

Example Applications in which Co-Occurrence Matters

We are often interested in co-occurrence relationships.

Marketing

- 1. identify items that are bought together by sufficiently many customers.
- use this information for marketing or supermarket shelf management purposes.

- 1. identify parts that are often needed together for repairs.
- use this information to equip your repair vehicles with the right parts.

Usage Mining

- identify words that frequently appear together in search queries.
- 2. use this information to offer auto-completion features to the user.

Outline

- 1. Correlation Analysis
- 2. Association Analysis
 - 1. Frequent Itemset Generation
 - 2. Rule Generation
 - 3. Handling Continuous and Categorical Attributes
 - 4. Interestingness Measures

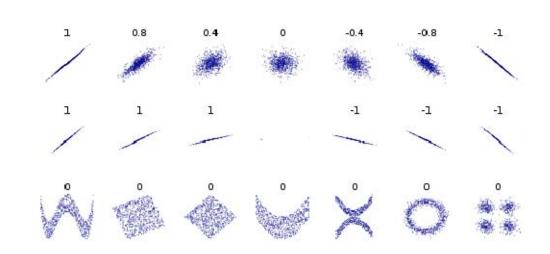
1. Correlation Analysis

- Correlation analysis measures the degree of dependency between two variables.
 - Continuous variables: Pearson's correlation coefficient (PCC)
 - Binary variables: Phi coefficient

$$PCC(x,y) = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\sum (x_{i} - \overline{x})^{2}} \sqrt{\sum (y_{i} - \overline{y})^{2}}} \qquad Phi(x,y) = \frac{f_{11}f_{00} - f_{01}f_{10}}{\sqrt{f_{1+}f_{+1}f_{0+}f_{+0}}}$$

$$Phi(x, y) = \frac{f_{11}f_{00} - f_{01}f_{10}}{\sqrt{f_{1+}f_{+1}f_{0+}f_{+0}}}$$

- Value range [-1,1]
 - 1 : positive correlation
 - 0 : variables independent
 - -1 : negative correlation



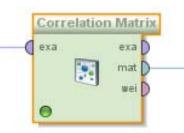
Correlations between Products in Shopping Baskets

	P1	P2	Р3	P4	P5
Basket 1	1	1	0	1	1
Basket 2	1	0	0	1	1
Basket 3	1	0	0	0	1

1 : always bought together

0 : sometimes bought together

-1: never bought together



Correl	☑ Correlation Matrix (Correlation Matrix) 🚆									
Table View	w O Pairwis	e Table 🔘 P	lot View 🔘 A	nnotations						
Attributes	ThinkPad X	Asus EeePC	HP Laserjet	2 GB DDR3	8 GB DDR3	Lenovo Tab	Netbook-Sc	HP CE50 T	LT Laser M	LT Minimaus
ThinkPad X2	1	-1	0.356	-0.816	0.612	0.583	-0.667	0.356	0.167	-0.408
Asus EeePC	-1	1	-0.356	0.816	-0.612	-0.583	0.667	-0.356	-0.167	0.408
HP Laserjet	0.356	-0.356	1	-0.218	-0.327	0.356	-0.535	1	-0.089	-0.655
2 GB DDR3	-0.816	0.816	-0.218	1	-0.500	-0.816	0.816	-0.218	0	0.200
8 GB DDR3	0.612	-0.612	-0.327	-0.500	1	0.102	-0.408	-0.327	0.102	0
Lenovo Tabl	0.583	-0.583	0.356	-0.816	0.102	1	-0.667	0.356	-0.250	0
Netbook-Sch	-0.667	0.667	-0.535	0.816	-0.408	-0.667	1	-0.535	0.167	0.408
HP CE50 To	0.356	-0.356	1	-0.218	-0.327	0.356	-0.535	1	-0.089	-0.655
LT Laser Ma	0.167	-0.167	-0.089	0	0.102	-0.250	0.167	-0.089	1	-0.408
LT Minimaus	-0.408	0.408	-0.655	0.200	0	0	0.408	-0.655	-0.408	1

Shortcoming: Measures correlation only between two items but not between multiple items, e.g. {ThinkPad, Cover} → {Minimaus}

2. Association Analysis

- Association analysis can find multiple item co-occurrence relationships (descriptive method)
- focuses on occurring items, not absent items
- first algorithms developed in the early 90s at IBM by Agrawal & Srikant
- initially used for shopping basket analysis to find how items purchased by customers are related
- later extended to more complex data structures
 - sequential patterns
 - subgraph patterns
- and other application domains
 - web usage mining, social science, life science

Association Analysis

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction.

