

Data Mining

Regression

University of Mannheim – Prof. Bizer: Data Mining - FSS 2024 (Version 19.03.2024)

Slide 1

Outline

- 1. What is Regression?
- 2. KNN for Regression
- 3. Model Evaluation
- 4. Regression Trees
- 5. Linear Regression
- 6. Polynominal Regression
- 7. ANNs for Regression
- 8. Time Series Forecasting
- 9. The Bias/Variance-Tradeoff

1. What is Regression?

- Goal: Predict the value of a continuous variable based on the values of other variables assuming a linear or nonlinear model of dependency
 - The predicted variable is called dependent and is denoted \hat{y}
 - The other variables are called explanatory variables or independent variables denoted X = x₁, x₂, ..., x_n
- Approach: Given training examples (X_i, y_i) learn a model *f* to predict \hat{y} from X_{unseen}
- Difference to classification: The predicted attribute is continuous, while classification is used to predict nominal class attributes

Regression Model Learning and Application

Application Examples

- House Market
 - dependent: price of a house
 - explanatory variables: rooms, distance to public transport, size of garden
- Gasoline Consumption
 - dependent: MPG (miles per gallon)
 - explanatory variables: weight of car, horsepower, type of engine
- Weather Forecasting
 - dependent: wind speed
 - explanatory variables: temperature, humidity, air pressure change
- Stock Market
 - dependent: price of a share
 - explanatory variables: company profit, sector outlook, month of year, mood of investors

Source: KDnuggets online poll, 732 votes

Regression Techniques

- 1. Linear Regression
- 2. Polynomial Regression
- 3. Local Regression
- 4. K-Nearest-Neighbors Regression
- 5. Regression Trees

. . .

- 6. Artificial Neural Networks
- 7. Deep Neural Networks
- 8. Component Models of Time Series

2. K-Nearest-Neighbors Regression

Problem

- predict the temperature in a certain place
- where there is no weather station
- how could you do that?

Recap: K-Nearest-Neighbors Classification

- Idea: Vote of the nearest stations
- Example:
 - 3x sunny
 - 2x cloudy
 - Result: sunny
- Approach is called
 - "k nearest neighbors"
 - where k is the number of neighbors to consider
 - in the example: k=5
 - in the example: "near" denotes geographical proximity

K-Nearest-Neighbors Regression

- Idea: use the numeric average of the nearest stations
- Example:
 - 18°C, 20°C, 21°C, 22°C, 21°C
- Compute the average
 - again: k=5
 - average = (18+20+21+22+21) / 5
 - prediction: $\hat{y} = 20.4^{\circ}C$

Choosing a Good Value for K

- All considerations from KNN classification also apply to KNN regression
 - If k is too small, the result is sensitive to noise points
 - If k is too large, local patterns may be averaged out
- Rule of thumb: Test k values between 1 and 20

K-Nearest-Neighbor Regression in Python and RapidMiner

Central Question:

How good is a model at predicting the dependent variable for unseen records?

(generalization performance)

- 3.1 Methods for Model Evaluation
 - How to obtain reliable estimates?

3.2 Metrics for Model Evaluation

• How to measure the performance of a regression model?

3.1 Methods for Model Evaluation

- The same considerations apply as for classification:
- Cross validation: 10-fold (90% for training, 10% for testing in each iteration)
- Nested cross-validation for hyperparameter selection
 - Uses inner cross validation to select best hyperparameter values
 - Uses outer cross validation to estimate generalization error of models learned using best hyperparameter values

Python

```
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.neighbors import KNeighborsRegressor
# Create KNN regressor
estimator_knn = KNeighborsRegressor()
# Specify the hyperparameter values for the search
grid = {"n_neighbors": range(1,20)}
# Create the grid search estimator for model selection
estimator_gs = GridSearchCV(estimator_knn, grid, cv=5, scoring='neg_mean_squared_error')
# Run nested cross-validation for model evaluation
mse_cv = cross_val_score(estimator_gs, X, y, cv=5, scoring='neg_mean_squared_error')
```

