Data Mining

Introduction to Data Mining
Hallo

- Prof. Dr. Christian Bizer
- Professor for Information Systems
- Research Interests:
 - Data and Web Mining
 - Web Data Integration
 - Data Web Technologies
- Room: B6 - B1.15
- eMail: christian.bizer@uni-mannheim.de
Hallo

- **M. Sc. Wi-Inf. Alexander Brinkmann**
- Graduate Research Associate
- Research Interests:
 - Data Search using Deep Learning
 - Product Data Categorization
- Room: B6, 26, C 1.04
- eMail: alexander.brinkmann@uni-mannheim.de

- Will teach one of the exercise groups and will supervise student projects.
Hallo

- **M. Sc. Wi-Inf. Keti Korini**
- Graduate Research Associate
- **Research Interests:**
 - Schema Mapping
 - Table Annotation using Deep Learning
- Room: B6, 26, C 1.03
- eMail: kkorini@uni-mannheim.de
- Will teach one of the exercise groups and will supervise student projects.
Hallo

- M. Sc. Wi-Inf. Ralph Peeters
- Graduate Research Associate
- Research Interests:
 - Entity Matching using Deep Learning
 - Product Data Integration
- Room: B6, 26, C 1.04
- eMail: ralph.peeters@uni-mannheim.de

- Will teach one of the exercise groups
 and will supervise student projects.
Course Organisation

- Lecture
 - introduces the principal methods of data mining
 - discusses how to evaluate the learned models
 - presents practical examples of data mining applications

- Exercise Groups
 - students experiment with the learned methods using Python

- Project Work
 - teams of six students realize a data mining project
 - teams may choose their own data sets and tasks
 (in addition, I will propose some suitable data sets and tasks)
 - teams write a 10 page summary about their project and present the results

- Grading
 - 75% written exam, 20% project report, 5% presentation of project results
Course Organisation

- Course Webpage
 - provides up-to-date information, lecture slides, and exercise material
 - https://www.uni-mannheim.de/dws/teaching/course-details/courses-for-master-candidates/ie-500-data-mining/

- Mailing List, Discussion Forum
 - ILIAS eLearning System, https://ilias.uni-mannheim.de/

- Time and Location
 - Lecture:
 - Wednesday, 10.15 - 11.45, A5 B1.44
 - Exercise:
 - Thursday, 10:15 - 11:45, Keti Korini
 Room A 104 (B6, Bauteil A)
 - Thursday, 12:00 - 13:30, Alex Brinkmann
 Room A 104 (B6, Bauteil A)
 - Thursday, 13:45 - 15:15, Ralph Peeters
 Room A 104 (B6, Bauteil A)
Lecture Contents

| 1. Introduction to Data Mining | What is Data Mining?
Tasks and Applications
The Data Mining Process |
|-------------------------------|---|
| 2. Cluster Analysis | K-means Clustering, Density-based Clustering,
Hierarchical Clustering, Proximity Measures |
| 3. Classification | Nearest Neighbor, Decision Trees and Forests, Rule Learning,
Naïve Bayes, SVMs, Neural Networks,
Model Evaluation, Hyperparameter Selection |
| 4. Regression | Linear Regression, Nearest Neighbor Regression,
Regression Trees, Time Series |
| 5. Text Mining | Preprocessing Text, Feature Generation, Feature Selection |
| 6. Association Analysis | Frequent Item Set Generation, Rule Generation,
Interestingness Measures |
<table>
<thead>
<tr>
<th>Week</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.02.2024</td>
<td>Lecture: Introduction to Data Mining</td>
<td>Exercise: Preprocessing/Visualization</td>
</tr>
<tr>
<td></td>
<td>Tutorial: Introduction to Python</td>
<td></td>
</tr>
<tr>
<td>21.02.2024</td>
<td>Lecture: Cluster Analysis</td>
<td>Exercise: Cluster Analysis</td>
</tr>
<tr>
<td>28.02.2024</td>
<td>Lecture: Classification 1</td>
<td>Exercise: Classification</td>
</tr>
<tr>
<td>06.03.2024</td>
<td>Lecture: Classification 2</td>
<td>Exercise: Classification</td>
</tr>
<tr>
<td>13.03.2024</td>
<td>Lecture: Classification 3</td>
<td>Exercise: Classification</td>
</tr>
<tr>
<td>20.03.2024</td>
<td>Lecture: Regression</td>
<td>Exercise: Regression</td>
</tr>
<tr>
<td></td>
<td>- Easter Break -</td>
<td></td>
</tr>
<tr>
<td>10.04.2024</td>
<td>Lecture: Text Mining</td>
<td>Exercise: Text Mining</td>
</tr>
<tr>
<td>17.04.2024</td>
<td>Introduction to the student projects and group formation</td>
<td>Preparation of project outline</td>
</tr>
<tr>
<td>22.04.2024</td>
<td>Submission of project outlines (Deadline: 23:59)</td>
<td></td>
</tr>
<tr>
<td>24.04.2024</td>
<td>Lecture: Association Analysis</td>
<td>Exercise: Association Analysis</td>
</tr>
<tr>
<td>25.04.2024</td>
<td>Feedback on project outlines</td>
<td></td>
</tr>
<tr>
<td>30.04.2024</td>
<td>Project Work</td>
<td>Feedback on demand</td>
</tr>
<tr>
<td>08.05.2024</td>
<td>Project Work</td>
<td>Feedback on demand</td>
</tr>
<tr>
<td>15.05.2024</td>
<td>Project Work</td>
<td>Feedback on demand</td>
</tr>
<tr>
<td>17.05.2024</td>
<td>Submission of project reports (Deadline: 23:59)</td>
<td></td>
</tr>
<tr>
<td>22.05.2024</td>
<td>Presentation of project results</td>
<td></td>
</tr>
</tbody>
</table>
Deadlines