Shopping Transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Examples of Association Rules

```
{Diaper} \rightarrow {Beer}
{Beer, Bread} \rightarrow {Milk}
{Milk, Bread} \rightarrow {Eggs, Coke}
```

Implication means co-occurrence, not causality!

Definition: Support and Frequent Itemset

Itemset

- A collection of one or more items
- Example: {Milk, Bread, Diaper}
- k-itemset: An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support (s)

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5 = 0.4

Frequent Itemset

 An itemset whose support is greater than or equal to a minimal support (minsup) threshold specified by the user

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- An association rule states that when X occurs, Y occurs with certain probability.
- Example: $\{Milk, Diaper\} \rightarrow \{Beer\}$ Condition Consequent

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Rule Evaluation Metrics

- Support (s) Fraction of transactions that contain both X and Y
- Confidence (c) Measures how often items in Y appear in transactions that contain X

$$s(X \to Y) = \frac{|X \cup Y|}{|T|}$$

$$s(X \to Y) = \frac{|X \cup Y|}{|T|}$$
 $s = \frac{\sigma(\text{Milk , Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$

$$c(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

$$c(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$$
 $c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$

Main Challenges concerning Association Analysis

- 1. Mining associations from large amounts of data can be computationally expensive
 - Algorithms need to apply smart pruning strategies
- 2. Algorithms often discover a large number of associations
 - many of them are uninteresting or redundant
 - the user needs to select the subset of the associations that is relevant given her task at hand

The Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - 2. confidence ≥ *minconf* threshold
- Minsup and minconf are provided by the user.
- Brute Force Approach:
 - 1. List all possible association rules
 - 2. Compute the support and confidence for each rule
 - 3. Remove rules that fail the *minsup* and *minconf* thresholds
 - ⇒ Computationally prohibitive due to large number of candidates!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example rules:

```
\{Milk, Diaper\} \rightarrow \{Beer\} \ (s=0.4, c=0.67) \ \{Milk, Beer\} \rightarrow \{Diaper\} \ (s=0.4, c=1.0) \ \{Diaper, Beer\} \rightarrow \{Milk\} \ (s=0.4, c=0.67) \ \{Beer\} \rightarrow \{Milk, Diaper\} \ (s=0.4, c=0.67) \ \{Diaper\} \rightarrow \{Milk, Beer\} \ (s=0.4, c=0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence.
- Thus, we may decouple the support and confidence requirements.

Mining Association Rules

– Two-step approach:

1. Frequent Itemset Generation

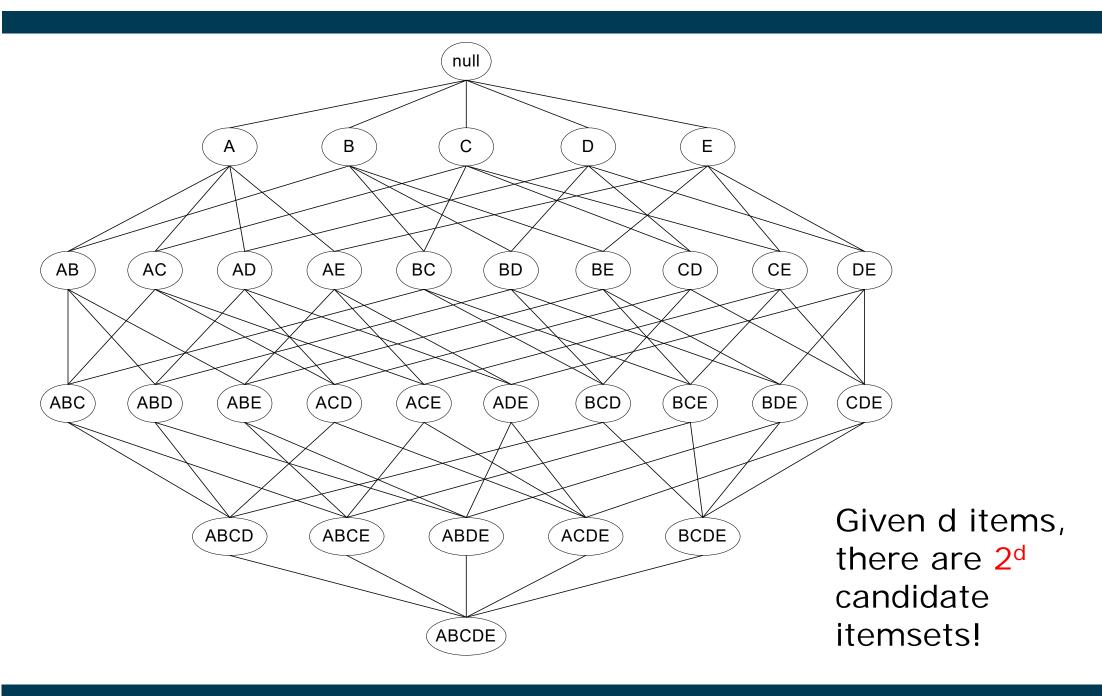
Generate all itemsets whose support ≥ minsup

2. Rule Generation

Generate high confidence rules from each frequent itemset,
 where each rule is a binary partitioning of a frequent itemset

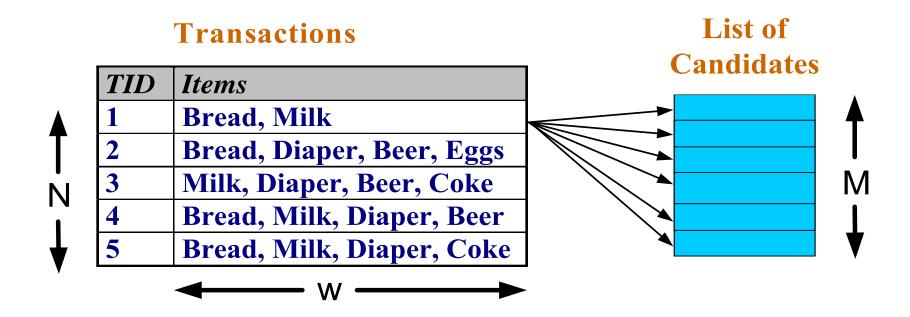
Frequent itemset generation is still computationally expensive.

2.1 Frequent Itemset Generation



Brute Force Approach

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database
- Match each transaction against every candidate



- Complexity ~ O(NMw) → Expensive since M = 2^d !!!
- A smarter algorithm is required

Example: Brute Force Approach

- Example:
 - Amazon has 10 million books (i.e., Amazon Germany, as of 2011)
- That is 2^{10.000.000} possible itemsets
- As a number:
 - $9.04981... \times 10^{3.010.299}$
