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Data Mining

Association Analysis
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Example Applications in which Co-Occurrence Matters

 We are often interested in co-occurrence relationships

 Marketing
1. identify items that are bought together by 

sufficiently many customers

2. use this information for marketing or
supermarket shelf management purposes

 Inventory Management
1. identify parts that are often needed 

together for repairs

2. use this information to equip your 
repair vehicles with the right parts

 Usage Mining
1. identify words that frequently appear together

in search queries

2. use this information to offer auto-completion
features to the user 
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Outline

1. Correlation Analysis

2. Association Analysis
1. Frequent Itemset Generation

2. Rule Generation

3. Handling Continuous and 
Categorical Attributes

4. Interestingness Measures
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1. Correlation Analysis

 Correlation analysis measures the degree of dependency 
between two variables
• Continuous variables: Pearson’s correlation coefficient (PCC)

• Binary variables: Phi coefficient

 Value range [-1,1]
• 1  : positive correlation 

• 0  : variables independent

• -1 : negative correlation
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Correlations between Products in Shopping Baskets

P5P4P3P2P1

11011Basket 1

11001Basket 2

10001Basket 3

Shortcoming: Measures correlation only between two items but
not between multiple items, e.g. {ThinkPad, Cover}  {Minimaus}

1  :  always bought together
0  :  sometimes bought together
-1 :  never bought together
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2. Association Analysis

 Association analysis can find multiple item 
co-occurrence relationships (descriptive method)

 focuses on occurring items, not absent items

 first algorithms developed in the early 90s 
at IBM by Agrawal & Srikant

 initially used for shopping basket analysis to find 
how items purchased by customers are related

 later extended to more complex data structures
• sequential patterns

• subgraph patterns

 and other application domains
• web usage mining, social science, life science
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Association Analysis

Shopping Transactions

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Examples of Association Rules

{Beer, Bread}  {Milk}
{Milk, Bread}  {Eggs, Coke}
{Diaper}  {Beer}

Implication means 
co-occurrence, 
not causality!

Given a set of transactions, find rules that will 
predict the occurrence of an item based on the 
occurrences of other items in the transaction.
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 Itemset
• collection of one or more items

• example: {Milk, Bread, Diaper}

• k-itemset: An itemset that contains k items

 Support count ()
• frequency of occurrence of an itemset

• e.g. ({Milk, Bread, Diaper}) = 2 

 Support (s)
• fraction of transactions that 

contain an itemset

• e.g. s({Milk, Bread, Diaper}) = 2/5 = 0.4

 Frequent Itemset
• an itemset whose support is greater than 

or equal to a minimal support (minsup)
threshold specified by the user

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Definition: Support and Frequent Itemset
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Definition: Association Rule
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 Association Rule
 an implication expression of the form 

X  Y, where X and Y are itemsets

 an association rule states that when X 
occurs, Y occurs with certain probability. 

 Example:
{Milk, Diaper}  {Beer}

 Rule Evaluation Metrics
 Support (s)

fraction of transactions 
that contain both X and Y

 Confidence (c)
measures how often items 
in Y appear in transactions 
that contain X
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TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

ConsequentCondition
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Main Challenges concerning Association Analysis

1. Mining associations from large amounts of data can be 
computationally expensive
• algorithms need to apply smart pruning strategies

2. Algorithms often discover a large number of associations
• many of them are uninteresting or redundant

• the user needs to select the subset of the associations 
that is relevant given her task at hand
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The Association Rule Mining Task

 Given a set of transactions T, the goal of association rule mining is 
to find all rules having 
1. support ≥ minsup threshold

2. confidence ≥ minconf threshold

 minsup and minconf are provided by the user.

 Brute Force Approach:
1. list all possible association rules

2. compute the support and confidence for each rule

3. remove rules that fail the minsup and minconf thresholds

 Computationally prohibitive due to large number of candidates!



