Classification 1 IE500 Data Mining

University of Mannheim | IE500 Data Mining | Classification 1 | Version 16.09.2024

2

Outline

- Decision Trees
- Overfitting
- Evaluation Metrics
- Naïve Bayes
- Evaluation Methods
- Support Vector Machines
- Artificial Neural Networks
- Hyperparameter Selection

Introduction to Classification

• Goal: Learn a model for recognizing a concept, e.g. trees

"tree"

"tree"

"tree"

"not a tree"

"not a tree"

"not a tree"

"tree?"

Introduction to Classification

- Example: learning a new concept, e.g., "Tree"
 - we look at (positive and negative)
 examples (training data)
 - …and derive a model

"tree?"

e.g., "Trees are big, green plants"

Goal: Classification of unseen instances

The Classification Workflow

Lazy vs. Eager Learning

• Lazy Learning

- Instance-based learning approaches, like KNN are lazy methods
- Do not build a model
 - "learning" is only performed on demand for unseen records
 - <u>Single goal</u>: Classify unseen records as accurately as possible

• Eager Learning

- but actually, we might have <u>two goals</u>
 - 1. classify unseen records
 - 2. understand the application domain as a human
 - Eager learning approaches generate models that are (might be) interpretable by humans
- Examples of eager techniques: decision tree learning

Decision Tree Classifiers

• Decision trees encode a procedure for taking a classification decision

Decision Boundary

• The decision boundaries are parallel to the axes because the test condition involves a single attribute at-a-time

Learning a Decision Tree

- How to learn a decision tree from training data?
 - Finding an optimal decision tree is NP-hard
 - Tree building algorithms thus use a greedy, top-down, recursive partitioning strategy to induce a reasonable solution
 - also known as: divide and conquer
- Many different algorithms have been proposed:
 - Hunt's Algorithm
 - ID3
 - C4.5
 - CHAID

University of Mannheim | IE500 Data Mining | Classification 1 | Version 16.09.2024

Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- Generate leaf node or attribute test:
 - if D_t only contains records that belong to the same class y_t, then t is a leaf node labeled as y_t
 - if D_t contains records that belong to more than one class, use an attribute test to split the data into subsets having a higher purity.
 - for all possible tests: calculate purity of the resulting subsets
 - choose test resulting in highest purity
- **Recursively** apply this procedure to each subset

Hunt's Algorithm – Step 1

- We calculate the purity of the resulting subsets for all possible splits
 - Purity of split on Refund
 - Purity of split on Marital Status
 - Purity of split on Taxable Income
- We find the split on Refund to produce the purest subsets

Hunt's Algorithm – Step 2

- We further examine the Refund=No records
- Again, we test all possible splits
- We find the split on Marital Status to produce the purest subsets

Hunt's Algorithm – Step 3

Taxable

Income

Cheat

Cheat

No

Yes

No

Yes

No

Yes

Marital

Status

Refund

> 80K

Yes

- We further examine the
 - Marital Status=Single or
 - Marital Status= Divorced records
- We find a split on Taxable Income to produce pure subsets
- We stop splitting as no sets containing different classes are left

3 No

5 No

8 No

10

Tid Refund

No

Marital

Status

Sinale

Sinale

Single

Divorced

Taxable

Income

Yes

Yes

< 80K

No

70K

95K

85K

90K

Tree Induction Issues

- Determine how to split the records
 - How to specify the attribute test condition?
 - Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous

• Depends on number of ways to split

- 2-way split
- Multi-way split
- How to determine the best split?
- Determine when to stop splitting

Splitting of Nominal Attributes

• Multi-way split: Use as many partitions as distinct values

• Binary split: Divides values into two subsets

Splitting of Ordinal Attributes

• Multi-way split: Use as many partitions as distinct values

Binary split: Divides values into two subsets
 while keeping the order

Splitting of Continuous Attributes

- Multi-way split: Discretization to form an ordinal attribute
 - equal-interval binning
 - equal-frequency binning
 - binning based on user-provided boundaries

- Taxable Income <10K [10K, 25K) [50K, 80K) >80K [25K, 50K)
- **Binary split**: (A < v) or $(A \ge v)$
 - usually sufficient in practice
 - find the best cut (i.e. the best v)
 based on a purity measure
 (see later)
 - can be computationally expensive

How to determine the Best Split?

