and ‖p̄F ‖2 =∑
f∈F p̄

2
f . After the extended CP array has been computed,

INCR includes into the candidate set only those vectors p̄
that satisfy

q̄TF p̄F + u(‖qF ‖, ‖pF ‖) ≥ θp(q)
def
=

θ

‖p‖ · ‖q‖ . (5)

Here θp(q) is an improved, probe vector-specific local thresh-
old; it holds θp(q) ≥ θb(q). This improved local threshold
cannot be used by the COORD algorithm.

Fig. 4f shows the extended CP array for our running ex-
ample (to the left of the double vertical lines) as well as
the quantities involved in the above pruning condition (to
the right; here we write u for u(‖qF ‖, ‖pF ‖)). For exam-
ple, for vector 1, q̄TF p̄F = 0.58 · 0.70 + 0.50 · 0.51 = 0.66

and u =
√

1− (0.582 + 0.502) · ‖q-F ‖. The quantity ‖q-F ‖
(not shown in Fig. 4f) is independent of the probe vectors
and thus only computed once. In our example, ‖q-F ‖ =√

1− (0.702 + 0.512) = 0.5. As can be seen in the example,

filter condition q̄TF p̄F +u ≥ θp(q) is passed only by vector 1;
thus Cb = { 1 }. Note that the rows of vector 5 and vector 1
agree in the extended CP array; our improved local thresh-
old (0.9 for vector 1 vs. 1 for vector 5), however, allows us
to correctly prune vector 5 but retain vector 1.

4.4 Algorithm Selection
Before processing a bucket P b, LEMP needs to decide which
retrieval algorithm to use. We have already given some guid-
ance for this choice above: Length-based pruning is suit-
able for buckets with a skewed length distribution, whereas
coordinate-based pruning is suitable for large local thresh-
olds and/or data with a skewed value distribution. In gen-
eral, the choice of a suitable algorithm is data-dependent.

LEMP uses a simple, pragmatic method for algorithm se-
lection: it samples a small set of query vectors and tests the
different methods for each bucket. We observe the wall-clock
times obtained by the various methods and select a thresh-
old tb for each bucket: whenever θb(q) < tb, LEMP will
use LENGTH, otherwise it uses coordinate-based pruning.
Similarly, we select for each bucket a parameter φb for the
number of sorted lists to scan in coordinate-based pruning;
we simply take the choice that performed best on the sam-
pled query vectors. The cost of this sample-based profiling
step is negligible since the number of query vectors is large;
the overall running time is dominated by the time required
to process Q in its entirety.

More elaborate approaches for algorithm selection are pos-
sible, e.g., some form of reinforcement learning. Our ex-
periments suggest, however, that even the simple selection
criterion outlined above gives promising results.

4.5 Solving the Row-Top-k Problem
Our discussion so far has focused on the Above-θ problem;
we now proceed to the discussion of the Row-Top-k problem.
Recall that given a query vector q, the Row-Top-k problem
asks for the vectors p ∈ P that attain the k largest inner
products qTp (the k largest entries on the corresponding row
of QTP ). Row-Top-k is often used in recommender systems
for retrieving the best k items for each user.

The Row-Top-k problem is related to the Above-θ problem
as follows. Fix a query vector q and denote by θ∗ the k-th
largest entry in qTP . Given θ∗, the solution of the Row-
Top-k problem coincides with the solution of the Above-θ
algorithm with threshold θ∗ (assuming no duplicate entries).
We do not know θ∗ but instead make use of a running lower
bound θ′ on θ∗; the value of θ′ increases as the algorithm
proceeds.

In more detail, we take the k longest vectors of P (all
located at the beginning of bucket P 1) and compute their
inner product with q. The smallest so-obtained value is our
initial choice of θ′. We then run the Above-θ algorithm with
threshold θ′ on the first bucket, determine the top-k answers
in the result, and update θ′ accordingly. This process is iter-
ated over the following buckets until θ′ becomes so large that
LEMP prunes the next bucket. At this point, we output the
current top-k vectors as a result. This strategy is effective
because (1) LEMP organized buckets by decreasing length
so that we expect the top-k values to appear in the top-most
buckets, and (2) bucket sizes are small (cache-resident) so
that the threshold θ′ is increased frequently.

Note that the length of q does not affect the result of the
Row-Top-k problem. We thus simplify the bounds used by
our algorithms by fixing ‖q‖ = 1.

5 Related Work
A number of existing methods that are related to the large-
entry retrieval problem have been proposed in the literature.
We first review existing algorithms for the large-entry re-
trieval problem and subsequently turn attention to cosine
similarity search algorithms. In general, LEMP differs from
existing methods in that it separates the length and direction
of the input vectors, prefers inexpensive pruning strategies
over more aggressive, expensive ones, and selects suitable
retrieval methods dynamically.

Algorithms for large-entry retrieval. To the best of our
knowledge, Ram and Gray [11] were the first to pose and
address the problem of fast maximum inner-product search,
which corresponds to Row-Top-k. They propose to organize
the probe vectors in a metric tree, in which each node is as-
sociated with a sphere that covers the probe vectors below
the node. Given a query vector, the spheres are exploited
to avoid processing subtrees that cannot contribute to the
result. The metric tree itself is constructed by repeatedly
splitting the set of probe vectors into two partitions (based
on Euclidean distances). In subsequent work [10], the met-
ric tree is replaced a cover tree [12]. Both approaches effec-
tively prune the search space, but they suffer from high tree-
construction costs and from random memory access patterns
during tree traversal. The latter problem was investigated
more closely in [13], where a dual-tree algorithm that addi-
tionally arranges query vectors in a cover tree and processes
queries in batches was proposed. The dual-tree methods
loosens the bounds for pruning the search space, however,



and was found to be not effective in practice (confirmed also
in our experimental study).