 - That is: a number with 3 million digits!

– However:

- most itemsets will not be important at all, e.g., books on Chinese calligraphy, Inuit cooking, and data mining bought together
- thus, smarter algorithms should be possible.
- intuition for the algorithm: All itemsets containing Inuit cooking are likely infrequent.

Reducing the Number of Candidates

Apriori Principle

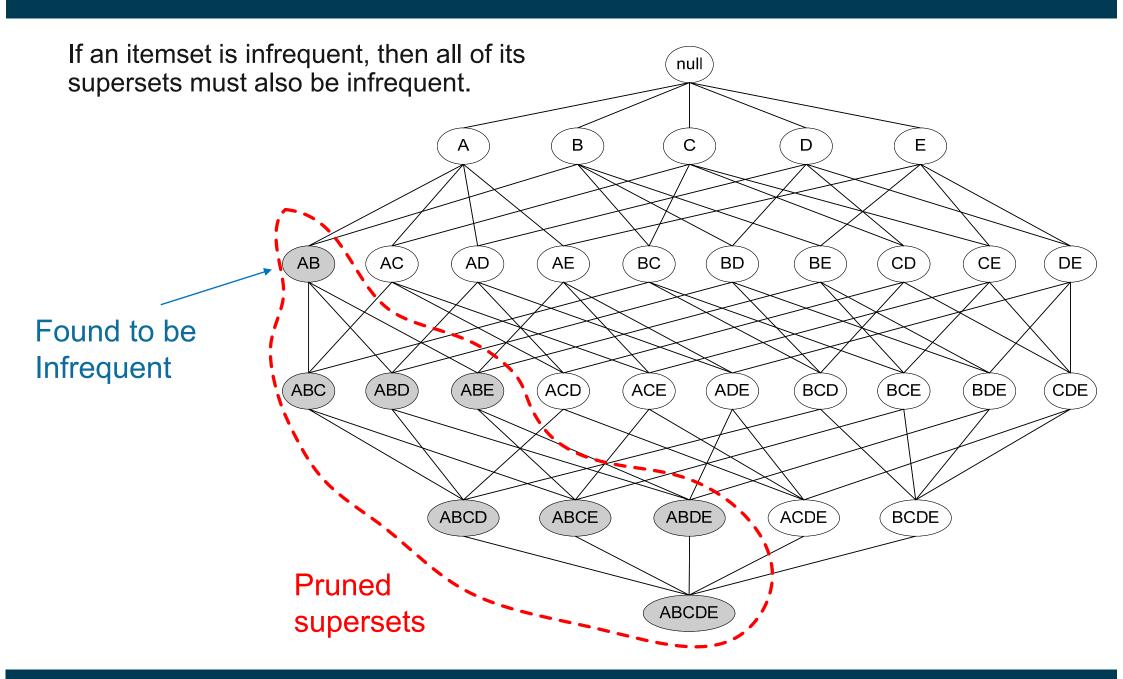
If an itemset is frequent, then all of its subsets must also be frequent.

 Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Using the Apriori Principle for Pruning



Example: Using the Apriori Principle for Pruning

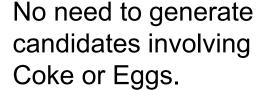
Minimum Support Count = 3

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)



Triplets (3-itemsets)

Itemset	Count
{Bread,Milk,Diaper}	3

No need to generate candidate {Milk, Diaper, Beer} as count {Milk, Beer} = 2.

The Apriori Algorithm

- 1. Let k=1
- 2. Generate frequent itemsets of length 1
- 3. Repeat until no new frequent itemsets are identified
 - 1. Generate length (k+1) candidate itemsets from length k frequent itemsets
 - 2. Prune candidate itemsets that can not be frequent because they contain subsets of length k that are infrequent (Apriori Principle)
 - 3. Count the support of each candidate by scanning the DB
 - 4. Eliminate candidates that are infrequent, leaving only those that are frequent

Example: Apriori Algorithm

itemset:count

minsup=0.5

Dataset T

1. scan T

- → Cand₁: {1}:2, {2}:3, {3}:3, {4}:1, {5}:3
- → Fequ₁: {1}:2, {2}:3, {3}:3,
- **{5}:3**
- \rightarrow Cand₂: {1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}

TID	Items
T100	1, 3, 4
T200	2, 3, 5
T300	1, 2, 3, 5
T400	2, 5

2. scan T