- Before splitting the dataset contains:
 - 10 records of class A
 - 10 records of class B

Which attribute test is the best?

How to determine the Best Split?

- Nodes with **homogeneous** class distribution are preferred
- Need a measure of **node impurity**:

A: 5
B: 5A: 9
B: 1Non-homogeneousHomogeneousHigh degree of
node impurityLow degree of
node impurity

- Common measures of node impurity:
 - GINI Index (focus in this lecture)
 - Many other exist as well (e.g. Entropy)

Gini Index

- Named after Corrado Gini (1885-1965)
- Used to measure the distribution of income
 - 1: somebody gets everything
 - 0: everybody gets an equal share

Measure of Impurity: GINI

• Gini-based purity measure for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^2$$

p(j|t) is the relative frequency of class j at node t

- Minimum (0.0) when all records belong to one class, implying most interesting information n_c = number of classes
- Maximum $(1 \frac{1}{n_c})$ when records are equally distributed among all classes, implying least interesting information

Examples for Computing GINI

Splitting Based on GINI

• When a node p is split into k partitions (children), the quality of split is computed as:

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} \ GINI(i)$$

- where n_i = number of records at child i,
- n = number of records at node p
- Intuition:
 - The GINI index of each partition is weighted according to the partition's size

Computing GINI Split

• Purity **Gain** = impurity measure before splitting - after splitting

= 0.500 - 0.371 = 0.129

- Purity Gain is used to decide for the best split (highest purity gain or lowest GINIsplit)
- When using Entropy, then it is called Information Gain

Categorical Attributes: Computing Gini Index

• For each distinct attribute value, gather counts for each class

Multi-way split

Two-way split (find best partition of values)

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and $A \ge v$
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient!
 - Repetition of work

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Computing Gini Index

- 1. sort the attribute on values
- 2. linearly scan these values, each time updating the count matrix and computing the gini index
- 3. choose the split position that has the smallest gini index

											Та	xabl	e In	com	е								
Sorted Values			60		70)	7	5	85	5	90	D	9	5	10)0	12	20	12	25		220	
Split Positions		5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	0	12	22	17	2	23	0
		۳	>		>		>	<	>	<=	>	<=	>	<=	>	<=	>		>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	00	0.3	575	0.3	43	0.4	17	0.4	00	<u>0.3</u>	<u>800</u>	0.3	43	0.3	575	0.4	00	0.4	20

Continuous Attributes: Computing Gini Index

 Note: it is enough to compute the GINI for those positions where the label changes!

Discussion of Decision Trees

Explainable model!

• Advantages:

- Inexpensive to construct
- Fast at classifying unknown records
- Easy to interpret by humans for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets
- Disadvantages:
 - Decisions are based only one a single attribute at a time
 - Can only represent decision boundaries that are parallel to the axes

Comparing Decision Trees and k-NN

- Decision boundaries
 - k-NN: arbitrary
 - Decision trees: rectangular
- Sensitivity to scales
 - k-NN: needs normalization
 - Decision tree: does not require normalization (recap: Gini splitting)
- Runtime & memory
 - k-NN is more cheap to train, but more expensive for classification
 - Decision tree is more expensive to train, but more cheap for classification

Tree Induction in Python

Python

from sklearn.tree import DecisionTreeClassifier

Train classifier
dt_learner = DecisionTreeClassifier(criterion='gini', max_depth=10)
dt_learner.fit(preprocessed_training_data, training_labels)

Use classifier to predict labels
prediction = dt_learner.predict(preprocessed_unseen_data)

Practical Issue: Overfitting

- Example: Predict credit rating
 - possible decision tree:

Name	Net Income	Job status	Debts	Rating
John	40000	employed	0	+
Mary	38000	employed	10000	-
Stephen	21000	self- employed	20000	-
Eric	2000	student	10000	-
Alice	35000	employed	4000	+

Practical Issue: Overfitting

- Example: Predict credit rating
 - Alternative decision tree:

Name	Net Income	Job status	Debts	Rating
John	40000	employed	0	+
Mary	38000	employed	10000	-
Stephen	21000	self- employed	20000	-
Eric	2000	student	10000	-
Alice	35000	employed	4000	+

Practical Issue: Overfitting

- Both trees seem equally good
 - Classify all instances in the training set correctly
- Which one do you prefer?

