Data Mining

Classification
- Part 2 -
Outline

1. What is Classification?
2. K-Nearest-Neighbors
3. Decision Trees
4. Model Evaluation
5. Rule Learning
6. Naïve Bayes
7. Support Vector Machines
8. Artificial Neural Networks
9. Hyperparameter Selection
Central Question:
How good is a model at classifying unseen records?
(generalization performance)

4.1 Metrics for Model Evaluation
• How to measure the performance of a model?

4.2 Methods for Model Evaluation
• How to obtain reliable estimates?
4.1 Metrics for Model Evaluation

- Focus on the **predictive capability** of a model
 - rather than how much time it takes to classify records or build models

- The confusion matrix counts the correct and false classifications
 - the counts are the basis for calculating different performance metrics

Confusion Matrix

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class=Yes</td>
<td>Class=Yes</td>
</tr>
<tr>
<td>Class=Yes</td>
<td>True Positives</td>
</tr>
<tr>
<td>Class=No</td>
<td>False Negatives</td>
</tr>
<tr>
<td>Class=No</td>
<td>False Positives</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class=Yes</th>
<th>Class=No</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Positives</td>
<td>False Negatives</td>
</tr>
<tr>
<td>False Positives</td>
<td>True Negatives</td>
</tr>
</tbody>
</table>
Accuracy and Error Rate

Accuracy = \frac{TP + TN}{TP + TN + FP + FN} = \frac{Correct predictions}{All predictions}

Error Rate = 1 - Accuracy

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class=Yes</td>
<td>Class=Yes</td>
</tr>
<tr>
<td>Class=No</td>
<td>Class=No</td>
</tr>
<tr>
<td>Class=Yes</td>
<td>TP 25</td>
</tr>
<tr>
<td></td>
<td>FN 4</td>
</tr>
<tr>
<td>Class=No</td>
<td>FP 6</td>
</tr>
<tr>
<td></td>
<td>TN 15</td>
</tr>
</tbody>
</table>

Acc = \frac{25 + 15}{25 + 15 + 6 + 4} = 0.80
The Class Imbalance Problem

- Sometimes, classes have very unequal frequency
 - Fraud detection: 98% transactions OK, 2% fraud
 - E-commerce: 99% surfers don’t buy, 1% buy
 - Intruder detection: 99.99% of the users are no intruders
 - Security: >99.99% of Americans are not terrorists

- The class of interest is commonly called the **positive class** and the rest negative classes

- Consider a 2-class problem
 - number of negative examples = 9990
 number of positive examples = 10
 - if model predicts all examples to belong to the negative class, the accuracy is 9990/10000 = 99.9 %
 - **Accuracy is misleading** because model does not detect any positive example
Alternative: Use performance metrics from information retrieval which are biased towards the positive class by ignoring TN

Precision \(p \) is the number of correctly classified positive examples divided by the total number of examples that are classified as positive.

Recall \(r \) is the number of correctly classified positive examples divided by the total number of actual positive examples in the test set.

\[
p = \frac{TP}{TP + FP} \quad r = \frac{TP}{TP + FN}
\]

<table>
<thead>
<tr>
<th></th>
<th>Classified Positive</th>
<th>Classified Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Positive</td>
<td>TP</td>
<td>FN</td>
</tr>
<tr>
<td>Actual Negative</td>
<td>FP</td>
<td>TN</td>
</tr>
</tbody>
</table>

Ignored majority
Precision and Recall - Visualized

How many examples that are classified positive are actually positive?

Precision = \(\frac{TP}{TP + FP} \)

Which fraction of all positive examples is classified correctly?

