
Data Mining I
Classification, Part 2

Heiko Paulheim

3/6/19 Heiko Paulheim 2

Outline

1) What is Classification?

2) K-Nearest-Neighbors

3) Decision Trees

4) Rule Learning

5) Decision Boundaries

6) Model Evaluation

7) Naïve Bayes

8) Artificial Neural Networks

9) Support Vector Machines

10)Parameter Tuning

3/6/19 Heiko Paulheim 3

Rule-Based Classifiers

• Classify records by using a collection of “if…then…” rules

• Rule: (Condition)  y

– where
• Condition is a conjunctions of attributes

• y is the class label

– LHS: rule antecedent or condition

– RHS: rule consequent

– Examples of classification rules:
• (Blood Type=Warm)  (Lay Eggs=Yes)  Birds

• (Taxable Income < 50K)  (Refund=Yes)  Evade=No

3/6/19 Heiko Paulheim 4

Rule-based Classifier (Example)

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians

Name Blood Type Give Birth Can Fly Live in Water Class
human warm yes no no mammals
python cold no no no reptiles
salmon cold no no yes fishes
whale warm yes no yes mammals
frog cold no no sometimes amphibians
komodo cold no no no reptiles
bat warm yes yes no mammals
pigeon warm no yes no birds
cat warm yes no no mammals
leopard shark cold yes no yes fishes
turtle cold no no sometimes reptiles
penguin warm no no sometimes birds
porcupine warm yes no no mammals
eel cold no no yes fishes
salamander cold no no sometimes amphibians
gila monster cold no no no reptiles
platypus warm no no no mammals
owl warm no yes no birds
dolphin warm yes no yes mammals
eagle warm no yes no birds

3/6/19 Heiko Paulheim 5

Application of Rule-Based Classifiers

• A rule r covers an instance x if the attributes of the instance satisfy
the condition of the rule

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians

Rule R1 covers hawk => Bird

Rule R3 covers grizzly bear => Mammal

Name Blood Type Give Birth Can Fly Live in Water Class
hawk warm no yes no ?
grizzly bear warm yes no no ?

3/6/19 Heiko Paulheim 6

Rule Coverage and Accuracy

• Coverage of a rule:

– Fraction of records that satisfy
the antecedent of a rule

• Accuracy of a rule:

– Fraction of records that satisfy
both the antecedent
and consequent of a rule

Tid Refund Marital
Status

Taxable
Income Class

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

(Status=Single)  No

 Coverage = 40%, Accuracy =
50%

3/6/19 Heiko Paulheim 7

How does a Rule-based Classifier Work?

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians

A lemur triggers rule R3, so it is classified as a mammal

A turtle triggers both R4 and R5

A dogfish shark triggers none of the rules

Name Blood Type Give Birth Can Fly Live in Water Class
lemur warm yes no no ?
turtle cold no no sometimes ?
dogfish shark cold yes no yes ?

3/6/19 Heiko Paulheim 8

Characteristics of Rule-Based Classifiers

• Mutually exclusive rules

– Classifier contains mutually exclusive rules if the rules are independent
of each other

– Every example is covered by at most one rule

→ avoids conflicts

• Exhaustive rules

– Classifier has exhaustive coverage if it accounts for every possible
combination of attribute values

– Each record is covered by at least one rule

→ enforces each example to be classified

3/6/19 Heiko Paulheim 9

From Decision Trees To Rules

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive

Rule set contains as much information as the
tree

3/6/19 Heiko Paulheim 10

Rules Can Be Simplified

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No
Initial Rule: (Refund=No)  (Status=Married)  No

Simplified Rule: (Status=Married)  No

3/6/19 Heiko Paulheim 11

Possible Effects of Rule Simplification

• Rules are no longer mutually exclusive

– A record may trigger more than one rule

– Solution?

• Ordered rule set

• Unordered rule set – use voting schemes

• Rules are no longer exhaustive

– A record may not trigger any rules

– Solution?

• Use a default class

3/6/19 Heiko Paulheim 12

Ordered Rule Set

• Rules are ranked ordered according to their priority

– An ordered rule set is known as a decision list

• When a test record is presented to the classifier

– It is assigned to the class label of the highest ranked rule it has
triggered

– If none of the rules fired, it is assigned to the default class

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians

Name Blood Type Give Birth Can Fly Live in Water Class
turtle cold no no sometimes ?