LEMP differs from these tree-based techniques in that
it separates length and direction information, makes use of
multiple, light-weight indexing and retrieval methods, and
has more favorable memory access patterns. Note that the
single-tree approach can also be used within the LEMP
framework as a bucket algorithm that solves directly the
large-entry retrieval problem. We expect that such a com-
bination will have positive effect w.r.t. indexing time and
cache locality. We explore this direction in our experiments.

An alternative approach is taken by [14] in the context
of recommender systems: the matrix factorization method
used to produce the input matrices is modified, such that
all vectors are (approximately) unit vectors and the inner
product of user and item vectors and be approximated by
standard cosine similarity search. However, this modifica-
tion may affect the quality of the recommendations. In con-
trast, LEMP makes no assumption on the source or method
used to compute the input matrices.

Approximate methods for large-entry retrieval have also
been studied in the literature. One line of work makes use of
asymmetric transformations of P and Q to obtain an equiva-
lent nearest-neighbor problem in Euclidean space; this prob-
lem is then solved approximately using LSH [15] or modified
PCA-trees [16]. Another approach [17] is to cluster query
vectors and solve the Row-Top-k problem only for cluster
centroids. Although we focus on exact retrieval in this pa-
per, such a method can directly be applied in combination
with LEMP.

Threshold Algorithm. Some of our indexing techniques
are inspired by the popular threshold algorithm (TA) of Fa-
gin et al. [4] for top-k query processing for monotonic func-
tions. TA arranges the values of each coordinate of the probe
vectors in a sorted list, one per coordinate. Given a query,
TA repeatedly selects a suitable list (e.g., round robin or
heap-based), retrieves the next vector from the top of the
list, and maintains the set of the top-k results seen so far.
TA uses a termination criterion to stop processing as early
as possible. The effectiveness of this criterion depends on
the data; if TA is able to stop early, it can be very efficient.
Note that TA usually focuses on vectors of low dimension-
ality (say up to 10), whereas we focus on vectors of medium
sizes (say 10 to 500). TA can be used for finding vectors
with large inner products almost as is; the only difference is
that sorted lists need to be processed bottom-to-top when
the respective coordinate of the query vector is negative.

LEMP improves over TA in multiple ways: First, bucket
pruning eliminates early all short probe vectors, which oth-
erwise TA would have to consider. Second, TA scans lists
from top-to-bottom, whereas LEMP considers only the fea-
sible region. Third, TA immediately computes the inner
product of each vector selected from one of the lists in the
index; i.e., candidate verification is triggered by individual
coordinates. LEMP does not immediately calculate an inner
product when it encounters a vector: it first scans multiple
list and prunes the vectors before verification based on the
so-obtained information. Finally, index scan and verification
is interleaved in TA, resulting in a random memory access
pattern and a potentially high cache-miss rate. LEMP en-
sures that all bucket-related data (original vectors and in-
dexes) fits into cache, thereby reducing the cache-miss rate.

In our experimental study we investigated the performance
of TA in comparison to LEMP. We also experimented with
TA in combination with LEMP, i.e., we used TA as a bucket
algorithm. This addresses the first and the final point in the
discussion above. Our experimental results indicate that a
combination of TA and LEMP can be up to 25x faster than
just using TA. Generally, LEMP can improve TA’s perfor-
mance for top-k problems with linear scoring functions (i.e.,
inner products).

Algorithms for fast cosine similarity search. Cosine
similarity search algorithms, like all-pairs similarity search
(APSS, [5, 6, 7, 8]) or locality-sensitive hashing (LSH, [9]),
cannot be used directly for the large-entry retrieval prob-
lem.2 These methods though can be used (with some mod-
ifications) as retrieval methods for LEMP’s buckets.

Typical APSS algorithms and applications involve sparse
vectors of high dimensionality (tens or hundreds of thou-
sands of coordinates). In such settings, sparsity must be
retained during indexing to keep the index size manageable.
Thus APSS algorithms generally index only the non-zero
values of each coordinate (in contrast to LEMP). In addi-
tion, coordinates are often permuted such that dense co-
ordinates (called prefix) appear before sparser coordinates
(suffix); only the suffix is indexed. The index is used to ob-
tain candidate vectors, which are further pruned based on
properties of prefixes and suffixes [8, 7, 18]. Finally, full
similarity scores are computed for each candidate.

L2AP [18] is the state-of-the-art APSS algorithm for co-
sine similarity search; it exploits the Euclidean norms of
suffixes and prefixes for index compression and candidate fil-
tering. L2AP can be used as a bucket algorithm for LEMP
after a few modifications. In particular, we create a separate
L2AP index for each bucket. In L2AP, like in most APSS
algorithms, a lower bound on the cosine similarity threshold
needs to be fixed a priori. In our setting, we pick the lower
bound θb(qmax), where qmax is the query vector with the
largest length.

L2AP follows a similar pruning technique to INCR during
candidate generation and verification: it accumulates q̄TF p̄F
and precomputes u(q̄F , p̄F ). INCR differs in the following
ways: (i) L2AP scans all indexed lists corresponding to non-
zero query coordinates, whereas INCR scans only φ of them
and only their feasible regions, (ii) L2AP uses sophisticated
filtering conditions both during and after scanning. These
filtering techniques eliminate the majority of the candidates,
but are generally expensive. In contrast, INCR filters can-
didates only once and after index scanning, which is cheap
but may result in a larger number of candidates. See Sec. 6
for an experimental comparison of the two methods.