Recall = \(\frac{TP}{TP + FN} \)

All positives

false negatives

true negatives

true positives

false positives

Classified as positives

Source: Walber
Precision and Recall – A Problematic Case

<table>
<thead>
<tr>
<th></th>
<th>Classified Positive</th>
<th>Classified Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Positive</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>Actual Negative</td>
<td>0</td>
<td>1000</td>
</tr>
</tbody>
</table>

- This confusion matrix gives us
 - precision $p = 100\%$
 - recall $r = 1\%$
- because we only classified one positive example correctly and no negative examples wrongly
- Thus, we want a measure that
 1. combines precision and recall and
 2. is large if both values are large
F$_1$-Measure

- F$_1$-score combines precision and recall into one measure
- F$_1$-score is the harmonic mean of precision and recall
 - the harmonic mean of two numbers tends to be closer to the smaller of the two
 - thus for the F$_1$-score to be large, both p and r must be large

$$F_1 = \frac{2pr}{p + r}$$

$$= \frac{2TP}{2TP + FP + FN}$$
Example: Alternative Metrics on Imbalanced Data

<table>
<thead>
<tr>
<th>PREDICTED CLASS</th>
<th>ACTUAL CLASS</th>
<th>Class=Yes</th>
<th>Class=No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class=Yes</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Class=No</td>
<td>10</td>
<td>980</td>
<td></td>
</tr>
</tbody>
</table>

- **Precision (p)**: \(\frac{10}{10 + 10} = 0.5 \)
- **Recall (r)**: \(\frac{10}{10 + 0} = 1 \)
- **F - measure (F)**: \(\frac{2 \times 1 \times 0.5}{1 + 0.5} = 0.62 \)
- **Accuracy**: \(\frac{990}{1000} = 0.99 \)

<table>
<thead>
<tr>
<th>PREDICTED CLASS</th>
<th>ACTUAL CLASS</th>
<th>Class=Yes</th>
<th>Class=No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class=Yes</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Class=No</td>
<td>0</td>
<td>990</td>
<td></td>
</tr>
</tbody>
</table>

- **Precision (p)**: \(\frac{1}{1 + 0} = 1 \)
- **Recall (r)**: \(\frac{1}{1 + 9} = 0.1 \)
- **F - measure (F)**: \(\frac{2 \times 0.1 \times 1}{1 + 0.1} = 0.18 \)
- **Accuracy**: \(\frac{991}{1000} = 0.991 \)
F$_1$-Measure Graph

Low threshold: Low precision, high recall
Restrictive threshold: High precision, low recall

Optimal Threshold
Cost-Sensitive Model Evaluation

\[C(i|j) : \text{Cost of misclassifying a class } j \text{ record as class } i \]

ACTUAL CLASS	PREDICTED CLASS	\(C(i	j) \)	Class=Yes	Class=No	
Class=Yes	C(Yes	Yes)	C(No	Yes)		
Class=No	C(Yes	No)	C(No	No)		
Example: Cost-Sensitive Model Evaluation

Use case: Credit card fraud
- it is expensive to miss fraudulent transactions
- false alarms are not too expensive

<table>
<thead>
<tr>
<th>Cost Matrix</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL CLASS</td>
<td>C(i</td>
</tr>
<tr>
<td>+</td>
<td>-1</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Model M₁

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>162 38</td>
</tr>
<tr>
<td>-</td>
<td>160 240</td>
</tr>
</tbody>
</table>

Accuracy = 67%
Cost = 3798 ➔ Better model

Model M₂

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>155 45</td>
</tr>
<tr>
<td>-</td>
<td>5 395</td>
</tr>
</tbody>
</table>

Accuracy = 92%
Cost = 4350
ROC Curves

- Graphical approach for displaying trade-off between detection rate and false alarm rate

- Some classification algorithms provide **confidence scores**
 - how sure the algorithms is with its prediction
 - e.g., KNN (the neighbor’s vote), Naive Bayes (the probability)

- ROC curves visualize **true positive rate** and **false positive rate** in relation to the algorithm’s confidence

- Drawing a ROC Curve
 - Sort classifications according to confidence scores
 - Scan over all classifications
 - right prediction: draw one step up
 - wrong prediction: draw one step to the right
 - Exact method: Tan, Chapter 6.11
Interpreting ROC Curves

- The steeper, the better
 - Random guessing results in the diagonal
 - So a decent classification model should result in a curve above the diagonal

- Comparing models:
 - Curve A above curve B means model A better than model B

- Frequently used quality criterion
 - Area under ROC curve
4.2 Methods for Model Evaluation

- How to obtain a reliable estimate of the generalization performance?