3/6/19 Heiko Paulheim 13

Rule Ordering Schemes

• Rule-based ordering

– Individual rules are ranked based on their quality (e.g., accuracy)

• Class-based ordering

– Rules that belong to the same class appear together

Rule-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Class-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Married}) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

3/6/19 Heiko Paulheim 14

Indirect Method: C4.5rules

• Extract rules from an unpruned decision tree

• For each rule, r: A  y,
– consider an alternative rule r’: A’  y where A’ is obtained by removing

one of the conjuncts in A

– Compare the pessimistic generalization error for r against all r’

– Prune if one of the r’s has a lower pessimistic generalization error

– Repeat until we can no longer improve generalization error

3/6/19 Heiko Paulheim 15

Indirect Method in RapidMiner

3/6/19 Heiko Paulheim 16

Direct vs. Indirect Rule Learning Methods

• Direct Method:

• Extract rules directly from data

• e.g.: RIPPER, CN2, Holte’s 1R

• Indirect Method:

• Extract rules from other classification models
(e.g. decision trees, neural networks, etc).

• Example: C4.5rules

3/6/19 Heiko Paulheim 17

Direct methods

• Do not derive rules from another type of model

– but learn the rules directly

• practical algorithms use different approaches

– covering or separate-and-conquer algorithms

– based on heuristic search

The following slides are based on
the machine learning course by
Johannes Fürnkranz,
Technische Universität Darmstadt

3/6/19 Heiko Paulheim 18

A sample task

Temperature Outlook Humidity Windy Play Golf?

hot sunny high false no

hot sunny high true no

hot overcast high false yes

cool rain normal false yes

cool overcast normal true yes

mild sunny high false no

cool sunny normal false yes

mild rain normal false yes

mild sunny normal true yes

mild overcast high true yes

hot overcast normal false yes

mild rain high true no

cool rain normal true no

• Task:

– Find a rule set that correctly predicts the dependent variable from the
observed variables

3/6/19 Heiko Paulheim 19

A Simple Solution

IF T=hot AND H=high AND O=overcast AND W=false THEN yes
IF T=cool AND H=normal AND O=rain AND W=false THEN yes
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes
IF T=mild AND H=normal AND O=rain AND W=false THEN yes
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes
IF T=mild AND H=high AND O=overcast AND W=true THEN yes
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes
IF T=mild AND H=high AND O=rain AND W=false THEN yes

IF T=hot AND H=high AND O=overcast AND W=false THEN yes
IF T=cool AND H=normal AND O=rain AND W=false THEN yes
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes
IF T=mild AND H=normal AND O=rain AND W=false THEN yes
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes
IF T=mild AND H=high AND O=overcast AND W=true THEN yes
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes
IF T=mild AND H=high AND O=rain AND W=false THEN yes

• The solution is

– a set of rules

– that is complete and consistent on the training examples

• “Overfitting is like memorizing the answers to a test
instead of understanding the principles.” (Bob Horton, 2015)

3/6/19 Heiko Paulheim 20

A Better Solution

IF Outlook = overcast THEN yes

IF Humidity = normal AND Outlook = sunny THEN yes

IF Outlook = rainy AND Windy = false THEN yes

IF Outlook = overcast THEN yes

IF Humidity = normal AND Outlook = sunny THEN yes

IF Outlook = rainy AND Windy = false THEN yes

3/6/19 Heiko Paulheim 21

A Simple Algorithm: Batch-Find

• Abstract algorithm for learning a single rule:

1. Start with an empty theory T and training set E

2. Learn a single (consistent) rule R from E and add it to T

3. return T

• Problem:

– the basic assumption is that the found rules are complete, i.e., they
cover all positive examples

– What if they don't?

• Simple solution:

– If we have a rule that covers part of the positive examples,
add some more rules that cover the remaining examples

3/6/19 Heiko Paulheim 22

Separate-and-Conquer Rule Learning

• Learn a set of rules, one by one

1. Start with an empty theory T and training set E
2. Learn a single (consistent) rule R from E and add it to T
3. If T is satisfactory (complete), return T
4. Else:

» Separate: Remove examples explained by R from E
» Conquer: goto 2.