In the context of APSS, approximate methods like locality-
sensitive hashing (LSH) have been used for candidate prun-
ing. A recent approach is BayesLSH-Lite [19], which uses a
Bayesian approach over LSH for candidate pruning. Bayes-
LSH-Lite constructs l signatures of k bits (hashes) and uses
Bayesian inference to find a (high-probability) lower bound
on the number of hash matches between the signatures of
the query and the probe vector. It then computes the exact
similarity value for the probe vectors with at least that many
matches. Precomputation is used to speed up inference. We

2LSH is not applicable directly because the triangle inequal-
ity does not hold for inner products; see [11] for a discussion
as well as the recent asymmetric transformations of [16, 15].



Table 1: Datasets. All with r = 50.

Dataset m n CoV of lengths % Non- Naive
Q P Zero (min)

IE-NMF 771K 132K 1.56 5.53 36.2 112.0
IE-SVD 771K 132K 1.51 4.44 100 113.0
Netflix 480K 17K 0.43 0.72 100 8.4
KDD 1000K 624K 0.38 0.40 100 2910.0

investigate the performance of BayesLSH-Lite as a pruning
method within LEMP’s buckets in our experimental study.

6 Experiments
The goals of our experiments were (1) to compare LEMP
with existing methods for large-entry retrieval—i.e., Naive
retrieval (Sec. 5), TA, and the single and dual cover tree ap-
proaches (Tree [10], D-Tree [13])—, (2) to investigate whether
the combination of length- and coordinate-based pruning is
effective, and (3) to study the relative performance of dif-
ferent bucket methods, including COORD, INCR, TA, cover
trees, L2AP and BLSH-Lite. Our results can be summarized
as follows:
• LEMP consistently outperformed alternative methods

and was the best-performing method overall. In par-
ticular, LEMP was up to multiple orders of magnitude
faster than Naive and between 2x and 20x faster than
the best-performing alternative method.
• A combination of length-based and coordinate-based

pruning consistently outperformed pure length-based
or pure coordinate-based retrieval methods. This in-
dicates that LEMP’s approach of using bucket-specific
retrieval algorithms is effective.
• The overall most effective retrieval method for LEMP

was a combination of LENGTH and INCR.

6.1 Experimental Setup
Datasets and code can be found at http://dws.informatik.
uni-mannheim.de/en/resources/software/lemp.

Hardware. All experiments were run on a machine with
48 GB RAM and an Intel Xeon 2.40GHz processor.

Algorithms. We implemented LEMP and TA in C++,
and used C++ code of Tree and D-Tree provided by the
authors of [10] and [13] (at http://mlpack.org/). For L2AP
and BLSH-Lite, we adjusted publicly available C code
(at http://glaros.dtc.umn.edu/gkhome/l2ap/overview).

We ran seven “pure” versions of LEMP, in which only one
method was used within a bucket. We denote these meth-
ods as LEMP-X, where X is: L for LENGTH, C for CO-
ORD, I for INCR, TA for TA, L2AP for L2AP, BLSH for
BayesLSH-Lite and Tree for cover tree. We also ran the
two mixed versions LEMP-LC (LENGTH and COORD) and
LEMP-LI (LENGTH and INCR), in which the appropriate
retrieval method is chosen as described in Sec. 4.4. For TA,
we followed common practice and selected in each step the
sorted list i that maximized qipi, where pi refers to the next
coordinate value in list i. This strategy selects the “most-
promising” coordinate; we implemented it efficiently using a
max-heap.

Datasets. We used real-world datasets from collabo-
rative filtering and information extraction applications (cf.
Sec. 1). Table 1 summarizes the datasets (described below

in more detail); all datasets consist of 50-dimensional vec-
tors. The table also gives the coefficient of variation (CoV)
of the lengths of the input vectors and their percentage of
non-zero entries; see the discussion in Sec. 6.2.

For our experiments with collaborative filtering data, we
used factorizations of the popular Netflix [20] and KDD [21]3

(Yahoo! Music) datasets. Both datasets consist of ratings of
users for movies (Netflix) or musical pieces (KDD); matrix-
factorization techniques are state-of-the-art methods to pre-
dict unknown ratings [2, 22]. For Netflix, we performed a
plain matrix factorization with DSGD++ using L2 regular-
ization with regularization parameter λ = 50 as in [23]. For
KDD, we use the factorization of [24], which incorporates the
music taxonomy, temporal effects, as well as user and item
biases; this dataset has been used in previous studies of the
Row-Top-k problem. Since we were ultimately interested in
retrieving the top-k movies/songs for each user, we used the
collaborative filtering datasets to study the performance of
the various methods for the Row-Top-k problem.

For the open information extraction scenario, we extracted
around 16M subject-pattern-object triples from the New
York Times corpus,4 which contains news articles, using the
methods described in [25]. We removed infrequent argu-
ments and patterns, and constructed a binary argument-
pattern matrix: An entry in the matrix was set to 1 if the
corresponding argument (subject-object pair) occurred with
the corresponding pattern; otherwise, the entry was set to
0. We factorized this binary matrix using the singular-value
decomposition (SVD) and non-negative matrix factorization
(NMF); we denote the resulting datasets as IE-SVD and IE-
NMF, respectively. For SVD, which produces factorization
UΣV T , we set QT = U

√
Σ and P =

√
ΣV T . For the IE

datasets, we studied Above-θ and Row-Top-k, which both
are problems relevant in applications. Above-θ aims to find
all high-confidence facts, whereas Row-Top-k retrieves the k
most probable arguments of a pattern (as in [3]). For the lat-
ter problem, we make use the transposed matrices IE-SVDT

and IE-NMFT .