- Never ever test a model on data that was used for training!
 - Because model has been fit to training data, evaluating on training data does not result in a reliable estimate of the performance on unseen data
 - We need to keep training set and test set strictly separate

- Which labeled records to use for training and which for testing?

- Alternative splitting approaches:
 1. Holdout Method
 2. Random Subsampling
 3. Cross Validation
Learning Curve

- The learning curve shows how accuracy changes with growing training set size

- Conclusion:
 - If model performance is low and unstable, get more training data
 - Use labeled data rather for training than testing

- Problem:
 - Labeling additional data is often expensive due to manual effort involved
Holdout Method

- The **holdout method** reserves a certain amount of the labeled data for testing and uses the remainder for training.
- Usually: 1/3 for testing, 2/3 for training (or even better 20% / 80%).

For unbalanced datasets, random samples might not be representative:
- Few or no records of the minority class in training or test set.

- **Stratified sample**: Sample each class independently, so that records of the minority class are present in each sample.
Random Subsampling

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - in each iteration, a certain proportion is randomly selected for training
 - the performance of the different iterations is averaged

- Still not optimal as the different test sets may overlap
 - some outliers might always end up in the test sets
 - records that are important for learning (red tree) might always be in test sets
Cross-Validation

- Cross-validation avoids overlapping test sets
 - first step: data is split into k subsets of equal size
 - second step: each subset in turn is used for testing and the remainder for training
- This is called k-fold cross-validation
- The error estimates are averaged to yield an overall error estimate
- Frequently used: $k = 10$ (90% training, 10% testing)
 - why ten? Experiments have shown that this is the good choice to get an accurate estimate and still use as much data as possible for training
- Often the subsets are generated using stratified sampling
Cross-Validation in RapidMiner and Python

RapidMiner

Python

```python
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score

# Specify how examples are split
cross_val = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)

# Run cross-validation and calculate performance metric
accuracy = cross_val_score(estimator, data, target, cv=cross_val, scoring='accuracy')
```
Cross-Validation Results in RapidMiner

- **Average accuracy** over all 10 runs (test sets)
- **Standard deviation of accuracy values** over all 10 runs (test sets)

Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>true Iris-setosa</th>
<th>true Iris-versicolor</th>
<th>true Iris-virginica</th>
<th>class precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>pred. Iris-setosa</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>100.00%</td>
</tr>
<tr>
<td>pred. Iris-versicolor</td>
<td>0</td>
<td>46</td>
<td>8</td>
<td>85.19%</td>
</tr>
<tr>
<td>pred. Iris-virginica</td>
<td>0</td>
<td>4</td>
<td>42</td>
<td>91.30%</td>
</tr>
<tr>
<td>class recall</td>
<td>100.00%</td>
<td>92.00%</td>
<td>84.00%</td>
<td></td>
</tr>
</tbody>
</table>

- **Recall** given that we define Iris-setosa as positive class
- **Number of correctly classified Iris-versicolor examples** in all runs (test sets)

Each record is used once for testing ➔ The numbers in the confusion matrix sum up to size of the dataset
Evaluation Summary

- **Performance metrics**
 - Default: *Use accuracy*
 - If interesting class is infrequent, use precision, recall and F1

- **Estimation of metric**
 - Default: *Use cross-validation*
 - If labeled dataset is large (>5000 examples) and
 - computation takes too much time or
 - exact replicability of results matters, e.g. for data science competitions
 - use the holdout method with fixed split

- **To increase model performance**
 1. balance “imbalanced” data by increasing the number of positive examples in the training set (oversampling)
 2. optimize the hyperparameters of the learning algorithm
 3. avoid overfitting
Dealing with Class Imbalance in Training and Testing

Up Sampling:
Filter examples of the class you want to increase within the example set. Append them as many times as needed to create an equal distribution of the classes within the example set.

