Data Mining

Introduction to Data Mining
Hallo

- Prof. Dr. Christian Bizer
- Professor for Information Systems
- Research Interests:
 - Data and Web Mining
 - Web Data Integration
 - Data Web Technologies
- Room: B6 - B1.15
- Phone: +49 621 181 2677
- eMail: chris@informatik.uni-mannheim.de
Hallo

- **M. Sc. Wi-Inf. Anna Primpeli**
- Graduate Research Associate
- Research Interests:
 - Semantic Annotations in Web Pages
 - Active Learning for Identity Resolution
 - Product Data Integration
- Room: B6, 26, C 1.04
- eMail: anna@informatik.uni-mannheim.de

- Will teach the RapidMiner exercises and will supervise student projects
Hallo

- M. Sc. Wi-Inf. Ralph Peeters
 - Graduate Research Associate
 - Research Interests:
 - Entity Matching using Deep Learning
 - Product Data Integration
 - Room: B6, 26, C 1.04
 - eMail: ralph@informatik.uni-mannheim.de

- Will teach one Python exercise group and will supervise student projects.
Hallo

- **M. Sc. Wi-Inf. Alexander Brinkmann**
 - Graduate Research Associate
 - Research Interests:
 - Data Search using Deep Learning
 - Product Data Categorization
 - Room: B6, 26, C 1.03
 - eMail: alex.brinkmann@informatik.uni-mannheim.de
 - Will teach one Python exercise group and will supervise student projects.
Course Organisation

- Lecture
 - introduces the principle methods of data mining
 - discusses how to evaluate generated models
 - presents practical examples of data mining applications from the corporate and Web context

- Exercise Groups
 - students experiment with the methods using RapidMiner or Python

- Project Work
 - teams of six students realize a data mining project
 - teams may choose their own data sets and tasks (in addition, I will propose some suitable data sets and tasks)
 - teams write a 10 page summary about their project and present the results

- Grading
 - 75% written exam, 20% project report, 5% presentation of project results
Course Organisation

- Course Webpage
 - provides up-to-date information, lecture slides, and exercise material
 - https://www.uni-mannheim.de/dws/teaching/course-details/courses-for-master-candidates/ie-500-data-mining/

- Solutions to the Exercises
 - ILIAS eLearning System, https://ilias.uni-mannheim.de/

- Time and Location
 - Lecture:
 - Wednesday, 10.15 - 11.45, A5, ZOOM 04
 - Exercise:
 - Thursday, 10.15 - 11.45
 Room ZOOM 13 (RapidMiner, Anna)
 - Thursday, 12.00 - 13.30,
 Room ZOOM 16 (Python, Ralph)
 - Thursday, 13.45 - 15.15,
 Room ZOOM 15 (Python, Alex)
Lecture Contents

| 1. Introduction to Data Mining | What is Data Mining?
| | Tasks and Applications
| | The Data Mining Process
| 2. Cluster Analysis | K-means Clustering, Density-based Clustering,
| | Hierarchical Clustering, Proximity Measures
| 3. Classification | Nearest Neighbor, Decision Trees and Forests, Rule
| | Learning, Naïve Bayes, SVMs, Neural Networks,
| | Model Evaluation, Hyperparameter Selection
| 4. Regression | Linear Regression, Nearest Neighbor Regression,
| | Regression Trees, Time Series
| 5. Text Mining | Preprocessing Text, Feature Generation, Feature
| | Selection, RapidMiner Text Extension
| 6. Association Analysis | Frequent Item Set Generation, Rule Generation,
<p>| | Interestingness Measures |</p>
<table>
<thead>
<tr>
<th>Week</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.03.2021</td>
<td>Introduction to Data Mining</td>
<td>Exercise Preprocessing/Visualization</td>
</tr>
<tr>
<td></td>
<td>Introduction to Python</td>
<td></td>
</tr>
<tr>
<td>10.03.2021</td>
<td>Lecture Clustering</td>
<td>Exercise Clustering</td>
</tr>
<tr>
<td>17.03.2021</td>
<td>Lecture Classification 1</td>
<td>Exercise Classification</td>
</tr>
<tr>
<td>24.03.2021</td>
<td>Lecture Classification 2</td>
<td>Exercise Classification</td>
</tr>
<tr>
<td>14.04.2021</td>
<td>Lecture Classification 3</td>
<td>Exercise Classification</td>
</tr>
<tr>
<td>21.04.2021</td>
<td>Video Lecture Regression</td>
<td>Exercise Regression</td>
</tr>
<tr>
<td>28.04.2021</td>
<td>Video Lecture Text Mining</td>
<td>Exercise Text Mining</td>
</tr>
<tr>
<td>5.05.2021</td>
<td>Video Lecture Association Analysis</td>
<td>Exercise Association Analysis</td>
</tr>
<tr>
<td>12.05.2021</td>
<td>Introduction to the Student Projects and Group Formation</td>
<td>Preparation of Project Outlines</td>
</tr>
<tr>
<td>19.05.2021</td>
<td>Feedback on Project Outlines</td>
<td>Project Work</td>
</tr>
<tr>
<td>26.05.2021</td>
<td>Project Work</td>
<td>Feedback on demand</td>
</tr>
<tr>
<td>2.06.2021</td>
<td>Feedback on demand</td>
<td>Project Work</td>
</tr>
<tr>
<td>13.06.2021</td>
<td>Submission of project report</td>
<td>Preparation of presentation</td>
</tr>
<tr>
<td>16.06.2021</td>
<td>Presentation of project results</td>
<td>Presentation of project results</td>
</tr>
</tbody>
</table>
Extra tutorial session: Introduction to Python