Methodology. We compare the algorithms both for the
Above-θ and the Row-Top-k problem. For the Row-Top-
k problem, we experimented with k = 1, 5, 10, 50. For the
Above-θ problem, we selected θ such that we retrieve the
top-103, -104, -105, -106 and -107 entries in the whole prod-
uct matrix QTP . We subsequently refer to the number of
results as recall.

We compare all methods in terms of overall wall-clock
time, which includes preprocessing, tuning, and retrieval
time. Preprocessing involves the construction of indexes
(cover trees for Tree and D-Tree, sorted lists for LEMP,
TA and L2AP, hash-signatures for BLSH) and, for LEMP
only, the time required for the normalization, sorting, and
bucketization of the input vectors. Tuning refers to the time
required to automatically select suitable values for the pa-
rameters φ and tb of LEMP.

Choice of parameters. Parameters for LEMP (φ and
tb) were tuned on a small sample of the datasets as explained
in Sec. 4.4. The base parameter of the cover trees was set
to 1.3 as suggested in [13]. For all LEMP algorithms, we
used a fine-grained bucketization such that all data struc-
tures of a bucket fit into the available processor cache. For

3corresponds to Track 1 of the 2011 KDD Cup 2011
4http://catalog.ldc.upenn.edu/LDC2008T19
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Figure 5: Total wall-clock times (incl. indexing and tuning)
for Above-θ @1k recall level on different datasets

LEMP-BLSH, we obtained the best results with using only
one signature. The false negative rate ε was set to 0.03 and
the signature length to 32 as in [19]. For LEMP-L2AP, we
used the same combination of filters and bounds that the
authors of [18] report as most efficient w.r.t. execution time.

6.2 Comparison with Previous Methods
In this section, we compare LEMP with previous methods
for finding large entries in matrix products. Figs. 5 and 6
show the relative performance of LEMP (using the LI bucket
algorithm), TA, Tree, and D-Tree for the Above-θ and Row-
Top-k problems, respectively. The speedup of LEMP with
respect to the best-performing method other than LEMP is
marked in the figures. We use Naive as a baseline; its run-
ning time is independent of θ for Above-θ and only slightly
affected by k for Row-Top-k. To keep our study manage-
able, we only ran Naive for the Row-Top-1 problem; this is
a fair comparison because running times for larger k may
be slightly above but not below the times reported here.
The wall-clock times for this and additional experiments, as
well as average candidate set sizes, can be found in Tables 3
and 4 in the appendix. In the following, we discuss the per-
formance of the algorithms in terms of overall running time,
preprocessing time and pruning power.

Overall Performance. Overall, LEMP was the fastest
method, reaching 14572x speedup over the Naive baseline
and up to 22.3x over the next best method. The second
fastest method was in the majority of cases Tree, followed
by TA and D-Tree. LEMP, Tree and TA appear to have best
performance on datasets with large skew in their length dis-
tribution, like the IE datasets (high CoV in Table 1) and also
on datasets with sparse vectors (IE-NMF). On datasets with
little skew in their length distribution, like Netflix and KDD,
all methods had difficulties in providing large speedups over
Naive. However, for KDD, some methods were still able to
offer significant savings in terms of running time: LEMP
was able to save up to 41.2 hours of computation time in
comparison to naive retrieval. Tables 3 and 4 show that
the performance of all methods but Naive deteriorates as
the result size or k increases (θ decreases), since the output
size increases and pruning opportunities decrease. Gener-
ally, there is a break-even point at which any method will
be slower than naive. This is the case, for example, for TA
on Netflix/KDD and D-Tree on Netflix for k ≥ 1.

Preprocessing Time. Table 2 shows the preprocess-
ing time for the different datasets and methods. For Tree
and D-Tree, we give the wall-clock time of producing the
cover tree(s) and for TA the time to create the sorted lists.
The preprocessing costs of these methods are fixed and de-
pend on the size of probe matrix (and additionally of the
query matrix for D-Tree). For LEMP-LI, we report the sum
of maximum indexing and the maximum tuning time (nor-
mally the preprocessing times vary from problem to problem
since LEMP constructs indexes lazily). LEMP, on the one
hand, has the overhead of tuning and, on the other hand, has
the benefit of lazy index construction, specially for datasets
that have skewed length distribution. The larger the length
skew and the size of the probe matrix, the larger the pre-
processing savings of LEMP over the other methods and the
higher the chances of outweighing the tuning overhead. For
example for IE-NMFT , which has n = 771K, LEMP needed
0.92s vs 2.98s for TA and 31.84s for Tree. The highest costs
appeared for the Tree and D-Tree methods. Preprocessing
costs can be one of the major bottlenecks for these methods.
Tables 3 and 4 show that preprocessing can be a large part
of the overall running time, specially for datasets with large
length skew. For example, D-Tree needed more time to cre-
ate its trees for Netflix (tree construction was 70% of the
overall time) than Naive needed to retrieve the Row-Top-1
entries. Similarly, for the IE datasets (recall ≤ 106, k ≤ 10),
LEMP (and in some cases also TA) terminated before the
Tree method finished preprocessing.

Pruning Power. Tables 3 and 4 show how many candi-
dates remain on average after pruning for each of the differ-
ent methods. For the Row-Top-k problem, LEMP had the
highest pruning power for the IE datasets and for small k for
KDD, whereas for Netflix Tree pruned more candidates (and
LEMP was second-best). For example, for Netflix, k = 1,
Tree produced only 1661 candidates per query on average,
whereas LEMP produced 1881. Nevertheless, LEMP was
faster overall (75.1s vs 158.5s). This speed-up was not due
to preprocessing costs (0.24s for Tree vs 0.60s for LEMP),
but mainly due to LEMP’s efficient pruning.