University of Mannheim – Prof. Bizer: Data Mining - FSS 2024 (Version 24.04.2024) Slide 12

Mining Association Rules

Example rules:

{Milk, Diaper}  {Beer} (s=0.4, c=0.67)
{Milk, Beer}  {Diaper} (s=0.4, c=1.0)
{Diaper, Beer}  {Milk} (s=0.4, c=0.67)
{Beer}  {Milk, Diaper} (s=0.4, c=0.67) 
{Diaper}  {Milk, Beer} (s=0.4, c=0.5) 
{Milk}  {Diaper, Beer} (s=0.4, c=0.5)

Observations:
 All the above rules are binary partitions of the same itemset: 

{Milk, Diaper, Beer}
 Rules originating from the same itemset have identical support  

but can have different confidence.
 Thus, we may decouple the support and confidence requirements.

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
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Mining Association Rules

 Two-step approach:

1. Frequent Itemset Generation
– generate all itemsets whose support  minsup

2. Rule Generation
– generate high confidence rules from each frequent itemset, 

where each rule is a binary partitioning of a frequent itemset

 Frequent itemset generation is still computationally expensive
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2.1 Frequent Itemset Generation

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, 
there are 2d

candidate 
itemsets!
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Brute Force Approach

 Treat every itemset is a candidate frequent itemset

 Count the support of each candidate by scanning the database

 Match each transaction against every candidate

 Complexity ~ O(NMw)  Expensive since M = 2d

 A smarter algorithm is required!

TID Items 
1 Bread, Milk 
2 Bread, Diaper, Beer, Eggs 
3 Milk, Diaper, Beer, Coke 
4 Bread, Milk, Diaper, Beer 
5 Bread, Milk, Diaper, Coke 

 

Transactions
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Example: Brute Force Approach

 Example:
• Amazon has 10 million books (i.e., Amazon Germany, as of 2011)

 That is 210.000.000 possible itemsets

 As a number:
• 9.04981... × 103.010.299

• that is: a number with 3 million digits!

 However:
• most itemsets will not be important at all, e.g., books on Chinese 

calligraphy, Inuit cooking, and data mining bought together

• thus, smarter algorithms should be possible

• intuition for the algorithm: All itemsets containing Inuit cooking are likely 
infrequent
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Reducing the Number of Candidates

 Apriori Principle

 Apriori principle holds due to the following property of the support 
measure:

• support of an itemset never exceeds the support of its subsets

• this is known as the anti-monotone property of support

)()()(:, YsXsYXYX 

If an itemset is frequent, then all of its subsets 
must also be frequent.
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Found to be 
Infrequent

Using the Apriori Principle for Pruning

Pruned 
supersets

If an itemset is infrequent, then all of its 
supersets must also be infrequent
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Item Count
Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count
{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

I te m s e t C o u n t  
{ B r e a d ,M i lk ,D ia p e r }  3  

 

Items (1-itemsets)

Pairs (2-itemsets)

Triplets (3-itemsets)

Minimum Support Count = 3

No need to generate
candidates involving 
Coke or Eggs

No need to generate
candidate {Milk, Diaper, Beer}
as count  {Milk, Beer} = 2

Example: Using the Apriori Principle for Pruning
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The Apriori Algorithm

1. Let k=1

2. Generate frequent itemsets of length 1

3. Repeat until no new frequent itemsets are identified

1. Generate length (k+1) candidate itemsets from length k 
frequent itemsets

2. Prune candidate itemsets that can not be frequent because 
they contain subsets of length k that are infrequent  (Apriori
Principle)

3. Count the support of each candidate by scanning the dataset

4. Eliminate candidates that are infrequent, leaving only those 
that are frequent
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itemset:count