For all students which are not familiar with Python and Jupyter Notebooks, Ralph and Alex will offer one additional tutorial session.

When? → Today, Wednesday 03.03 at 15:30-17:00

Where? → Online, WIM-ZOOM Room 13
https://uni-mannheim.zoom.us/j/5630194600?pwd=ZWM2MlovRkM2RnJXQ2tLeU0zcUV3Zz09

The slides and notebooks used for the exercise will be uploaded in ILIAS and the webpage of the course.
Deadlines

- Submission of project proposal
 - Sunday, May 16th, 23:59

- Submission of final project report
 - Sunday, June 13th, 23:59

- Project presentations
 - Wednesday June 16th, Thursday, June 17th
 - everyone has to attend the presentations
Final Exam

- Date and Time: tbd
- Room: tba
- Duration: 60 minutes
- Structure: 6 open questions that
 - Goal is to check whether you have understood the lecture content
 - we try to cover all major chapters of the lecture: clustering, classification, regression, association analysis, text mining
 - Require you to describe the ideas behind algorithms and methods
 - often: How do methods react to special pattern in the data?
 - Might require you to do some simple calculations for which
 - you need to know the most relevant formulas
 - you do not need a calculator
1. Video recordings of the lectures from FSS 2020

2. Step-by-step introduction to relevant RapidMiner features

http://dws.informatik.uni-mannheim.de/en/teaching/lecture-videos/
Questions?
Outline: Introduction to Data Mining

1. What is Data Mining?
2. Tasks and Applications
3. The Data Mining Process
4. Data Mining Software
1. What is Data Mining?

- **Large quantities** of data are collected about all aspects of our lives
- This data contains **interesting patterns**
- Data Mining helps us to
 1. **discover these patterns** and
 2. **use them for decision making across all areas of society**, including
 - Business and industry
 - Science and engineering
 - Medicine and biotech
 - Government
 - Individuals
“We are Drowning in Data…”

Sloan Digital Sky Survey
≈ 200 GB/day
≈ 73 TB/year

Predict
• Type of sky object: Star or galaxy?
“We are Drowning in Data...”

US Library of Congress
≈ 235 TB archived
≈ 40 Wikipedias

Discover
• Topic distributions
• Historic trends*
• Citation networks

“We are Drowning in Data...”

Facebook
• 4 Petabyte of new data generated every day
• over 300 Petabyte in Facebook‘s data warehouse

Predict
• Interests and behavior of over one billion people

https://www.brandwatch.com/blog/facebook-statistics/
http://www.technologyreview.com/featuredstory/428150/what-facebook-knows/
“We are Drowning in Data...”

Predict
• Interests and behavior of mankind
“We are Drowning in Data...”

Law enforcement agencies collect unknown amounts of data from various sources
• Cell phone calls
• Location data
• Web browsing behavior
• Credit card transactions
• Online profiles (Facebook)
• …

Predict
• Terrorist or not?
• Trustworthiness
“...but starving for knowledge!”

We are interested in **the patterns, not the data itself!**

Data Mining methods help us to

- discover interesting patterns in large quantities of data
- take decisions based on the patterns
Definitions of Data Mining

- **Definitions**

 Exploration & analysis, of large quantities of data in order to discover meaningful patterns.

 Non-trivial extraction of
 - implicit,
 - previously unknown, and
 - potentially useful information from data.

- **Data Mining methods**

 1. detect interesting patterns in large quantities of data
 2. **support** human decision making by providing such patterns
 3. **predict** the outcome of a future observation based on the patterns
Origins of Data Mining

- Data Mining combines ideas from statistics, machine learning, artificial intelligence, and database systems.