- \rightarrow Cand₂: {1,2}:1, {1,3}:2, {1,5}:1, {2,3}:2, {2,5}:3, {3,5}:2
- \rightarrow Fequ₂:

- **{1,3}**:2,
- **{2,3}**:2, **{2,5}**:3, **{3,5}**:2

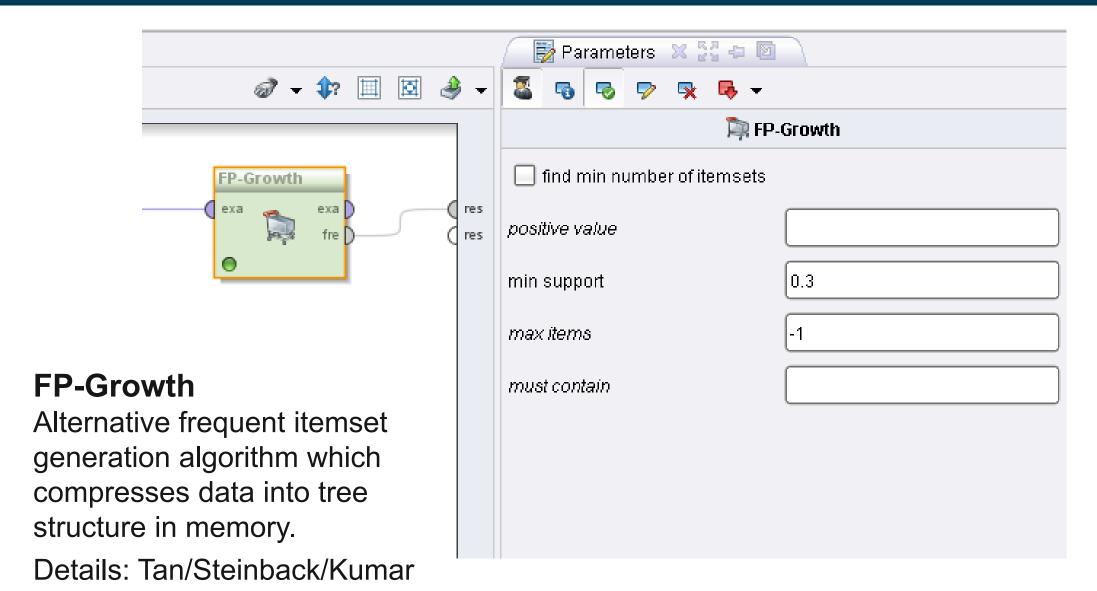
 \rightarrow Cand₃:

 $\{2, 3, 5\}$

3. scan T

- \rightarrow C₃: {2, 3, 5}:2
- \rightarrow $F_{3:}\{2, 3, 5\}$

Frequent Itemset Generation in Rapidminer



Chapter 6.6

Frequent Itemsets in Rapidminer

No. of Sets: 22	Size	Support	Item 1	Item 2	Item 3	Item 4
Total Max. Size: 4	1	0.600	Asus EeePC			
	1	0.500	LT Minimaus			
ui- oi (4	1	0.500	2 GB DDR3			
Min. Size: 1	1	0.400	ThinkPad X2			
Max. Size: 4	1	0.400	Netbook-Sch			
Contains Item:	1	0.400	Lenovo Tabl			
Contains item.	1	0.400	LT Laser Ma			
	1	0.300	HP Laserjet			
Update View	1	0.300	HP CE50 To			
	2	0.400	Asus EeePC	LT Minimaus		
	2	0.500	Asus EeePC	2 GB DDR3		
	2	0.400	Asus EeePC	Netbook-Sch		
	2	0.300	LT Minimaus	2 GB DDR3		
	2	0.300	LT Minimaus	Netbook-Sch		
	2	0.400	2 GB DDR3	Netbook-Sch		
	2	0.300	ThinkPad X2	Lenovo Tabl		
	2	0.300	HP Laserjet	HP CE50 To		
	3	0.300	Asus EeePC	LT Minimaus	2 GB DDR3	
	3	0.300	Asus EeePC	LT Minimaus	Netbook-Sch	
	3	0.400	Asus EeePC	2 GB DDR3	Netbook-Sch	
	3	0.300	LT Minimaus	2 GB DDR3	Netbook-Sch	
	4	0.300	Asus EeePC	LT Minimaus	2 GB DDR3	Netbook-S

Example Application of Frequent Itemsets

- Take top-k frequent itemsets of size 2 containing item A
- 2. Rank second item according to
 - profit made by selling item
 - whether you want to reduce number of items B in stock
 - knowledge about customer preferences
- 3. Offer special price for combination with top-ranked second item

Wird oft zusammen gekauft

Preis für beide: EUR 138,00

Beides in den Einkaufswagen

Verfügbarkeit und Versanddetails anzeigen

- Dieser Artikel: Introduction to Data Mining von Pang-Ning Tan Taschenbuch EUR 85,05