TA ranks usually last in terms of pruning power. Espe-
cially for datasets with low length skew, TA tends to perform
poorly. For example, for Netflix, k = 1, TA pruned only half
of the vectors (8920 candidates per query, out of a total of
17770). We also see the effects of TA’s random memory ac-
cess pattern here: Although TA verified half the number of
candidates as Naive, it was 1.5x slower (771.1s vs 504.3s).
Also note that sparsity affects the behavior of TA: It checked
4.6x less candidates for the sparse IE-NMFT dataset, k = 1,
than for IE-SVDT (1977 vs. 9226 candidates per query). The
main reason for the relatively low pruning power of TA for
dense datasets is that it is length-oblivious, i.e., it checks
short probe vectors if they have a single, sufficiently large
coordinate; these vectors are discarded by LEMP. On the
other hand, for sparse datasets, large values for individual
coordinates correlate well with the length of the vectors so
that essentially TA explores long vectors first. We expect
that a combination of LEMP and TA can address the prob-
lems of length-obliviousness and random memory accesses
(see next section).

For the D-Tree, given a fixed, high θ value (as in the
Above-θ problem), the grouping of queries helps to reduce
the frequency of visits of the probe-tree nodes (and thus the
candidate checking). D-Tree was actually able to prune more
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Figure 7: Comparison of LEMP bucket-algorithms in terms of total wall-clock times (incl. indexing and tuning)

candidates than all other methods for this problem. For the
top-k case, the bounds for a group of queries depend on
the worst running lower bound θ′ among all queries of the
group. Thus, for the top-k problem, D-Tree had usually
looser bounds and, therefore, less pruning power than Tree.

Caching effects. Recall that LEMP does not create
buckets that exceed the cache size. To study the effect of
this approach, we experimented with a cache-oblivious ver-
sion of LEMP in which bucket sizes were unrestricted. We
found that for datasets with large length skew, runtime dif-
ferences were marginal: LEMP creates small buckets anyway



Table 2: Maximum preprocessing times (in seconds) includ-
ing indexing and tuning.

Dataset LEMP TA Single Tree Dual Tree

IE-NMF 0.82 0.46 5.33 37.24
IE-SVD 1.22 0.76 7.1 44.5
IE-NMFT 0.92 2.98 31.84 37.1
IE-SVDT 1.61 4.88 37.5 44.5
Netflix 1.33 0.09 0.24 1554.9
KDD 115 4.47 204 2022.1

when lengths are skewed. For datasets with less length skew,
such as KDD, there was a significant difference in runtime:
LEMP created more than 15x more buckets than its cache-
oblivious version (26 vs. 403), and was more than twice as
fast (16.7h vs. 7.3h).

6.3 Relative Performance of Bucket Algorithms
Fig. 7 shows the relative performance of LEMP’s bucket-
algorithms. Wall-clock times for all experiments and average
candidate set sizes can be found in Tables 5 and 6 in the
appendix. In the following, we discuss the performance of
each algorithm in turn.

LEMP-L. For the IE datasets, LEMP-L was able to re-
duce the average candidate set size around 98% (13211 can-
didates per query vs. 771611 for Naive, IE-SVDT , k = 50),
whereas for datasets with less length skew the reduction
ranged between 52% and 79% (Netflix) and 14% and 28%
(KDD). Overall, LEMP-L was able to provide significant
speedup over Naive: up to 15064x (722x) for IE-SVD and
14267x (479x) for IE-NMF for Above-θ (Row-Top-k). Actu-
ally, LEMP-L outperformed all other methods for IE-NMF,
IE-SVD and result sizes ≤ 100K. I.e., bucket pruning was
very effective for the datasets with large length skew. This
indicates that LEMP’s separate treatment of short and long
vectors is beneficial. The performance of LEMP-L acts as
a baseline for the performance of other bucket algorithms:
LEMP-L’s main filtering mechanism is bucket-level pruning,
which is common for all LEMP methods.

LEMP-C, LEMP-I. COORD created up to 7x less can-
didates per query than LEMP-L (e.g., 271 vs. 1915 for IE-
NMFT , k = 1) and its speedup over LEMP-L ranged be-
tween 0.7x and 4.3x. INCR reduced the candidates even
further (42 candidates for IE-NMFT , k = 1, 46x less than
LEMP-L) with up to 6.6x speedup. The difference in the
pruning power of COORD and INCR was more prevalent in
the case of the KDD dataset (369424 vs. 43160 candidates
per query). In the absence of large length skew or sparsity,
INCR accumulates as much information as possible for the
probe vectors. COORD, on the other hand, is not able to
fully take advantage of all the available information. Actu-
ally, INCR was the best performing method (when LEMP
was used together with only 1 bucket-algorithm) in terms of
running time for the majority of datasets and configurations.

LEMP-LI. As discussed above, LEMP-L was the best
performing method for datasets with high length skew on
small recall levels. On the other hand, LEMP-I showed su-
perior behavior in all other cases. LEMP-LI, for a small ex-
tra tuning cost, combines the strong points of both methods.
In the majority of cases, it was the fastest method overall.
In the remaining cases, the performance of LEMP-LI was
similar to that of the best-performing method.