- Tries to overcome shortcomings of traditional techniques concerning:
 - large amount of data
 - high dimensionality of data
 - heterogeneous and complex nature of data
 - explorative analysis beyond hypothesize-and-test paradigm
Survey on Data Mining Application Fields

Source: KDnuggets online poll, 435 and 446 participants
2. Tasks and Applications

- **Descriptive Tasks**
 - Goal: Find patterns in the data.
 - Example: *Which products are often bought together?*

- **Predictive Tasks**
 - Goal: Predict unknown values of a variable
 - given observations (e.g., from the past)
 - Example: *Will a person click a online advertisement?*
 - given her browsing history

- **Machine Learning Terminology**
 - descriptive = unsupervised
 - predictive = supervised
Data Mining Tasks

1. Cluster Analysis [Descriptive]
2. Classification [Predictive]
3. Regression [Predictive]
4. Association Analysis [Descriptive]
Given a set of data points, each having a set of attributes, and a similarity measure among them, find groups such that

- data points in one group are more similar to one another
- data points in separate groups are less similar to one another

Similarity Measures
- Euclidean distance if attributes are continuous
- other task-specific similarity measures

Goals
1. intra-cluster distances are minimized
2. inter-cluster distances are maximized

Result
- A descriptive grouping of data points
Cluster Analysis: Application 1

- Application area: Market segmentation
- Goal: Find groups of similar customers
 - where a group may be conceived as a marketing target to be reached with a distinct marketing mix
- Approach:
 1. collect information about customers
 2. find clusters of similar customers
 3. measure the clustering quality by observing buying patterns after targeting customers with distinct marketing mixes
Cluster Analysis: Application 2

- Application area: Document Clustering
- Goal: Find groups of documents that are similar to each other based on terms appearing in them
- Approach
 1. identify frequently occurring terms in each document
 2. form a similarity measure based on the frequencies of different terms

- Application Example: Grouping of articles in Google News
2.2 Classification: Definition

- Goal: Previously unseen records should be assigned a class from a given set of classes as accurately as possible.

- Approach:
 - Given a collection of records (training set)
 - each record contains a set of attributes
 - one attribute is the class attribute (label) that should be predicted
 - Find a model for predicting the class attribute as a function of the values of other attributes
Classification: Example

- Training set:
 - "tree"
 - "tree"
 - "not a tree"
 - "not a tree"

- Learned model: "Trees are big, green plants without wheels."
Classification: Workflow

Class/Label Attribute

Training Set

<table>
<thead>
<tr>
<th>Tid</th>
<th>Attrib1</th>
<th>Attrib2</th>
<th>Attrib3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Large</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Medium</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Small</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Medium</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Large</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Medium</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Large</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Small</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Medium</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Small</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Unseen Records

<table>
<thead>
<tr>
<th>Tid</th>
<th>Attrib1</th>
<th>Attrib2</th>
<th>Attrib3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>No</td>
<td>Small</td>
<td>55K</td>
<td>?</td>
</tr>
<tr>
<td>12</td>
<td>Yes</td>
<td>Medium</td>
<td>80K</td>
<td>?</td>
</tr>
<tr>
<td>13</td>
<td>Yes</td>
<td>Large</td>
<td>110K</td>
<td>?</td>
</tr>
<tr>
<td>14</td>
<td>No</td>
<td>Small</td>
<td>95K</td>
<td>?</td>
</tr>
<tr>
<td>15</td>
<td>No</td>
<td>Large</td>
<td>67K</td>
<td>?</td>
</tr>
</tbody>
</table>

Learning algorithm

Induction

Learn Model

Apply Model

Deduction

Model
Classification: Application 1

- **Application area:** Fraud Detection
- **Goal:** Predict fraudulent cases in credit card transactions.

Approach:

1. Use credit card transactions and information about account-holders as attributes
 - When and where does a customer buy? What does he buy?
 - How often he pays on time? etc.
 - Label past transactions as fraud or fair transactions
 This forms the class attribute

1. Learn a model for the class attribute from the transactions
 - Use this model to detect fraud by observing credit card transactions on an account
Classification: Application 2

- Application area: Direct Marketing
- Goal: Reduce cost of a mailing campaign by targeting only the set of consumers that likely to buy a new product
- Approach:
 1. Use data from a campaign introducing a similar product in the past
 - we know which customers decided to buy and which decided otherwise
 - this \{buy, don’t buy\} decision forms the class attribute
 - Collect various demographic, lifestyle, and company-interaction related information about the customers
 - age, profession, location, income, marriage status, visits, logins, etc.
 - Use this information to learn a classification model
 1. Apply model to decide which consumers to target
2.3 Regression

- Predict a value of a **continuous variable** based on the values of other variables, assuming a linear or nonlinear model of dependency

- Examples:
 - Predicting sales amounts of new product based on advertising expenditure
 - Predicting the price of a house or car
 - Predicting miles per gallon (MPG) of a car as a function of its weight and horsepower
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.