- Data Mining: Concepts and Techniques (Morgan Kaufmann Series in Data Management Systems)

2.2 Rule Generation

 Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement.

Example Frequent Itemset:

{Milk, Diaper, Beer}

Example Rule:

 $\{Milk, Diaper\} \Rightarrow Beer$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Challenge: Large Number of Candidate Rules

– If {A,B,C,D} is a frequent itemset, then the candidate rules are:

- If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an anti-monotone property
 c(ABC →D) can be larger or smaller than c(AB →D)
 - But confidence of rules generated from the same itemset has an anti-monotone property
 - e.g., L = {A,B,C,D}: $c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$
 - Confidence is anti-monotone with respect to the number of items on the right hand side of the rule

Explanation

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

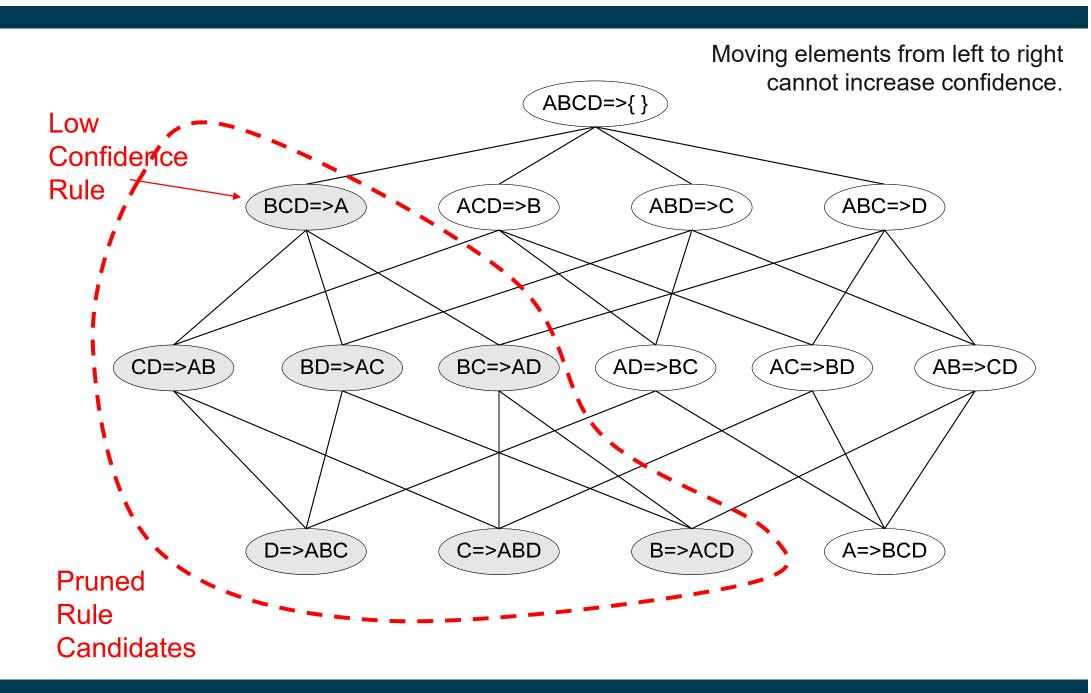
- i.e., "moving elements from left to right" cannot increase confidence
- reason:

$$c(AB \rightarrow C) := \frac{s(ABC)}{s(AB)}$$
 $c(A \rightarrow BC) := \frac{s(ABC)}{s(A)}$

- Due to anti-monotone property of support, we know
 s(AB) ≤ s(A)
- Hence

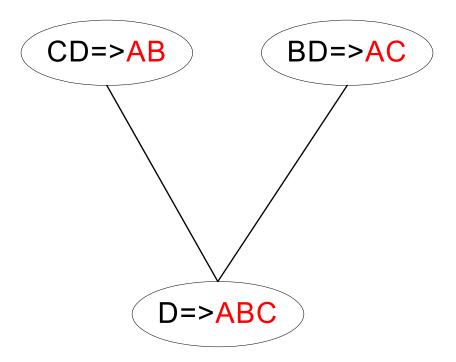
$$c(AB \rightarrow C) \ge C(A \rightarrow BC)$$

Candidate Rule Pruning



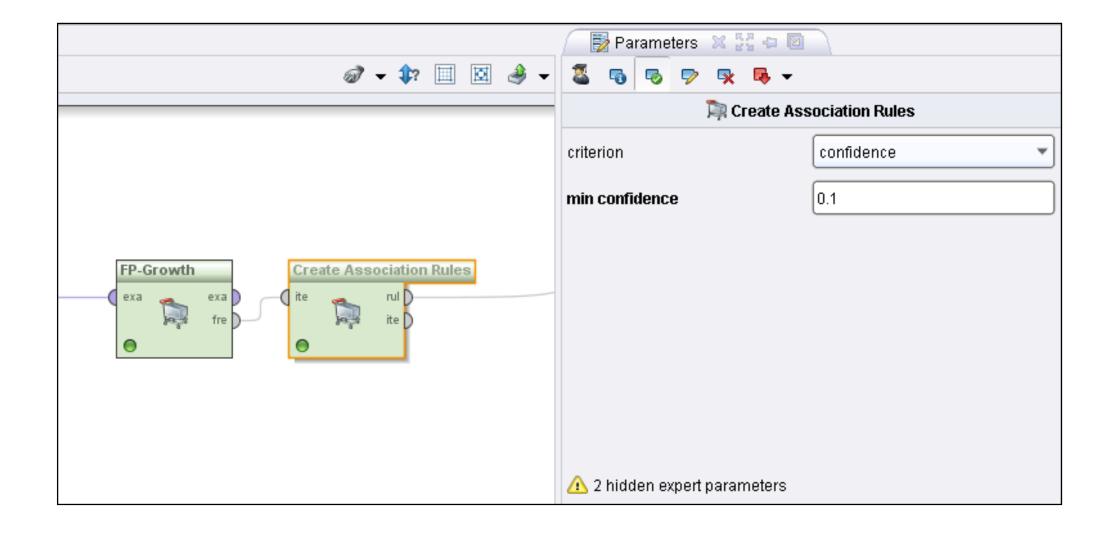
Candidate Rule Generation within Apriori Algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent (right hand side of rule).
- join(CD → AB, BD → AC)
 would produce the candidate
 rule D → ABC
- Prune rule D → ABC if one of its parent rules does not have high confidence (e.g. AD → BC)

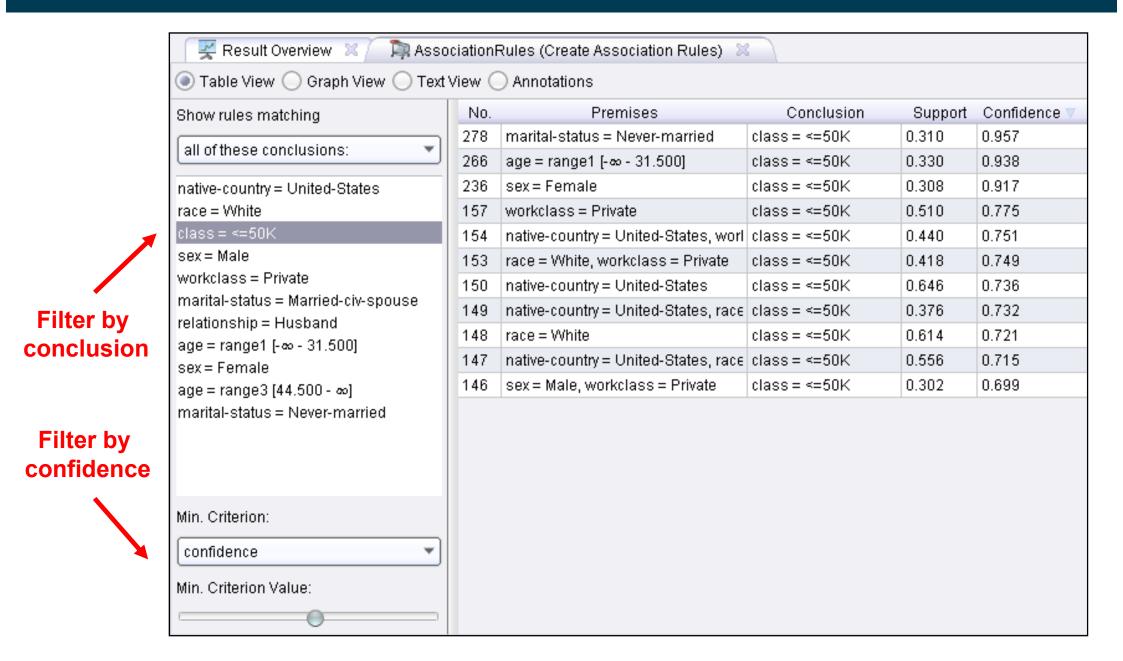