1. scan T 
 Cand1: {1}:2, {2}:3, {3}:3, {4}:1, {5}:3

 Fequ1:  {1}:2, {2}:3, {3}:3,          {5}:3

 Cand2:  {1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}

2. scan T 
 Cand2: {1,2}:1, {1,3}:2, {1,5}:1, {2,3}:2, {2,5}:3, {3,5}:2

 Fequ2:            {1,3}:2,             {2,3}:2, {2,5}:3, {3,5}:2

 Cand3: {2, 3, 5}

3. scan T 
 C3: {2, 3, 5}:2 

 F3: {2, 3, 5}

Example: Apriori Algorithm

Dataset T
ItemsTID

1, 3, 4T100

2, 3, 5T200

1, 2, 3, 5T300

2, 5T400

minsup=0.5
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Frequent Itemset Generation in Rapidminer and Python

FP-Growth
Alternative frequent itemset generation algorithm which compresses data into 
tree structure in memory. Details Tan/Steinbach/Kumar: Chapter 4.6

RapidMiner

Python
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Frequent Itemsets in Rapidminer
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Example Application of Frequent Itemsets

1. Take top-k frequent itemsets of size 2 containing item A

2. Rank second item according to
• profit made by selling item

• whether you want to reduce
number of items B in stock

• knowledge about customer preferences

3. Offer special price for combination with top-ranked second item
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2.2 Rule Generation

 Given a frequent itemset L, find all non-empty subsets f  L such 
that f  L – f satisfies the minimum confidence requirement.

Example Rule:

Beer}Diaper,Milk{ 

67.0
3
2

)Diaper,Milk(
)BeerDiaper,Milk,(





c

Example Frequent Itemset:

}Beer Diaper,,Milk{

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
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Challenge: Large Number of Candidate Rules

 If {A,B,C,D} is a frequent itemset, then the candidate rules are:

ABC D, ABD C, ACD B, BCD A, 
A BCD, B ACD, C ABD, D ABC
AB CD, AC  BD, AD  BC, BC AD, 
BD AC, CD AB

 If |L| = k, then there are 2k – 2 candidate association rules 
(ignoring L   and   L)
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Rule Generation

 How to efficiently generate rules from frequent itemsets?
• In general, confidence does not have an anti-monotone property

c(ABC D) can be larger or smaller than c(AB D)

• But confidence of rules generated from the same itemset
has an anti-monotone property

• e.g., L = {A,B,C,D}:

c(ABC  D)  c(AB  CD)  c(A  BCD)

• Confidence is anti-monotone with respect to the number of 
items on the right-hand side of the rule
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Explanation

Confidence is anti-monotone w.r.t. number of items on the RHS of the 
rule

– i.e., “moving elements from left to right” cannot increase 
confidence

Reason:

– Due to anti-monotone property of support, we know

s(AB) ≤ s(A)

– Hence

c(AB → C) ≥ C(A → BC) 

c(AB→C ):=
s(ABC )
s (AB)

c(A→BC):=
s (ABC)
s(A)
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Candidate Rule Pruning

Pruned 
Rule 
Candidates

Low 
Confidence 
Rule

Moving elements from left to right 
cannot increase confidence
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Candidate Rule Generation within Apriori Algorithm

 Candidate rule is generated by merging two rules that share the 
same prefix in the rule consequent (right hand side of rule)

1. join(CD  AB, BD  AC)
would produce the candidate
rule D  ABC

2. Prune rule D  ABC if one of its
parent rules does not have
high confidence (e.g. AD  BC)

 All the required information for confidence computation has 
already been recorded in itemset generation. 

 Thus, there is no need to scan the transaction data T any more 

BD=>ACCD=>AB

D=>ABC
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Creating Association Rules in Python  and Rapidminer

RapidMiner

Python



University of Mannheim – Prof. Bizer: Data Mining - FSS 2024 (Version 24.04.2024) Slide 32

Exploring Association Rules in Rapidminer

Filter by 
conclusion

Filter by 
confidence



University of Mannheim – Prof. Bizer: Data Mining - FSS 2024 (Version 24.04.2024) Slide 33

2.3 Handling Continuous and Categorical Attributes

Session 
Id 

Country Session 
Length 
(sec) 