- Difference to classification: The predicted attribute is continuous, while classification is used to predict nominal attributes (e.g. *yes/no*)
2.4 Association Analysis: Definition

− Given a set of records each of which contain some number of items from a given collection
− discover frequent itemsets and produce association rules which will predict occurrence of an item based on occurrences of other items

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Frequent Itemsets
{Diaper, Milk, Beer}
{Milk, Coke}

Association Rules
{Diaper, Milk} --> {Beer}
{Milk} --> {Coke}
Association Rule Discovery: Applications 1

- Application area: Supermarket shelf management.
 - Goal: To identify items that are bought together by sufficiently many customers
 - Approach: Process the point-of-sale data collected with barcode scanners to find dependencies among items
 - A classic rule and its implications:
 • if a customer buys diapers and milk, then he is likely to buy beer as well
 • so, don’t be surprised if you find six-packs stacked next to diapers!
 • promote diapers to boost beer sales
 • if selling diapers is discontinued, this will affect beer sales as well

- Application area: Sales Promotion

 ![Frequently Bought Together](image)
Association Rule Discovery: Application 2

- Application area: Inventory Management

- Goal: A consumer appliance repair company wants to anticipate the nature of repairs on its consumer products and keep the service vehicles equipped with right parts to reduce on number of visits to consumer households

- Approach: Process the data on tools and parts required in previous repairs at different consumer locations and discover the co-occurrence patterns
Which Methods are Used in Practice?

3. The Data Mining Process

Source: Fayyad et al. (1996)
3.1 Selection and Exploration

- **Selection**
 - What data is potentially useful for the task at hand?
 - What data is available?
 - What do I know about the quality of the data?

- **Exploration / Profiling**
 - Get an initial understanding of the data
 - Calculate basic summarization statistics
 - Visualize the data
 - Identify data problems such as outliers, missing values, duplicate records
3.2 Preprocessing and Transformation

- Transform data into a representation that is suitable for the chosen data mining methods
 - scales of attributes (nominal, ordinal, numeric)
 - number of dimensions (represent relevant information using less attributes)
 - amount of data (determines hardware requirements)
- Methods
 - discretization and binarization
 - feature subset selection / dimensionality reduction
 - attribute transformation / text to term vector / embeddings
 - aggregation, sampling
 - integrate data from multiple sources
- Good data preparation is key to producing valid and reliable models
- Data integration and preparation is estimated to take 70-80% of the time and effort of a data mining project
3.3 Data Mining

- **Input:** Preprocessed Data
- **Output:** Model / Patterns

1. Apply data mining method
2. Evaluate resulting model / patterns
3. **Iterate**
 - experiment with different parameter settings
 - experiment with multiple alternative methods
 - improve preprocessing and feature generation
 - increase amount or quality of training data
3.4 Deployment

- Use model in the business context
- Keep iterating in order to maintain and improve model
How Do Data Scientists Spend Their Days?

4. Data Mining Software

Source: KDnuggets online poll, 1800 votes
- Powerful data mining suite
- Visual modelling of data mining pipelines
- Commercial tool, offering educational licenses
Gartner 2018 Magic Quadrant for Advanced Analytics Platforms
Literature – Rapidminer

1. **Rapidminer – Documentation**
 - http://docs.rapidminer.com
 - https://academy.rapidminer.com/catalog

 - covers theory and practical aspects using RapidMiner

 - explains along case studies how to use simple and advanced Rapidminer features
Python

We use the Anaconda Python distribution

- includes relevant packages, e.g.
 - scikit-learn, pandas
 - NumPy, Matplotlib

- includes Jupyter as development environment

```python
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import GridSearchCV

knn_estimator = KNeighborsClassifier()
parameters = {
    'n_neighbors': range(2, 9),
    'algorithm': ['ball_tree', 'kd_tree', 'brute']
}
stratified_10_fold_cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
grid_search_estimator = GridSearchCV(knn_estimator, parameters, scoring='accuracy',
                                      cv=stratified_10_fold_cv)
grid_search_estimator.fit(iris_data, iris_target)
```
Literature – Python

 2nd Edition, O’Reilly, 2019

Chapter 1: Introduction

Chapter 2: Data