- Submission of project proposal
 - Thursday, April 22nd, 23:59

- Submission of final project report
 - Sunday, May 17th, 23:59

- Project presentations
 - Wednesday May 22nd
 - everyone has to attend the presentations
Introduction to Python

- Today, 14.02 at 15:30-17:00 in Room B6, A101
- Topics:
 - Setup of environment (Anaconda, Jupyter Notebooks)
 - Python Intro / Design Goals
 - Basic programming concepts in Python
- Support
 - Help with environment setup
 - Q&A
- Material
 - Tutorial slides available on website
 - Try to install Anaconda before the tutorial
ChatGPT as Your Personal Tutor

We use ChatGPT in the exercises to

1. discuss suitable methods and parameter settings for different use cases
2. generate and debug Python code for experimenting with the methods
3. generate multiple-choice and open questions for self-assessment

Source: New York Times
Final Exam

- Date and Time: **Thursday, 13th June 2024**
- Duration: 60 minutes
- Structure: 6 open questions that
 - Check whether you have understood the content of the lecture
 - we try to cover all major chapters of the lecture: cluster analysis, classification, regression, association analysis, text mining
 - Require you to describe the ideas behind algorithms and methods
 - often: How do methods react to special patterns in the data?
 - Might require you to do some simple calculations for which
 - you need to know the most relevant formulas
 - you do not need a calculator
- There is **no second exam** as the course is offered every semester.
 - If you fail the exam, you also need to redo the project. So better prepare well.
Textbooks for the Course

Videos and Screencasts

- **Lecture Videos** by Heiko Paulheim and Christian Bizer
 - https://www.uni-mannheim.de/dws/teaching/lecture-videos/#c101905

- **Screencasts** for the Exercises by Ralph Peeters
 - https://www.uni-mannheim.de/dws/teaching/lecture-videos/#c101906
Questions?
Outline: Introduction to Data Mining

1. What is Data Mining?
2. Tasks and Applications
3. The Data Mining Process
1. What is Data Mining?

- Large quantities of data are collected about all aspects of our lives
- This data contains interesting patterns
- Data Mining helps us to
 1. discover these patterns and
 2. use them for decision making across all areas of society, including
 - Business and industry
 - Science and engineering
 - Medicine and biotech
 - Government
 - Individuals
“We are Drowning in Data...”

Sloan Digital Sky Survey

≈ 200 GB/day
≈ 73 TB/year

Predict

• Type of sky object:
 Star or galaxy?
"We are Drowning in Data..."

US Library of Congress
≈ 235 TB archived
≈ 40 Wikipedias

arXiv Preprint Server
> 2 million papers

Discover
• Topic distributions*
• Citation networks

Train
• Large Language Models

“We are Drowning in Data...”

Facebook
- 4 Petabyte of new data generated every day
- over 300 Petabyte in Facebook’s data warehouse

Predict
- Interests and behavior of over one billion people

https://www.brandwatch.com/blog/facebook-statistics/
http://www.technologyreview.com/featuredstory/428150/what-facebook-knows/
“We are Drowning in Data...”

THE INTERNET IN 2023 EVERY MINUTE

- 22,831 visits to ChatGPT
- 241.2M emails sent
- 18.8M text messages sent
- 2.4M Google searches
- 694,000 video hours viewed
- 347,222 tweets
- 3.47M snaps created
- 11,035 fake accounts removed
- 10.4M viewing minutes
- 6.3M total Zoom meeting minutes
- 34,247 Slack messages
- 11,834 chats on Microsoft Teams
- 6.94M emoji sent
- 271,309 iOS & Android app downloads
- 3.02M photos created with smartphones

Predict
- Interests and behavior of mankind
“We are Drowning in Data...”