Classifier:
Train a classification model based on the balanced data.

Do NOT balance test set!

Use precision, recall, F1

Python

```python
from imblearn.over_sampling import RandomOverSampler

# Up-sample positive class
sampler = RandomOverSampler()
balanced_training_data, balanced_target = sampler.fit_resample(training_data, target)
```
5. Rule-based Classification

- Classify records by using a collection of “if…then…” rules.

- Classification rule: \(\text{Condition} \rightarrow y \)

 - \(\text{Condition} \) is a conjunction of attribute tests (rule antecedent)

 - \(y \) is the class label (rule consequent)

- Examples of classification rules:

 R1: \((\text{Blood Type}=\text{Warm}) \land (\text{Lay Eggs}=\text{Yes}) \rightarrow \text{Birds}\)

 R2: \((\text{Taxable Income} < 50\text{K}) \land (\text{Refund}=\text{Yes}) \rightarrow \text{Cheat} = \text{No}\)

- Rule-based classifier

 - set of classification rules
Example: Rule-based Classifier

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds
R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes
R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals
R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles
R5: (Live in Water = sometimes) \rightarrow Amphibians

<table>
<thead>
<tr>
<th>Name</th>
<th>Blood Type</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>python</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>reptiles</td>
</tr>
<tr>
<td>salmon</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>fishes</td>
</tr>
<tr>
<td>whale</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>frog</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>amphibians</td>
</tr>
<tr>
<td>komodo</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>reptiles</td>
</tr>
<tr>
<td>bat</td>
<td>warm</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>pigeon</td>
<td>warm</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>birds</td>
</tr>
<tr>
<td>cat</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>leopard shark</td>
<td>cold</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>fishes</td>
</tr>
<tr>
<td>turtle</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>reptiles</td>
</tr>
<tr>
<td>penguin</td>
<td>warm</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>birds</td>
</tr>
<tr>
<td>porcupine</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>eel</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>fishes</td>
</tr>
<tr>
<td>salamander</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>amphibians</td>
</tr>
<tr>
<td>gila monster</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>reptiles</td>
</tr>
<tr>
<td>platypus</td>
<td>warm</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>owl</td>
<td>warm</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>birds</td>
</tr>
<tr>
<td>dolphin</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>eagle</td>
<td>warm</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>birds</td>
</tr>
</tbody>
</table>
5.1 Applying a Rule-based Classifier

- A rule \(r \) covers an instance \(x \) if the attributes of the instance satisfy the condition of the rule

\[
R1: \text{(Give Birth = no)} \land \text{(Can Fly = yes)} \rightarrow \text{Birds}
\]

\[
R2: \text{(Give Birth = no)} \land \text{(Live in Water = yes)} \rightarrow \text{Fishes}
\]

\[
R3: \text{(Give Birth = yes)} \land \text{(Blood Type = warm)} \rightarrow \text{Mammals}
\]

\[
R4: \text{(Give Birth = no)} \land \text{(Can Fly = no)} \rightarrow \text{Reptiles}
\]

\[
R5: \text{(Live in Water = sometimes)} \rightarrow \text{Amphibians}
\]

<table>
<thead>
<tr>
<th>Name</th>
<th>Blood Type</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>hawk</td>
<td>warm</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>?</td>
</tr>
<tr>
<td>grizzly bear</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>?</td>
</tr>
</tbody>
</table>

- The rule R1 covers hawk \(\rightarrow\) Bird
- The rule R3 covers grizzly bear \(\rightarrow\) Mammal
Rule Coverage and Accuracy

- **Coverage of a rule**
 - fraction of all records that satisfy the condition of a rule.

- **Accuracy of a rule**
 - fraction of covered records that satisfy the consequent of a rule.