LEMP-TA. LEMP-TA was also able to offer speedup
over LEMP-L: up to 2.1x for the Above-θ and up to 5.2x for
Row-Top-k. However, it was usually outperformed by CO-
ORD and INCR: e.g., LEMP-I was between 1.3x and 3.4x
faster. The reason for INCR’s superior behavior is that TA
is usually not possible to identify good candidates by ob-
serving the value of only one coordinate. INCR avoids this
problem by gathering information about the vectors from
multiple coordinates (lists); based on this information, it
prunes as many candidates as possible before actually cal-
culating an inner product. Even for cases that TA prunes
more candidates than INCR (e.g., IE-NMF @10M) it was
slower than INCR, potentially due to the overhead of in-
ternally maintaining a max-heap for selecting the best list
to explore next. Notice also that LEMP-TA was signifi-
cantly faster (up to 24.9x for IE-SVDT , k = 50) than the
standard TA algorithm, since the length-obliviousness and
cache-misses problems are addressed by LEMP. This indi-
cates that a method like LEMP might improve the perfor-
mance of TA when linear scoring functions are used.

LEMP-L2AP. LEMP-L2AP was the method with the
most aggressive pruning for all datasets (e.g., only 18 can-
didates per query for KDD, k = 1). However, this extensive
pruning has a high cost: L2AP scans all the lists in the
index that correspond to non-zero query coordinates and
checks the filtering conditions during and after scanning.
Also, the actual threshold used when querying the index
can be far away from the lower bound used during index cre-
ation, which affects scanning time. For these reasons, INCR
consistently outperformed L2AP (1.3x to 6.2x faster).

LEMP-BLSH. As in the case of LEMP-L2AP, the mini-
mum number of hash matches required for a bucket are pre-
computed by BLSH-Lite based on the largest local thresh-
old, which limits pruning. In our experiments, LEMP-BLSH
was able to create on average only up to 0.3% less candidates
per query than LEMP-L. This marginal increase in pruning
power was unable to outweigh the costs of LSH hashing and
Bayesian inference. As a result, LEMP-BLSH was consis-
tently slower than plain LEMP-L (up to 1.6x).

LEMP-Tree. LEMP-Tree creates one tree per bucket
(lazy construction), instead one tree from the entire probe
dataset. This explains why LEMP-Tree had much better
performance than Tree (up to 10.5x faster) for the datasets
for which preprocessing was Tree’s bottleneck (see Above-θ
experiments, small result sizes). In terms of pruning power,
LEMP-Tree did not have a consistent behavior w.r.t. Tree.
For datasets with large length skew (IE-NMFT , IE-SVDT )
it checked less candidates per query, whereas for datasets
for small skew (Netflix, KDD) it checked more. I.e., in cases
where the pruning power of Tree is limited (e.g., KDD),
checking multiple trees instead of a single one may slow down
retrieval further.

7 Conclusion
We proposed LEMP, a novel algorithm for fast retrieval of
large entries in a matrix product. LEMP exploits both the
length and the direction information in the data: It buck-
etizes the input vectors according to their length, prunes
buckets that cannot contribute to the result, and dynami-
cally selects a suitable retrieval algorithms for the remaining
buckets. Our experiments indicate that LEMP provides sig-
nificant speedup over the naive approach (up to 14,000x) as
well as over state-of-the-art techniques (up to 20x).
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APPENDIX
A Implementation Details
In this section, we give some guidance on how to implement
the COORD and INCR algorithms efficiently.

COORD. In our implementation, we store the sorted-list
indexes column-wise to reduce memory bandwidth: the data
values are accessed only during binary search to determine
the scan range, and the local identifiers are accessed only
during the actual scan phase. For efficiency reasons, we also
avoid clearing the CP array when moving from one query
vector to the next. Instead, we keep the array uninitialized
and proceed as follows. When scanning the first sorted list,
we set to 1 instead of incrementing the corresponding entry
of the CP array and increment while scanning the remaining
sorted lists. After all lists have been scanned, we scan the
first sorted list again and only consider the corresponding
entries of the CP array for inclusion into the candidate set.
Since the first sorted list is scanned twice (for CP array ini-
tialization and filtering), we take the focus coordinate with
fewest elements as the first one.

INCR. Since INCR needs access to both coordinate val-
ues and local identifiers during scanning, we store the sorted
lists row-wise. The extended CP array is initialized and ac-
cessed in the same way as the CP array of COORD. In order
to reduce memory bandwidth and avoid excessive checking,
in the extended CP array we do not keep the counter infor-
mation used in COORD: the filtering condition of Eq. (5) is
usually pruning vectors more aggressively than the simple
check of COORD. Since Eq. (5) contains expensive floating-
point operations (such as divisions and square roots), we
rewrite the conditions and accept a vector p̄ if:

q̄TF p̄F ‖p‖ > θ/‖q‖,

for which the right-hand side needs to be computed only
once. If this test fails, we accept p̄ if and only if:

‖p‖2‖q‖2(1− ‖p̄F ‖
2)(1− ‖q̄F ‖

2) ≥ (θ − q̄TF p̄F ‖p‖‖q‖)
2.

INCR’s strength lies into accumulating partial inner prod-
ucts from many lists. If we decide to use φb = 1 for some
bucket b, INCR and COORD will produce the same candi-
date set, but COORD does so faster. We thus use COORD
instead of INCR whenever φb = 1.

B Additional Experiments
Tables 3 - 6 show running times for Above-θ and Row-Top-
k experiments for different retrieval levels and values of k
(including those presented in the figures of Sec. 6).



Table 3: Comparison of LEMP with state-of-the-art algorithms for the Above-θ problem w.r.t. wall-clock time (in seconds).
We give the average candidate set size per query in parentheses. The last column gives the preprocessing time as mini-
mum/maximum percentage of the overall time (occurs at large/small result sizes, resp.).