• One of the oldest family of learning algorithms
– goes back to AQ (Michalski, 60s)

– FRINGE, PRISM and CN2: relation to decision trees (80s)

– popularized in ILP (FOIL and PROGOL, 90s)

– RIPPER brought in good noise-handling

• Different learners differ in how they find a single rule

3/6/19 Heiko Paulheim 23

Separate-and-Conquer Rule Learning

3/6/19 Heiko Paulheim 24

Relaxing Completeness and Consistency

• So far we have always required a learner to learn a complete and
consistent theory

– e.g., one rule that covers all positive and no negative examples

• This is not always a good idea (→ overfitting)

• Example: Training set with 200 examples, 100 positive and
100 negative
– Theory A consists of 100 complex rules, each covering a single positive

example and no negatives

→ Theory A is complete and consistent on the training set

– Theory B consists of one simple rule, covering 99 positive and 1
negative example

→ Theory B is incomplete and incosistent on the training set

• Which one will generalize better to unseen examples?

3/6/19 Heiko Paulheim 25

Top-Down Hill-Climbing

• Top-Down Strategy: A rule is successively specialized

1. Start with the universal rule R that covers all examples

2. Evaluate all possible ways to add a condition to R

3. Choose the best one (according to some heuristic)

4. If R is satisfactory, return it

5. Else goto 2.

• Almost all greedy s&c rule learning systems use this strategy

3/6/19 Heiko Paulheim 26

Recap: Terminology

predicted + predicted -
class + p (true positives) P-p (false negatives) P

class - n (false positives) N-n (true negatives) N

p + n P+N – (p+n) P+N

• training examples
• P: total number of positive examples

• N: total number of negative examples

• examples covered by the rule (predicted positive)
• true positives p: positive examples covered by the rule

• false positives n: negative examples covered by the rule

• examples not covered the rule (predicted negative)
• false negatives P-p: positive examples not covered by the rule

• true negatives N-n: negative examples not covered by the rule

3/6/19 Heiko Paulheim 27

Rule Learning Heuristics

• Adding a rule should

– increase the number of covered negative examples as little as
possible (do not decrease consistency)

– increase the number of covered positive examples as much as
possible (increase completeness)

• An evaluation heuristic should therefore trade off these two
extremes

– Example: Laplace heuristic

• grows with

• grows with

hLap=
p+1
p+n+2

p→∞
n→0

3/6/19 Heiko Paulheim 28

Recap: Overfitting

• Overfitting

– Given

• a fairly general model class

• enough degrees of freedom

– you can always find a model that explains the data

• even if the data contains errors (noise in the data)

• in rule learning: each example is a rule

• Such concepts do not generalize well!

→ Solution: Rule and rule set pruning

3/6/19 Heiko Paulheim 29

Overfitting Avoidance

– learning concepts so that

• not all positive examples have to be covered by the theory

• some negative examples may be covered by the theory

3/6/19 Heiko Paulheim 30

Pre-Pruning

• keep a theory simple while it is learned
• decide when to stop adding conditions to a rule

(relax consistency constraint)
• decide when to stop adding rules to a theory

(relax completeness constraint)
– efficient but not accurate Rule set with three rules

á 3, 2, and 2 conditions

Pre-pruning decisions

3/6/19 Heiko Paulheim 31

Post Pruning

3/6/19 Heiko Paulheim 32

Post-Pruning: Example

IF T=hot AND H=high AND O=sunny AND W=false THEN no
IF T=hot AND H=high AND O=sunny AND W=true THEN no
IF T=hot AND H=high AND O=overcast AND W=false THEN yes
IF T=cool AND H=normal AND O=rain AND W=false THEN yes
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes
IF T=mild AND H=high AND O=sunny AND W=false THEN no
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes
IF T=mild AND H=normal AND O=rain AND W=false THEN yes
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes
IF T=mild AND H=high AND O=overcast AND W=true THEN yes
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes
IF T=mild AND H=high AND O=rain AND W=true THEN no
IF T=cool AND H=normal AND O=rain AND W=true THEN no
IF T=mild AND H=high AND O=rain AND W=false THEN yes

IF T=hot AND H=high AND O=sunny AND W=false THEN no
IF T=hot AND H=high AND O=sunny AND W=true THEN no
IF T=hot AND H=high AND O=overcast AND W=false THEN yes
IF T=cool AND H=normal AND O=rain AND W=false THEN yes
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes
IF T=mild AND H=high AND O=sunny AND W=false THEN no
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes
IF T=mild AND H=normal AND O=rain AND W=false THEN yes
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes
IF T=mild AND H=high AND O=overcast AND W=true THEN yes
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes
IF T=mild AND H=high AND O=rain AND W=true THEN no
IF T=cool AND H=normal AND O=rain AND W=true THEN no
IF T=mild AND H=high AND O=rain AND W=false THEN yes