- **Example**
 - R1: (Status=Single) → No
 - Coverage = 40%
 - Accuracy = 50%

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Characteristics of Rule-based Classifiers

- Mutually Exclusive Rule Set
 - classifier contains mutually exclusive rules if the rules are independent of each other
 - every record is covered by at most one rule

- Exhaustive Rule Set
 - classifier has exhaustive coverage if it accounts for every possible combination of attribute values
 - each record is covered by at least one rule
A Rule Set that is not Mutually Exclusive and Exhaustive

R1: (Give Birth = no) ∧ (Can Fly = yes) → Birds
R2: (Give Birth = no) ∧ (Live in Water = yes) → Fishes
R3: (Give Birth = yes) ∧ (Blood Type = warm) → Mammals
R4: (Give Birth = no) ∧ (Can Fly = no) → Reptiles
R5: (Live in Water = sometimes) → Amphibians

<table>
<thead>
<tr>
<th>Name</th>
<th>Blood Type</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>lemur</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>?</td>
</tr>
<tr>
<td>turtle</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>?</td>
</tr>
<tr>
<td>dogfish shark</td>
<td>cold</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>?</td>
</tr>
</tbody>
</table>

- A turtle triggers both R4 and R5
- A dogfish shark triggers none of the rules
Fixes for not Mutually Exclusive and Exhaustive Rule Sets

- Not Exhaustive Rule Set
 - Problem: Some unseen records are not covered by the rules
 - Solution: Add default rule: () → Y

- Not Mutually Exclusive Rule Set
 - Problem: An unseen record might be covered by multiple rules
 - Solution 1: Ordered Rules
 - order rules (e.g. prefer rules with high accuracy)
 - classify record according to the highest-ranked rule
 - Solution 2: Voting
 - let all matching rules vote and assign the majority class label
 - the votes may be weighted by rule quality (e.g. accuracy)
Example: Ordered Rule Set

- Rules are ordered according to their priority (e.g. accuracy)
- When a test record is presented to the classifier
 - it is assigned to the class label of the highest ranked rule it has triggered
 - if none of the rules fires, it is assigned to the default class

<table>
<thead>
<tr>
<th>Name</th>
<th>Blood Type</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>turtle</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>?</td>
</tr>
</tbody>
</table>
5.2 Learning Rule-based Classifiers

1. Direct Method
 • Extract rules directly from data
 • Example algorithm: RIPPER

2. Indirect Method
 • Extract rules from other classification models (e.g. decision trees)
 • Example: C4.5rules
5.2.1 Indirect Method: From Decision Trees To Rules

- Approach: Generate a rule for every path from the root to one of the leave nodes in the decision tree
- Rule set contains as much information as the tree
- The generated rules are mutually exclusive and exhaustive

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single, Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single, Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No
The Generated Rules Can Be Simplified

Initial Rule: \((\text{Refund}=\text{No}) \land (\text{Status}=\text{Married}) \rightarrow \text{No}\)

Simplified Rule: \((\text{Status}=\text{Married}) \rightarrow \text{No}\)
Indirect Method: C4.5rules

1. Extract rules from an unpruned decision tree
2. For each rule, \(r: A \rightarrow y \),
 1. consider an alternative rule \(r': A' \rightarrow y \) where \(A' \) is obtained by removing one of the conjuncts in \(A \)
 2. compare the pessimistic error rate for \(r \) against all \(r \)'s
 • estimate pessimistic error using training data plus length penalty
 • or measure error using validation dataset
3. prune if one of the \(r \)'s has lower pessimistic error rate
4. repeat until we can no longer improve generalization error

 Effect of rule simplification: Rule set is no longer mutually exclusive
 • A record may trigger more than one rule
 • Solution?
 • use ordered rule set or unordered rule set and voting schemes
Indirect Method in RapidMiner
Direct Method: RIPPER

- Learns **ordered rule set** from training data
- For 2-class problem
 - choose the less frequent class as positive class and the other as negative class
 - learn rules for the positive class
 - negative class will be default class
- For multi-class problem
 - order the classes according to increasing class prevalence (fraction of instances that belong to a particular class)
 - learn the rule set for smallest class first, treat the rest as negative class
 - repeat with next smallest class as positive class
Sequential Covering

RIPPER uses sequential covering to learn a rule list for each class.