Dataset Algorithm @1K @10K @100K @1M @10M Preprocessing
Time |C|/q Time |C|/q Time |C|/q Time |C|/q Time |C|/q time [%]

IE-SVD Naive 6825 (132K) - (132K) - (132K) - (132K) - (132K) -
Tree 7.74 (2.1) 7.96 (3.1) 8.36 (4.9) 12.67 (30.8) 50.74 (236.8) 15% – 95%
D-Tree 46.47 (0.2) 46.71 (0.4) 46.73 (0.7) 47.60 (5.9) 58.21 (66.2) 80% – 99%
TA 3.52 (2.6) 3.69 (4.1) 4.00 (6.8) 15.39 (107.0) 453.00 (3033.0) <1% – 21%
LEMP-LI 0.47 (1) 0.52 (0.4) 0.64 (3.8) 2.13 (21.2) 15.57 (235.5) 8% – 90%

IE-NMF Naive 6703.2 (132K) - (132K) - (132K) - (132K) - (132K) -
Tree 5.89 (2.3) 6.10 (3.3) 6.50 (5.2) 10.24 (29.4) 39.41 (185.4) 14% – 93%
D-Tree 38.51 (0.2) 38.64 (0.3) 38.79 (0.7) 39.47 (5.1) 47.04 (46.6) 82% – 99%
TA 3.01 (1.5) 3.08 (1.8) 3.17 (2.3) 4.49 (12.6) 26.39 (175.9) 2% – 16%
LEMP-LI 0.46 (0.7) 0.48 (0.2) 0.55 (0.5) 1.15 (5.1) 5.95 (51.4) 14% – 88%

Table 4: Comparison of LEMP with state-of-the-art algorithms for the Row-Top-k problem w.r.t. wall-clock time (in seconds,
unless stated otherwise). We give the average candidate set size per query in parentheses. The last column gives the
preprocessing time as minimum/maximum percentage of the overall time (occurs at large/small k, resp.).

Dataset Algorithm k=1 k=5 k=10 k=50 Preprocessing
Time |C|/q Time |C|/q Time |C|/q Time |C|/q time [%]

IE-SVDT Naive 6825 (771K) - (771K) - (771K) - (771K) -
Tree 50.6 (357) 63.7 (772) 75.1 (1119) 158.5 (3213) 25% – 77%
D-Tree 3464.4 (24539) 3246.1 (23837) 3224.7 (24016) 3234.2 (25730) 1.3% – 1.4%
TA 300 (9226) 854.5 (25885) 1190.0 (35717) 2841.1 (84056) <1% – 1.6%
LEMP-LI 3.7 (145) 8.4 (296) 11.9 (541) 43.1 (1957) 3.7% – 15.4%

IE-NMFT Naive 6703.2 (771K) - (771K) - (771K) - (771K) -
Tree 46.8 (465) 58.2 (845) 67.3 (1107) 122.5 (2591) 27% – 70%
D-Tree 2291.6 (16574) 2107.0 (15811) 2049.5 (15652) 1999.4 (16104) 1.7% – 1.9%
TA 62.0 (1977) 171.4 (5510) 275.2 (7542) 462.4 (14672) <1% – 5%
LEMP-LI 2.1 (35) 3.6 (92) 5.0 (161) 14.1 (357) 7% – 23%

Netflix Naive 504.3 (17K) - (17K) - (17K) - (17K) -
Tree 158.5 (1661) 219.9 (2289) 259.8 (2671) 419.4 (4045) <1%
D-Tree 2297.8 (3789) >Naive - >Naive - >Naive - - – 70%
TA 771.1 (8920) >Naive - >Naive - >Naive - <1%
LEMP-LI 75.1 (1881) 102.8 (2583) 122.9 (2973) 198.6 (5604) <1%

KDD Naive 48.5h (624K) - (624K) - (624K) - (624K) -
Tree 16.4h (86K) 20.8h (110K) 27.4h (122K) 29.6h (155K) <1%
D-Tree 14.3h (72K) 18.0h (91K) 20h (101K) 25.2h (129K) 2.3% – 4%
TA 90.3h (615K) >Naive - >Naive - >Naive - <1%
LEMP-LI 7.3h (42K) 10.3h (77K) 12.1h (97K) 17.5h (172K) <1%



Table 5: Comparison of LEMP bucket algorithms for the Above-θ problem w.r.t. wall-clock time (in seconds). We give the
average candidate set size per query in parentheses.

Dataset Algorithm @1K @10K @100K @1M @10M
Time |C|/q Time |C|/q Time |C|/q Time |C|/q Time |C|/q

IE-SVD LEMP-L 0.45 (1.2) 0.52 (2.6) 0.65 (5.5) 3.40 (71.4) 30.32 (716.2)
LEMP-LI 0.47 (1) 0.52 (0.4) 0.64 (3.8) 2.13 (21.2) 15.57 (235.5)
LEMP-LC 0.49 (1.1) 0.55 (2.1) 0.65 (3.8) 2.97 (43.0) 23.82 (436.1)
LEMP-I 0.48 (0.2) 0.54 (0.4) 0.65 (1.1) 2.13 (15.4) 17.03 (233.5)
LEMP-C 0.50 (1.6) 0.59 (2.9) 0.69 (4.7) 3.10 (43.4) 25.00 (432.2)
LEMP-TA 0.64 (0.5) 0.78 (1.0) 1.10 (1.7) 6.10 (16.6) 46.44 (299.3)
LEMP-Tree 0.71 (1.7) 1.01 (3.1) 1.36 (5.8) 7.58 (46.6) 52.35 (320.5)
LEMP-L2AP 0.95 (0.1) 1.26 (0.1) 1.98 (0.4) 10.91 (1.5) 105.99 (14.2)
LEMP-BLSH 0.72 (1.2) 0.90 (2.6) 1.29 (5.5) 5.33 (71.4) 41.48 (716.2)