3/6/19 Heiko Paulheim 33

IF H=high AND O=sunny THEN no

IF O=rain AND W=true THEN no

ELSE yes

IF H=high AND O=sunny THEN no

IF O=rain AND W=true THEN no

ELSE yes

Post-Pruning: Example

3/6/19 Heiko Paulheim 34

Reduced Error Pruning

• basic idea
– optimize the accuracy of a rule set on a separate pruning set

1. split training data into a growing and a pruning set

2. learn a complete and consistent rule set covering all positive examples
and no negative examples

3. as long as the error on the pruning set does not increase

 delete condition or rule that results in the largest reduction of error on the
pruning set

4. return the remaining rules

• REP is accurate but not efficient

– O(n4)

3/6/19 Heiko Paulheim 35

Incremental Reduced Error Pruning

I-REP tries to combine the advantages
of pre- and post-pruning

3/6/19 Heiko Paulheim 36

Incremental Reduced Error Pruning

• Prune each rule right after it is learned:

1. split training data into a growing and a pruning set

2. learn a consistent rule covering only positive examples

3. delete conditions as long as the error on the pruning set does not increase

4. if the rule is better than the default rule

 add the rule to the rule set

 goto 1.

• More accurate, much more efficient
– because it does not learn overly complex intermediate concepts
– REP: O(n4) I-REP: O(n log2n)

• Subsequently used in RIPPER rule learner (Cohen, 1995)

3/6/19 Heiko Paulheim 37

RIPPER in RapidMiner

3/6/19 Heiko Paulheim 38

Advantages of Rule-Based Classifiers

• As highly expressive as decision trees

• Easy to interpret

• Easy to generate

• Can classify new instances rapidly

• Performance comparable to decision trees

3/6/19 Heiko Paulheim 39

Decision Boundaries: Theory and Practice

• We have seen decision boundaries of rule-based classifiers
and decision trees

– both are parallel to the axes

– i.e., both can learn models that are a collection of rectangles

• What does that mean for comparing their performance

– if they learn the same sort of models

– are they equivalent?

3/6/19 Heiko Paulheim 40

Decision Boundaries: Theory and Practice

• Example 1: a checkerboard dataset

– positive and negative points come in four quadrants

– can be perfectly described with rectangles

3/6/19 Heiko Paulheim 41

Decision Boundaries: Theory and Practice

• Example 1: a checkerboard dataset

– positive and negative points come in quadrants

– can be perfectly described with rectangles

• Model learned by a decision tree:

– only the default tree (one node)

3/6/19 Heiko Paulheim 42

Decision Boundaries: Theory and Practice

• What is going on here?

– No possible split improves the purity

– We always have 50% positive and negative examples

– i.e., Gini index is always 0.5

• same holds for other purity measures

3/6/19 Heiko Paulheim 43

Decision Boundaries: Theory and Practice

• Example 1: a checkerboard dataset

– positive and negative points come in quadrants

– can be perfectly described with rectangles

• Model learned by a rule learner:

3/6/19 Heiko Paulheim 44

Decision Boundaries: Theory and Practice

• Example 2:

– a small class inside a large one

– again: can be perfectly described with rectangles

3/6/19 Heiko Paulheim 45

Decision Boundaries: Theory and Practice

• Example 2:

– a small class inside a large one

– again: can be perfectly described with rectangles

• Output of a rule-based classifier:

– no model learned (only a default rule)

3/6/19 Heiko Paulheim 46

Decision Boundaries: Theory and Practice

• What is happening here?