- Mean Absolute Error (*MAE*) computes the average deviation between predicted value p_i and the actual value r_i

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$$

Mean Squared Error (*MSE*) places more emphasis on larger deviations

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (p_i - r_i)^2$$

 Root Mean Squared Error (*RMSE*) has similar scale as *MAE* and places more emphasis on larger deviations

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(p_i - r_i)^2}$$

4. Regression Trees

- The basic idea of how to learn and apply decision trees can also be used for regression
- Differences:
 - 1. splits are selected by maximizing the MSE reduction (not GINI or entropy)
 - 2. prediction is average value of the training examples in a specific leaf

Decision Tree

Regression Tree

Regression Trees Fitting the Training Data

Pre-pruning parameters deterime how closely the tree fits the training data

e.g. max_depth parameter

Overfitted Regression Tree

The learning algorithm uses available depth to cover strongest outliers

5. Linear Regression

Assumption of Linear Regression: The target variable y is (approximately) linearly dependent on explanatory variables X

- for visualization: we use one variable x (simple linear regression)
- in reality: vector $X = x_1...x_n$ (multiple linear regression)

Least-Squares Approach: Find the weight vector $W = (w_0, w_1, ..., w_n)$ that minimizes the sum of squared error (SSE) for all training examples

 X_1

Ridge Regularization

- Variation of least squares approach which tries to avoid overfitting by keeping the weights W small
- Ridge regression cost function to minimize

$$C(W) = MSE(W) + \alpha \sum_{i=1}^{n} w_i^2$$

- α = 0 : Normal least squares regression
- $\alpha = 100$: Strongly regularized flat curve
- Example of overfitting due to biased training data

Feature Selection

- Question: Do all explanatory variables X help to explain y or is only a subset of the variables useful?
- Problem 1: Highly correlated variables (e.g. height in cm and inch)
 - weights are meaningless and one variable should be removed for the better interpretability of the weights
- Problem 2: Insignificant variables (e.g. the weather for stock prices)
 - uncorrelated variables get w=0 or relatively small weights assigned
 - Question for variables having small weights: Is the variable still useful or did it get the weight by chance due to biased training data?
 - Answer: Statistical test with null-hypothesis "w=0 as variable is insignificant"
 - **t-stat:** number of standard deviations that w is away from 0
 - high t-stat → Variable is significant as it is unlikely that weight is assigned by chance
 - **p-value:** Probability of wrongly rejecting the hull-hypothesis
 - p-value close to zero → variable is significant
 - See: James, Witten, et al.: An Introduction to Statistical Learning. Chapter 3.1.2

Linear Regression in RapidMiner

- Two different classes for linear and ridge regression
- Feature selection implemented as separate preprocessing step

```
Python
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.feature_selection import SelectFwe
from sklearn.feature_selection import f_regression
selected_features = SelectFwe(f_regression, alpha=0.05).fit_transform(X, y)
estimator = LinearRegression()
estimator.fit(selected_features, y)
```

- Training data:
 - weather observations for current day
 - e.g., temperature, wind speed, humidity, ...
 - target: temperature on the next day
 - training values between -15°C and 32°C
- Interpolating regression
 - only predicts values from the interval [-15°C,32°C]
- Extrapolating regression
 - may also predict values outside of this interval

Interpolation vs. Extrapolation

- Interpolating regression is regarded as "safe"
 - i.e., only reasonable/realistic values are predicted

MY HOBBY: EXTRAPOLATING

http://xkcd.com/605/

Interpolation vs. Extrapolation

- Sometimes, however, only extrapolation is interesting
 - how far will the sea level have risen by 2050?
 - how much will the temperature rise in my nuclear power plant?

http://i1.ytimg.com/vi/FVfiujbGLfM/hqdefault.jpg

Linear Regression vs. K-NN Regression

- Linear regression extrapolates
- K-NN and regression trees interpolate

Linear Regression Examples

... But What About Non-linear Problems?