Number of 
Web Pages 

viewed 

Gender Browser 
Type 

Buy 

1 USA 982 8 Male Chrome No 

2 China 811 10 Female Chrome No 

3 USA 2125 45 Female Firefox Yes 

4 Germany 596 4 Male IE Yes 

5 Australia 123 9 Male Firefox No 

… … … … … … … 
10 

 

 Example Rule:

{Number of Pages [5,10)  (Browser=Firefox)}  {Buy = No}

 How to apply association analysis to attributes that are not 
asymmetric binary variables?
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Handling Categorical Attributes

 Transform categorical attribute into asymmetric binary variables

 Introduce a new “item” for each distinct attribute-value pair 
• e.g. replace “Browser Type” attribute with

– attribute: “Browser Type = Chrome”

– attribute: “Browser Type = Firefox”

– …..

 Issues
1. What if attribute has many possible values?

 many of the attribute values may have very low support

 potential solution: aggregate low-support attribute values

2. What if distribution of attribute values is highly skewed?

- example: 95% of the visitors have Buy = No
- most of the items will be associated with (Buy=No) item
- potential solution: drop the highly frequent item milkcaviar

champagne
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Handling Continuous Attributes

 Transform continuous attribute into binary variables 
using discretization
• equal-width binning

• equal-frequency binning

 Issue: Size of the discretization intervals affects support & confidence

• If intervals are too small

• itemsets may not have enough support

• If intervals too large

• rules may not have enough confidence

• e.g. combination of different age groups compared to a specific age group 

{Refund = No, (Income = $51,251)}  {Cheat = No}

{Refund = No, (60K  Income  80K)}  {Cheat = No}

{Refund = No, (0K  Income  1B)}  {Cheat = No}
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Attribute Transformation in Python and RapidMiner

 Categorical attribute values to binary attributes

 Continuous attribute values to binary attributes
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2.4 Interestingness Measures 

 Association rule algorithms tend to produce too many rules 
• many of them are uninteresting or redundant

• redundant if {A,B,C}  {D} and {A,B}  {D}   
have same support & confidence

 Interestingness of patterns depends on application
• one man's rubbish may be another's treasure

 Interestingness measures can be used to prune or 
rank the derived rules

 In the original formulation of association rules, support & 
confidence were the only interestingness measures used

 Later, various other measures have been proposed
• See Tan/Steinbach/Kumar, Chapter 6.7

• We will have a look at one:  Lift
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Drawback of Confidence

CoffeeCoffee

20515Tea

80575Tea

1001090

Association Rule: Tea  Coffee

– confidence(Tea  Coffee) = 0.75

– but support(Coffee) = 0.9

– although confidence is high, rule is misleading as the fraction 
of coffee drinkers is higher than the confidence of the rule

– we want confidence(X  Y) > support(Y) 

– otherwise rule is misleading as X reduces probability of Y

Contingency table
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Lift

 The lift of an association rule X  Y is defined as:

 Confidence normalized by support of consequent 

 Interpretation

• if  lift > 1, then X and Y are positively correlated

• if lift = 1, then X and Y are independent

• if lift < 1, then X and Y are negatively correlated

)(

) X(

Ys

Yc
Lift



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Example: Lift

)(

) X(

Ys

Yc
Lift




CoffeeCoffee

20515Tea

80575Tea

1001090

Association Rule: Tea  Coffee

– confidence(Tea  Coffee) = 0.75

– but support(Coffee) = 0.9

Lift(Tea  Coffee) = 0.75/0.9= 0.8333 

– lift < 1, therefore is negatively correlated

Contingency table
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Exploring Association Rules in RapidMiner

Lift 
close
to 1

Solid
lift
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Conclusion

 The algorithm does the counting for you and 
finds patterns in the data

 You need to do the interpretation based on your 
knowledge about the application domain.
• Which patterns are meaningful?

• Which patterns are surprising?
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