Law enforcement agencies collect unknown amounts of data from various sources
- Cell phone calls
- Location data
- Web browsing behavior
- Credit card transactions
- Online profiles (Facebook)
- ...

Predict
- Terrorist or not?
- Social Credit
"We are Drowning in Data ... but starving for knowledge!"

We are interested in the patterns, not the data itself!

Data Mining methods help us to

- discover interesting patterns in large quantities of data
- take decisions based on the patterns
Definitions of Data Mining

- Definitions

Exploration & analysis,

of large quantities of data
in order to discover meaningful patterns.

Non-trivial extraction of

- implicit,
- previously unknown, and
- potentially useful information from data.

- Data Mining methods

1. detect interesting patterns in large quantities of data
2. **support** human decision making by providing such patterns
3. **predict** the outcome of a future observation based on the patterns
Origins of Data Mining

- Data Mining combines ideas from statistics, machine learning, artificial intelligence, and database systems.
- Tries to overcome shortcomings of traditional techniques concerning:
 - large amount of data
 - high dimensionality of data
 - heterogeneous and complex nature of data
 - explorative analysis beyond hypothesize-and-test paradigm
Survey on Data Mining Application Fields

Source: KDnuggets online poll, 447 (2021) and 435 (2018) participants
2. Tasks and Applications

- **Descriptive Tasks**
 - Goal: Find patterns in the data.
 - Example: *Which products are often bought together?*

- **Predictive Tasks**
 - Goal: Predict unknown values of a variable
 - given observations (e.g., from the past)
 - Example: *Will a person click a online advertisement?*
 - given her browsing history

- **Machine Learning Terminology**
 - descriptive = unsupervised
 - predictive = supervised
Data Mining Tasks

1. Cluster Analysis [Descriptive]
2. Classification [Predictive]
3. Regression [Predictive]
4. Association Analysis [Descriptive]
2.1 Cluster Analysis: Definition

- Given a set of data points, each having a set of attributes, and a similarity measure among them, find groups such that
 - data points in one group are more similar to one another
 - data points in separate groups are less similar to one another

- Similarity Measures
 - Euclidean distance if attributes are continuous
 - other task-specific similarity measures

- Goals
 1. intra-cluster distances are minimized
 2. inter-cluster distances are maximized

- Result
 - A descriptive grouping of data points
Cluster Analysis: Application 1

- Application area: Market segmentation
- Goal: Find groups of similar customers
 - where a group may be conceived as a marketing target to be reached with a distinct marketing mix
- Approach:
 1. collect information about customers
 2. find clusters of similar customers
 3. measure the clustering quality by observing buying patterns after targeting customers with distinct marketing mixes
Cluster Analysis: Application 2

- Application area: Document Clustering
- Goal: Find groups of documents that are similar to each other based on terms appearing in them
- Approach
 1. identify frequently occurring terms in each document
 2. form a similarity measure based on the frequencies of different terms
- Application Example: Grouping of articles in Google News
2.2 Classification: Definition

- **Goal:** Previously unseen records should be assigned a class from a given set of classes as accurately as possible.

- **Approach:**
 - Given a collection of records (*training set*)
 - each record contains a set of *attributes*
 - one attribute is the *class attribute (label)* that should be predicted
 - Find a *model* for predicting the class attribute as a function of the values of other attributes
Classification: Example

- Training set:

 "tree"

 "not a tree"

- Learned model: "Trees are big, green plants without wheels."
Classification: Workflow

Class/Label Attribute

Training Set

<table>
<thead>
<tr>
<th>Tid</th>
<th>Attrib1</th>
<th>Attrib2</th>
<th>Attrib3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Large</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Medium</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Small</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Medium</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Large</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Medium</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Large</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Small</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Medium</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Small</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Unseen Records

<table>
<thead>
<tr>
<th>Tid</th>
<th>Attrib1</th>
<th>Attrib2</th>
<th>Attrib3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>No</td>
<td>Small</td>
<td>55K</td>
<td>?</td>
</tr>
<tr>
<td>12</td>
<td>Yes</td>
<td>Medium</td>
<td>80K</td>
<td>?</td>
</tr>
<tr>
<td>13</td>
<td>Yes</td>
<td>Large</td>
<td>110K</td>
<td>?</td>
</tr>
<tr>
<td>14</td>
<td>No</td>
<td>Small</td>
<td>95K</td>
<td>?</td>
</tr>
<tr>
<td>15</td>
<td>No</td>
<td>Large</td>
<td>67K</td>
<td>?</td>
</tr>
</tbody>
</table>