– We try to learn the smallest class

– ...and pre-pruning requires a minimum heuristic

– no initial condition can be selected that exceeds that minimum

best one-condition rule:
accuracy=0.17

3/6/19 Heiko Paulheim 47

Decision Boundaries: Theory and Practice

• Example 2:

– a small class inside a large one

– again: can be perfectly described with rectangles

• Decision boundaries of a decision tree classifier:

3/6/19 Heiko Paulheim 48

Decision Boundaries of a k-NN Classifier

• k=1

• Single noise points have influence on model

3/6/19 Heiko Paulheim 49

Decision Boundaries of a k-NN Classifier

• k=3

• Boundaries become smoother

• Influence of noise points is reduced

3/6/19 Heiko Paulheim 50

Decision Boundaries: Theory and Practice

• Decision boundaries are a useful tool

– they show us what model can be expressed by a learner

– e.g., circular shapes are not learned by a decision tree learner

– good for a pre-selection of learners for a problem

• What can be expressed and what is actually learned

– are two different stories

– answer depends heavily on the learning algorithm (and its parameters)

– requires (and provides) more insights into the learning algorithm

Heiko Paulheim

Model Evaluation

● Metrics
● how to measure performance?

● Evaluation methods
● how to obtain meaningful estimates?

Heiko Paulheim

Model Evaluation

● Models are evaluated by looking at
● correctly and incorrectly classified instances

● For a two-class problems, four cases can occur:
● true positives: positive class correctly predicted
● false positives: positive class incorrectly predicted
● true negatives: negative class correctly predicted
● false negatives: negative class incorrectly predicted

Heiko Paulheim

Metrics for Performance Evaluation

• Focus on the predictive capability of a model

• Rather than how fast it takes to classify or build models

• Confusion Matrix:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes TP FN

Class=No FP TN

Heiko Paulheim

Metrics for Performance Evaluation

• Most frequently used metrics:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes TP FN

Class=No FP TN

FNFPTNTP

TNTP




Accuracy

Accuracy1 RateError

Heiko Paulheim

What is a Good Accuracy?

• i.e., when are you done?

– at 75% accuracy?

– at 90% accuracy?

– at 95% accuracy?

• Depends on difficulty of the problem!

• Baseline: naive guessing

– always predict majority class

• Compare

– Predicting coin tosses with accuracy of 50%

– Predicting dice roll with accuracy of 50%

Heiko Paulheim
56

Limitation of Accuracy: Unbalanced Data

• Sometimes, classes have very unequal frequency

 Fraud detection: 98% transactions OK, 2% fraud

 eCommerce: 99% don’t buy, 1% buy

 Intruder detection: 99.99% of the users are no intruders

 Security: >99.99% of Americans are not terrorists

• The class of interest is commonly called the positive class, and the rest
negative classes.

• Consider a 2-class problem

 Number of Class 0 examples = 9990, Number of Class 1 examples = 10

 If model predicts everything to be class 0,
accuracy is 9990/10000 = 99.9 %

 Accuracy is misleading because model does not detect
any class 1 example

Heiko Paulheim

Precision and Recall

Alternative: Use measures from information retrieval which are biased
towards the positive class.

Precision p is the number of correctly classified positive examples
divided by the total number of examples that are classified as
positive.

Recall r is the number of correctly classified positive examples divided
by the total number of actual positive examples in the test set.

. .
FNTP

TP
 r

FPTP

TP
p







Heiko Paulheim

Precision and Recall Example

• This confusion matrix gives us

 precision p = 100% and

 recall r = 1%

• because we only classified one positive example
correctly and no negative examples wrongly

• We want a measure that combines precision and recall

Heiko Paulheim

F1-Measure

• It is hard to compare two classifiers using two measures

• F1-Score combines precision and recall into one measure

• The harmonic mean of two numbers tends to be closer to the
smaller of the two.

• For F1-value to be large, both p and r must be large

Heiko Paulheim

F1-Measure

Heiko Paulheim

Alternative for Unbalanced Data: Cost Matrix

 PREDICTED CLASS

ACTUAL
CLASS

C(i|j) Class=Yes Class=No

Class=Yes C(Yes|Yes) C(No|Yes)

Class=No C(Yes|No) C(No|No)

C(i|j): Cost of misclassifying class j example as class i

Heiko Paulheim

Computing Cost of Classification

Cost
Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(i|j) + -

+ 0 100

- 1 0

Model M1 PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 162 38

- 160 240

Model
M2

PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 155 45

- 5 395

Accuracy = 67%

Cost = 3798

Accuracy = 92%

Cost = 4350

Heiko Paulheim

ROC Curves

• Some classification algorithms provide confidence scores

– how sure the algorithms is with its prediction

– e.g., Naive Bayes: the probability

– e.g., Decision Trees: the purity of the respective leaf node

• Drawing a ROC Curve

– Sort classifications according to confidence scores

– Evaluate

• correct prediction: draw one step up

• incorrect prediction: draw one step to the right

Heiko Paulheim

ROC Curves

• Drawing ROC Curves in RapidMiner

Heiko Paulheim

Example ROC Curve of Naive Bayes

Heiko Paulheim

Example ROC Curve of Decision Tree Learner

Heiko Paulheim

Interpreting ROC Curves

• Best possible result:

– all correct predictions have higher
confidence than all incorrect ones

• The steeper, the better

– random guessing results in the diagonal

– so a decent algorithm should result
in a curve significantly above the diagonal

• Comparing algorithms:

– Curve A above curve B means
algorithm A better than algorithm B

• Frequently used criterion

– Area under curve

– normalized to 1

Heiko Paulheim

Methods for Performance Evaluation

• How to obtain a reliable estimate of performance?

• Performance of a model may depend on other factors besides the
learning algorithm:

 Size of training and test sets (it often expensive to get labeled data)

 Class distribution (balanced, skewed)

 Cost of misclassification (your goal)

• Methods for estimating the performance

 Holdout

 Random Subsampling

 Cross Validation

Heiko Paulheim

Learning Curve

• Learning curve shows
how accuracy changes
with varying sample size

• Conclusion: Use as
much data as possible
for training

Heiko Paulheim

Holdout Method

• The holdout method reserves a certain amount for testing and uses
the remainder for training

• Usually: one third for testing, the rest for training

• applied when lots of sample data is available

• For “unbalanced” datasets, samples might not be representative
 Few or none instances of some classes

• Stratified sample: balances the data
 Make sure that each class is represented with approximately equal

proportions in both subsets

Heiko Paulheim

Leave One Out

• Iterate over all examples

– train a model on all examples but the current one

– evaluate on the current one

• Yields a very accurate estimate

• Uses as much data for training as possible

– but is computationally infeasible in most cases

• Imagine: a dataset with a million instances

– one minute to train a single model

– Leave one out would take almost two years

Heiko Paulheim

Cross-Validation

• Compromise of Leave One Out and decent runtime

• Cross-validation avoids overlapping test sets

 First step: data is split into k subsets of equal size

 Second step: each subset in turn is used for testing
and the remainder for training

• This is called k-fold cross-validation

• The error estimates are averaged to yield an overall error estimate

• Frequently used value for k : 10
– Why ten? Extensive experiments have shown that this is the good choice

to get an accurate estimate

• Often the subsets are stratified before the cross-validation is
performed

Heiko Paulheim

Cross-Validation in RapidMiner

3/6/19 Heiko Paulheim 74

Summary

• Rule learning

– another eager method to learn interpretable models

– similar to decision trees

– rectangular decision boundaries

• Evaluation methods

– Accuracy,

– Recall, precision, F1

– ROC Curves

– Cost based evaluation

– Evaluation setups: holdout sets, cross validation

3/6/19 Heiko Paulheim 75

Questions?

	Folie 1
	Outline
	Rule-Based Classifier
	Rule-based Classifier (Example)
	Application of Rule-Based Classifier
	Rule Coverage and Accuracy
	How does Rule-based Classifier Work?
	Characteristics of Rule-Based Classifier
	From Decision Trees To Rules
	Rules Can Be Simplified
	Effect of Rule Simplification
	Ordered Rule Set
	Rule Ordering Schemes
	Indirect Method: C4.5rules
	Folie 15
	Building Classification Rules
	Learnig Rule Sets
	Folie 18
	Folie 19
	Folie 20
	S-C
	Folie 22
	Folie 23
	Folie 24
	Top-Down Hill-Climbing
	Terminology
	Rule Learning Heuristics
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Combining
	IREP
	Folie 37
	Advantages of Rule-Based Classifiers
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Decision Boundaries of a 1-NN Classifier
	Folie 49
	Folie 50
	3. Model Evaluation
	Folie 52
	3.1 Metrics for Performance Evaluation
	Folie 54
	Folie 55
	Limitation of Accuracy: Unbalanced Data
	Precision and Recall
	Precision and Recall Example
	F1-Measure
	Folie 60
	Alternative for Unbalanced Data: Cost Matrix
	Computing Cost of Classification
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	3.2 Methods for Performance Evaluation
	Learning Curve
	Holdout Method
	Folie 71
	Cross-Validation
	X-Validation in RapidMiner
	Folie 74
	Questions?