- One possibility is to apply transformations to the explanatory variables X within the regression function
 - e.g. log, exp, square root, square, etc.
 - example: $\hat{y} = \omega_0 + \omega_1 \cdot x_1^2 + \omega_2 \cdot x_2^2$
 - polynomial transformation
 - example: $\hat{y} = \omega_0 + \omega_1 \cdot x + \omega_2 \cdot x^2 + \omega_3 \cdot x^3$
- This allows use of linear regression techniques to fit much more complicated non-linear datasets

$$\hat{y}(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

- widely used extension of linear regression
- can also be fitted using the least squares method
- has tendency to over-fit training data for large degrees M
- Workarounds:
 - 1. decrease M
 - 2. increase amount of training data

Polynomial Regression in Python and RapidMiner

Python from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression poly_features = PolynomialFeatures(degree=2, include_bias=False).fit_transform(X, y) estimator = LinearRegression() estimator.fit(poly_features, y)

Polynomial Regression Overfitting Training Data

Overfitting often happens in sparse regions

- left and right side of green line
- workaround: Local regression

7. Artificial Neural Networks (ANNs) for Regression

Recap: How did we use ANNs for classification?

 $Y = I(0.3X_{1} + 0.3X_{2} + 0.3X_{3} - 0.4 > 0)$ where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

Artificial Neural Networks for Regression

- The function I(z) was used to separate the two classes:

$$Y = I(0.3X_{1} + 0.3X_{2} + 0.3X_{3} - 0.4 > 0)$$

where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

 However, we may simply use the inner formula to predict a numerical value (between 0 and 1):

$$\dot{Y} = 0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4$$

- What has changed:
 - we do not use a cutoff for 0/1 predictions, but leave the numbers as they are

Artificial Neural Networks for Regression

Given that our formula is of the form

$$\ddot{Y} = 0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4$$

- we can learn only linear models
 - i.e., the target variable is a linear combination the input variables
- More complex regression problems can be handled by using multiple hidden layers
 - this allows for approximating arbitrary functions
- Deep ANNs take this idea further by
 - employing millions of neurons
 - arranging them into specific network topologies
 - see Gemulla: Machine Learning + Deep Learning
- If you use ANNs be cautions about overfitting!

9. Time Series Forecasting

- A **time series** is a series of data points indexed in time order
 - examples: Stock market prices, ocean tides, birth rates, temperature
- Forecasting: Given a time series, predict data points that continue the series into the future
 - explicitly deals with time, which is not explicitly considered by other regression techniques
 - aims to predict future values of the same variable
- Approaches:
 - 1. Data-driven: Smoothing
 - 2. Model-Driven:
 - 1. Component models of time series
 - 2. Windowing combined with other regression techniques

Smoothing

Simple Moving Average (SMA)

average of the last n values, as more recent values might matter more

Exponential Moving Average (EMA)

 exponentially decrease weight of older values

DAX: red = SMA(38 days), yellow = SMA(200 days)

$$m_{ ext{MA}}^{(n)}(t) = rac{1}{n}\sum_{i=0}^{n-1}x(t-i)$$

$$m^{(n)}_{ ext{EMA}}(t) = lpha \cdot x(t) + (1-lpha) \cdot m^{(n)}_{ ext{EMA}}(t-1)$$

Component Models of Time Series

Assume **time series** to consist of four components:

- 1. Long-term trend (T_t)
- 2. Cyclical effect (C_t)
- 3. Seasonal effect (S_t)
- 4. Random variation (R_t)

Series = $T_t + C_t + S_t + R_t$

Windowing

- Idea: Transformation of forecasting problem into "classical" learning problem
 - either regression or classification
 - by only taking the last k time periods into account
- Example: Weather forecasting
 - using the weather from the three previous days
 - Possible model:
 - sunny, sunny, sunny \rightarrow sunny
 - sunny, cloudy, rainy \rightarrow rainy
 - sunny, cloudy, cloudy \rightarrow rainy
- Assumption:
 - only the last k time periods matter for the forecast
 - the older past is irrelevant