1. Start from an empty rule list
2. Grow a rule that covers as many positive examples as possible and is rather accurate
3. Remove training records covered by the rule
4. Repeat Steps 2 and 3 until stopping criterion is met
Example of Sequential Covering …

(i) Original Data

(ii) Step 1
Example of Sequential Covering

(iii) Step 2

(iv) Step 3
Aspects of Sequential Covering

1. Rule Growing
2. Rule Pruning
3. Instance Elimination
4. Stopping Criterion
Rule Growing within the RIPPER Algorithm

- Start from an empty rule: \{\} \rightarrow \text{class}
- Step by step add conjuncts so that
 1. the accuracy of the rule improves
 2. the rule still covers many examples
Rule Growing Procedure

- Goal: Prefer rules with high accuracy and high support count
- Add conjunct that maximizes FOIL’s information gain measure

 \[\text{R}_0: \{\} \rightarrow \text{class} \text{ (initial rule)} \]

 \[\text{R}_1: \{A\} \rightarrow \text{class} \text{ (rule after adding conjunct)} \]

- Stop when rule no longer covers negative examples

\[
\text{Gain}(\text{R}_0, \text{R}_1) = t \left[\log \left(\frac{p_1}{p_1 + n_1} \right) - \log \left(\frac{p_0}{p_0 + n_0} \right) \right]
\]

where
\[
\begin{align*}
t & : \text{number of positive instances covered by both } \text{R}_0 \text{ and } \text{R}_1 \\
p_0 & : \text{number of positive instances covered by } \text{R}_0 \\
n_0 & : \text{number of negative instances covered by } \text{R}_0 \\
p_1 & : \text{number of positive instances covered by } \text{R}_1 \\
n_1 & : \text{number of negative instances covered by } \text{R}_1
\end{align*}
\]
Rule Pruning

- Because of the stopping criterion, the learned rule is likely to overfit the data.

- Thus, the rule is pruned afterwards using a validation dataset.
 - similar to post-pruning of decision trees
Rule Pruning Procedure

- **Goal:** Decrease generalization error of the rule
- **Procedure**
 1. remove one of the conjuncts in the rule
 2. compare error rates on a validation dataset before and after pruning
 3. if error improves, prune the conjunct
- **Measure for pruning**

\[v = \frac{p - n}{p + n} \]

- \(p \): number of positive examples covered by the rule in the validation set
- \(n \): number of negative examples covered by the rule in the validation set
Instance Elimination

- Why do we remove positive instances?
 - otherwise, the next rule is identical to previous rule

- Why do we remove negative instances?
 - prevent underestimating accuracy of rule
 - compare rules R2 and R3 in the diagram
 - 3 errors vs. 2 errors
Stopping Criterion

- When to stop adding new rules to the rule set?
- RIPPER
 - error rate of new rule on validation set must not exceed 50%
 - minimum description length should not increase more than d bits
RIPPER in RapidMiner

- **criterion**: `information_gain`
- **sample ratio**: 0.9
- **pureness**: 0.9
- **minimal prune benefit**: 0.25
- **use local random seed**: unchecked
RIPPER in RapidMiner

RuleModel

if wage-inc-1st > 2.650 and statutory-holidays > 10.500 then good (0 / 19)
if wage-inc-1st ≤ 3.600 and statutory-holidays ≤ 11.500 then bad (13 / 0)
else good (0 / 6)

correct: 38 out of 38 training examples.
Advantages of Rule-based Classifiers

- Easy to interpret for humans (eager learning)
- Performance comparable to decision trees
- Can classify unseen instances rapidly
- Are well suited to handle imbalanced data sets
 - as they learn rules for the minority class first

Chapter 3.6: Model Evaluation

Chapter 6.11: Class Imbalance Problem

Chapter 6.2: Rule-Based Classifiers