Learning algorithm

Induction

Learn Model

Apply Model

Deduction
Classification: Application 1

- Application area: Fraud Detection
- Goal: Predict fraudulent cases in credit card transactions.
- Approach:
 1. Use credit card transactions and information about account-holders as attributes
 - When and where does a customer buy? What does he buy?
 - How often he pays on time? etc.
 2. Label past transactions as fraud or fair transactions
 This forms the class attribute
 3. Learn a model for the class attribute from the transactions
 4. Use this model to detect fraud by observing credit card transactions on an account
Classification: Application 2

- Application area: Direct Marketing
- Goal: Reduce cost of a mailing campaign by targeting only the set of consumers that likely to buy a new product
- Approach:
 1. Use data from a campaign introducing a similar product in the past
 • we know which customers decided to buy and which decided otherwise
 • this \{buy, don’t buy\} decision forms the class attribute
 2. Collect various demographic, lifestyle, and company-interaction related information about the customers
 • age, profession, location, income, marriage status, visits, logins, etc.
 3. Use this information to learn a classification model
 4. Apply model to decide which consumers to target
2.3 Regression

- Predict a value of a **continuous variable** based on the values of other variables, assuming a linear or nonlinear model of dependency

- **Examples:**
 - Predicting the price of a house or car
 - Predicting sales amounts of new product based on advertising expenditure
 - Predicting miles per gallon (MPG) of a car as a function of its weight and horsepower
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.

- **Difference to classification:** The predicted attribute is continuous, while classification is used to predict nominal attributes (e.g. yes/no)
2.4 Association Analysis: Definition

- Given a set of records each of which contain some number of items from a given collection

- discover frequent itemsets and produce association rules which will predict occurrence of an item based on occurrences of other items

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
<th>Frequent Itemsets</th>
<th>Association Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
<td>{Diaper, Milk, Beer}</td>
<td>{Diaper, Milk} --> {Beer}</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
<td>{Milk, Coke}</td>
<td>{Milk} --> {Coke}</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Association Rule Discovery: Applications 1

- **Application area: Supermarket shelf management.**
 - **Goal:** To identify items that are bought together by sufficiently many customers
 - **Approach:** Process the point-of-sale data collected with barcode scanners to find dependencies among items
 - **A classic rule and its implications:**
 - if a customer buys diapers and milk, then he is likely to buy beer as well
 - so, don’t be surprised if you find six-packs stacked next to diapers!
 - promote diapers to boost beer sales
 - if selling diapers is discontinued, this will affect beer sales as well

- **Application area: Sales Promotion**
Association Rule Discovery: Application 2

- Application area: Inventory Management

- Goal: A consumer appliance repair company wants to anticipate the nature of repairs on its consumer products and keep the service vehicles equipped with right parts to reduce on number of visits to consumer households

- Approach: Process the data on tools and parts required in previous repairs at different consumer locations and discover the co-occurrence patterns
Which Methods are Used in Practice?

Which Methods are Used in Practice?

3. The Data Mining Process

Source: Fayyad et al. (1996)
3.1 Selection and Exploration

- **Selection**
 - What data is potentially useful for the task at hand?
 - What data is available?
 - What do I know about the quality of the data?

- **Exploration / Profiling**
 - Get an initial understanding of the data
 - Calculate basic summarization statistics
 - Visualize the data
 - Identify data problems such as outliers, missing values, duplicate records
3.2 Preprocessing and Transformation

- Transform data into a representation that is suitable for the chosen data mining methods
 - scales of attributes (nominal, ordinal, numeric)
 - number of dimensions (represent relevant information using less attributes)
 - amount of data (determines hardware requirements)

- Methods
 - discretization and binarization
 - feature subset selection / dimensionality reduction
 - attribute transformation / text to term vector / embeddings
 - aggregation, sampling
 - integrate data from multiple sources

- Good data preparation is key to producing valid and reliable models
- Data integration and preparation is estimated to take 70-80% of the time and effort of a data mining project
3.3 Data Mining

- **Input:** Preprocessed Data
- **Output:** Model / Patterns

1. Apply data mining method
2. Evaluate resulting model / patterns
3. **Iterate**
 - experiment with different hyperparameter settings
 - experiment with multiple alternative methods
 - improve preprocessing and feature generation
 - increase amount or quality of training data
3.4 Deployment

- Use model in the business context
- Keep iterating in order to maintain and improve model

CRISP-DM Process Model
How Do Data Scientists Spend Their Days?

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets: 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

Advertisement:
Thus, attend IE670 Web Data Integration 😊
Literature for this Chapter

Chapter 1: Introduction

Chapter 2: Data
Literature – Python

Thank you!

- Are there any questions?

Next …

1. install the Anaconda Python distribution
2. attend the tutorial Introduction to Python today
3. get an OpenAI account for using ChatGPT
4. attend exercise Preprocessing/Visualization on Thursday
5. attend the lecture Cluster Analysis next week
6. …