- All the required information for confidence computation has already been recorded in itemset generation.
- Thus, there is no need to scan the transaction data T any more.

Creating Association Rules in Rapidminer



Exploring Association Rules in Rapidminer



2.3 Handling Continuous and Categorical Attributes

– How to apply association analysis to attributes that are not asymmetric binary variables?

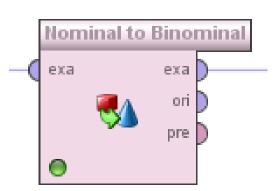
Session Id	Country	Session Length (sec)	Number of Web Pages viewed	Gender	Browser Type	Buy
1	USA	982	8	Male	E	No
2	China	811	10	Female	Netscape	No
3	USA	2125	45	Female	Mozilla	Yes
4	Germany	596	4	Male	IE	Yes
5	Australia	123	9	Male	Mozilla	No

– Example Rule:

{Number of Pages \in [5,10) \land (Browser=Mozilla)} \rightarrow {Buy = No}

Handling Categorical Attributes

- Transform categorical attribute into asymmetric binary variables
- Introduce a new "item" for each distinct attribute-value pair
 - Example: replace "Browser Type" attribute with
 - attribute: "Browser Type = Internet Explorer"
 - attribute: "Browser Type = Mozilla"
 -

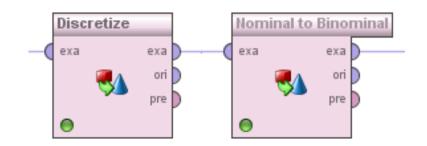


Potential Issues

- What if attribute has many possible values
 - Many of the attribute values may have very low support
 - Potential solution: Aggregate low-support attribute values
- What if distribution of attribute values is highly skewed
 - Example: 95% of the visitors have Buy = No
 - Most of the items will be associated with (Buy=No) item
 - Potential solution: drop the highly frequent item

Handling Continuous Attributes

- Transform continuous attribute into binary variables using discretization
 - Equal-width binning
 - Equal-frequency binning



Issue: Size of the discretization intervals affects support & confidence