IE-NMF LEMP-L 0.47 (1.5) 0.54 (2.9) 0.67 (5.8) 3.46 (70.0) 26.14 (614.0)
LEMP-LI 0.46 (0.7) 0.48 (0.2) 0.55 (0.5) 1.15 (5.1) 5.95 (51.4)
LEMP-LC 0.46 (0.8) 0.59 (1.2) 0.89 (2.6) 1.60 (16) 9.86 (148.8)
LEMP-I 0.46 (0.1) 0.49 (0.2) 0.58 (0.4) 1.13 (4.3) 5.85 (44.6)
LEMP-C 0.46 (0.8) 0.51 (1.2) 0.68 (2.6) 1.58 (15.9) 9.67 (148.6)
LEMP-TA 0.55 (0.2) 0.72 (0.3) 0.91 (0.6) 2.96 (3.5) 12.66 (36.5)
LEMP-Tree 0.80 (2.7) 1.04 (4.4) 1.49 (7.6) 6.52 (43.6) 40.00 (251.1)
LEMP-L2AP 0.58 (0.1) 0.67 (0.2) 0.99 (0.4) 2.55 (1.5) 16.71 (14.1)
LEMP-BLSH 0.57 (1.5) 0.77 (2.9) 0.93 (5.8) 4.53 (70.0) 34.81 (614.0)



Table 6: Comparison of LEMP bucket algorithms for the Row-Top-k problem w.r.t. wall-clock time (in seconds, unless stated
otherwise). We give the average candidate set size per query in parentheses.

Dataset Algorithm k=1 k=5 k=10 k=50
Time |C|/q Time |C|/q Time |C|/q Time |C|/q

IE-SVDT LEMP-L 9.4 (1272) 22.5 (3103) 31.7 (4386) 95.6 (13211)
LEMP-LI 3.7 (145) 8.4 (296) 11.9 (541) 43.1 (1957)
LEMP-LC 5.8 (539) 13.7 (1469) 20.1 (2188) 70.9 (7811)
LEMP-I 4.5 (74) 8.5 (310) 12.0 (581) 44.0 (2402)
LEMP-C 6.0 (541) 14.5 (1418) 20.7 (2143) 73.0 (7803)
LEMP-TA 8.1 (397) 20.9 (1145) 31.5 (1760) 114.1 (6547)
LEMP-Tree 7.4 (217) 16.1 (544) 21.8 (759) 56.4 (2079)
LEMP-L2AP 21.2 (15) 51.7 (24) 75.4 (35) 234.1 (130)
LEMP-BLSH 11.7 (1271) 26.8 (3102) 37.4 (4385) 110.5 (13210)

IE-NMFT LEMP-L 14.0 (1915) 25.6 (3541) 35.0 (4869) 75.0 (10319)
LEMP-LI 2.1 (35) 3.6 (92) 5.0 (161) 14.1 (357)
LEMP-LC 3.1 (274) 6.5 (662) 9.4 (1010) 27.4 (3041)
LEMP-I 2.1 (42) 3.6 (114) 5.0 (155) 14.3 (397)
LEMP-C 3.3 (271) 6.9 (659) 10.0 (1002) 28.8 (3039)
LEMP-TA 2.7 (69) 5.4 (225) 7.7 (363) 20.7 (1154)
LEMP-Tree 10.8 (351) 18.3 (649) 23.7 (865) 47.1 (1735)
LEMP-L2AP 4.0 (11) 7.2 (25) 9.4 (33) 20.5 (127)
LEMP-BLSH 16.4 (1908) 29.9 (3537) 40.7 (4866) 86.0 (10318)

Netflix LEMP-L 94.2 (3673) 127.1 (4922) 148.3 (5719) 225.1 (8416)
LEMP-LI 75.1 (1881) 102.8 (2583) 122.9 (2973) 198.6 (5604)
LEMP-LC 92.4 (3332) 125.0 (4542) 146.7 (5300) 225.7 (7903)
LEMP-I 79.0 (2045) 111.1 (2755) 131.9 (3528) 216.4 (5682)
LEMP-C 102.4 (3323) 140.5 (4528) 164.8 (5288) 255.0 (7951)
LEMP-TA 336.5 (3707) 444.0 (4912) 508.9 (5666) 736.5 (8245)
LEMP-Tree 147.6 (1727) 196.5 (2314) 229.5 (2636) 332.6 (3883)
LEMP-L2AP 342.2 (10) 465.3 (28) 543.7 (48) 819.4 (198)
LEMP-BLSH 105.1 (3673) 140.8 (4922) 164.3 (5719) 245.4 (8416)

KDD LEMP-L 32.9h (445K) 36.1h (488K) 37.2h (504K) 39.7h (537K)
LEMP-LI 7.3h (42K) 10.3h (77K) 12.1h (97K) 17.5h (172K)
LEMP-LC 28.7h (369K) 33.3h (430K) 34.8h (456K) 38.8h (504K)
LEMP-I 7.6h (43K) 10.4h (78K) 12.2h (96K) 17.9h (175K)
LEMP-C 29.6h (369K) 34.5h (433K) 36.4h (455K) 40.2h (503K)
LEMP-TA 47.3h (440K) 52.3h (483K) >Naive - >Naive -
LEMP-Tree 21.7h (204K) 26.1h (247K) 28.1h (266K) 33.3h (317K)
LEMP-L2AP 20.7h (18) 23.8h (71) 25.1h (122) 28.3h (452)
LEMP-BLSH 34.3h (445K) 37.6h (488K) 38.8h (504K) 41.2h (537K)