Windowing in RapidMiner and Python

utes) r-0 Temperature-2 23 24	Temperature-1	Temperature-0	
r-0 Temperature-2 23 24	Temperature-1	Temperature-0	
23 24	24	remperature-o	label
24	24	28	cloudy
	28	32	rainy
28	32	19	sunny
32	19	24	rainy
19	24	25	cloudy
24	25	17	sunny
25	17	14	sunny
17	14	12	rainy
14	12	26	sunny
12	26	23	cloudy
26	23	24	cloudy
23	24	28	cloudy
24	28	32	rainy
28	32	19	sunny
32	19	24	rainy
19	24	25	cloudy
24	25	17	sunny
	32 19 24 25 17 14 12 26 23 24 28 32 32 19 24	32 19 19 24 24 25 25 17 17 14 14 12 12 26 26 23 23 24 24 28 32 19 19 24 24 25	32 19 24 19 24 25 24 25 17 25 17 14 17 14 12 14 12 26 12 26 23 26 23 24 23 24 28 24 28 32 28 32 19 32 19 24 19 24 25 24 25 17

9. The Bias/Variance-Tradeoff

- We want to learn regression as well as classification models that generalize well to unseen data
- The generalization error of any model can be understood as a sum of three errors:
 - **1. Bias:** Part of the generalization error due to wrong model complexity
 - simple model (e.g. linear regression) used for complex real-world phenomena
 - model thus underfits the training and test data
 - 2. Variance: Part of the generalization error due to a model's excessive sensitivity to small variations in the training data
 - models with high degree of freedom/flexibility (like polynomial regression models or deep trees) are likely to overfit the training data
 - 3. Irreducible Error: Error due to noisiness of the data itself
 - to reduce this part of the error the training data needs to be cleansed (by removing outliers, fixing broken sensors)

The Bias/Variance-Tradeoff

- Left: Three models with different flexibility trying to fit a function
 - Orange: Linear regression. Green, blue: Polynomials of different degrees
- Right: Training error (gray) and test error (red) in relation to model flexibility

Learning Method and Hyperparameter Selection

We try to find the ideal flexibility (bias/variance-tradeoff) by

- 1. Testing different methods
 - Linear regression, polynomial regression, ...
 - Decision Trees, ANNs, Naïve Bayes, ...
- 2. Testing different hyperparameters
 - degree of polynomial, ridge
 - max depth of tree, min examples branch
 - number of hidden layers of ANN

But we have three more options:

- increase the amount of training data
- increase the interestingness of the data by including examples that are close to the decision boundary (corner cases)
- cleanse the training data

Learning Curves for Under- and Overfitting Models

Visualize the training error and test error for different training set sizes

- For overfitting models, the gap between training and test error can often be narrowed by adding more training data
- Thus, having more training data also allows us to use models having a higher flexibility, e.g. Deep Learning

Overfitting: Additional data narrows gap between training and test error

Summary

- Regression
 - predict numerical values instead of classes
- Model evaluation
 - metrics: (root) mean squared error
 - methods: (nested) cross-validation
- Methods
 - k nearest neighbors, regression trees, artificial neural networks
 - linear regression, polynomial regression, time series prediction
- For good performance on unseen data
 - choose learning method having the right flexibility (bias/variance-tradeoff)
 - use large quantities of interesting training data

Literature

- Solving practical regression tasks using:
 - Python: Geron: Hands-on Machine Learning Chapter 4
 - RapidMiner: Kotu: Predictive Analytics Chapter 5, 10
- Sophisticated coverage of regression including theoretical background
 - James, Witten, et al.: An Introduction to Statistical Learning Chapters 3, 7, 8

Aurélien Géron