```
{Refund = No, (Income = $51,250)} \rightarrow {Cheat = No}
{Refund = No, (60K \leq Income \leq 80K)} \rightarrow {Cheat = No}
{Refund = No, (0K \leq Income \leq 1B)} \rightarrow {Cheat = No}
```

- If intervals are too small
 - itemsets may not have enough support
- If intervals too large
 - rules may not have enough confidence
 - e.g. combination of different age groups compared to a specific age group

2.4 Interestingness Measures

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - redundant if {A,B,C} → {D} and {A,B} → {D} have same support & confidence
- Interestingness of patterns depends on application
 - one man's rubbish may be another's treasure
- Interestingness measures can be used to prune or rank the derived rules.
- In the original formulation of association rules, support & confidence were the only interestingness measures used.
- Later, various other measures have been proposed
 - See Tan/Steinback/Kumar, Chapter 6.7
 - We will have a look at one: Lift

Drawback of Confidence

	Coffee	Coffee	
Tea	15	5	20
Tea 75		5	80
	90	10	100

Association Rule: Tea → Coffee

confidence(Tea \rightarrow Coffee) = 0.75

but support(Coffee) = 0.9

Although confidence is high, rule is misleading as the fraction of coffee drinkers is higher than the confidence of the rule

Lift

- The *lift* of an association rule $X \rightarrow Y$ is defined as:

$$Lift = \frac{c(X \to Y)}{s(Y)}$$

Confidence normalized by support of consequent

- Interpretation
 - if lift > 1, then X and Y are positively correlated
 - if lift = 1, then X and Y are independent
 - if lift < 1, then X and Y are negatively correlated

Example: Lift

	Coffee	Coffee	
Tea	15	5	20
Tea	Tea 75		80
	90	10	100

$$Lift = \frac{c(X \to Y)}{s(Y)}$$

Association Rule: Tea → Coffee

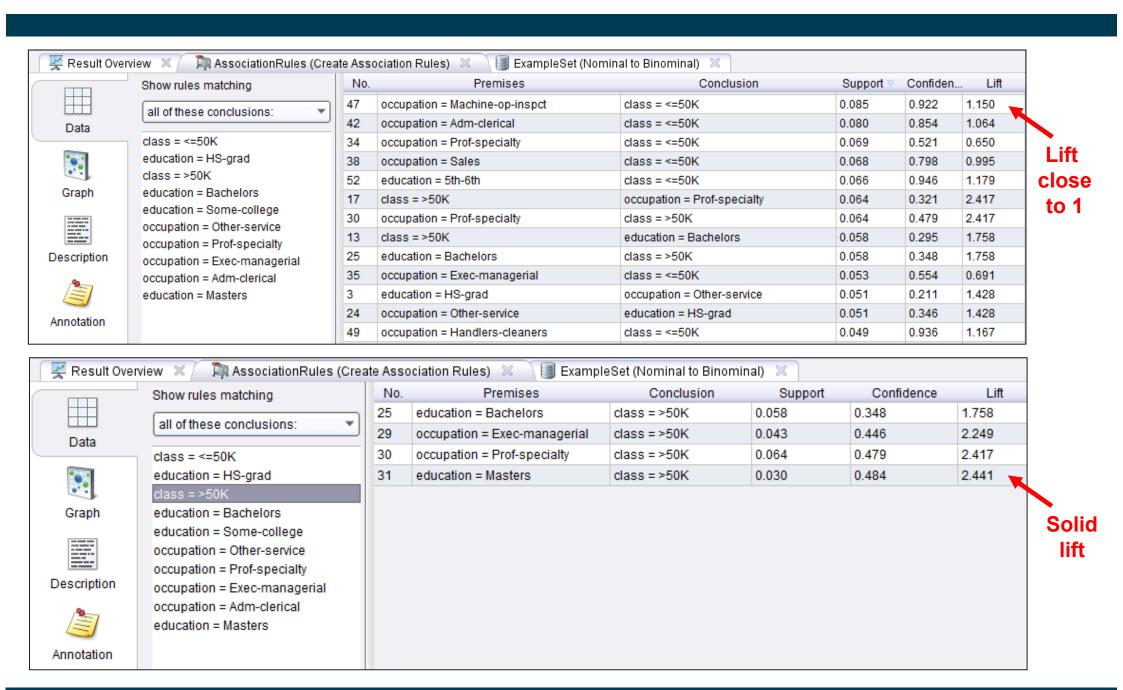
confidence(Tea \rightarrow Coffee) = 0.75

support(Coffee) = 0.9

 $lift(Tea \rightarrow Coffee) = 0.75/0.9 = 0.8333$

(< 1, therefore is negatively correlated)

Exploring Association Rules in Rapidminer



Conclusion

- The algorithm does the counting for you and finds patterns in the data.
- You need to do the interpretation based on your knowledge about the application domain.
 - Which patterns are meaningful?
 - Which patterns are surprising?

Literature Reference for this Slideset

Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining.
Pearson / Addison Wesley.

Chapter 6: Association Analysis:

Basic Concepts and Algorithms

Chapter 7: Association Analysis: Advanced Concepts