Occam's Razor

- Named after William of Ockham (1287-1347)
- A fundamental principle of science
 - If you have two theories
 - that explain a phenomenon equally well
 - choose the simpler one

- Example:
 - Phenomenon: the street is wet
 - Theory 1: it has rained
 - Theory 2: a beer truck has had an accident, and beer has spilled.
 The truck has been towed, and magpies picked the glass pieces, so only the beer remains

Training and Testing Data

- Consider the decision tree again
- Our ultimate goal: classify <u>unseen</u> records

- Assume you measure the performance using the training data
- Conclusion:
 - We need separate data for testing

Overfitting: Symptoms and Causes

- Symptoms:
 - Decision tree too deep
 - Too many branches
 - Model works well on training set but performs bad on test set
- Typical causes of overfitting
 - Noise / outliers in training data
 - Too little training data
 - High model complexity

An overfitted model does not generalize well to unseen data.

Overfitting and Noise

How to Prevent Overfitting 1: Use More Training Data

- If training data is **under-representative**, training errors decrease but testing errors increase on increasing number of nodes
- Increasing the size of training set reduces the difference between training and testing errors at a given number of nodes

How to Prevent Overfitting 2: Pre-Pruning

- Stop the algorithm before tree becomes fully-grown
 - shallower tree potentially generalizes better (Occam's razor)
- Normal stopping conditions for a node (no pruning):
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
- Early stopping conditions (pre-pruning):
 - Stop if number of instances within a leaf node is less than some user-specified threshold (e.g. leaf size < 4)
 - Stop if expanding the current node only slightly improves the impurity measure (e.g. gain < 0.01)
 - Stop splitting at a specific depth (e.g. maxDepth = 5)

How to Prevent Overfitting 3: Ensembles

- Learn different models (base learners)
- Have them vote on the final classification decision

- Idea: Wisdom of the crowds applied to classification
 - A single classifier might focus too much on one aspect
 - Multiple classifiers can focus on different aspects

Algorithms to Learn Tree Ensembles

- Random Forest (Breiman 1997)
 - sklearn.ensemble.RandomForestClassifier
- Gradient Tree Boosting (Friedman 1999)
 - sklearn.ensemble.GradientBoostingClassifier
- Gradient Tree Boosting with Regularization
 - XGBoost (extra package)

- Ensembles perform better than e.g. simple decision trees
 - Disadvantage: usually the interpretability is lost due to many trees

Random Forest

trees

• Ensemble consisting of a large number of different decision

- Independence of trees achieved by introducing randomness into the learning process
 - only use a random subset of the attributes at each split
 - learn on different random subsets of the data (bagging)

Random Forest

• Random forests usually outperform single decision trees

• Random Forest in Python

Python

from sklearn.ensemble import RandomForestClassifier

Train classifier forest_estimator = RandomForestClassifier(n_estimators=100, criterion='gini', max_depth=None) forest_estimator.fit(preprocessed_training_data, training_labels)

Use classifier to predict labels
prediction = forest_estimator.predict(preprocessed_unseen_data)

XGBoost

Parameters w_i to be learned

- A Scalable System for Learning Tree Ensembles
 - Model improvement
 - Regularized objective for better model
 - Objective Function: $Obj(\Theta) = L(\Theta) + \Omega(\Theta)$

Regularization (complexity of model)

• Optimizing training loss yields good predictive models

Training Loss

- Optimizing regularization yields simple models
 - making predictions stable
- Systems optimizations
 - Out of core computing
 - Parallelization
 - Cache optimization

XGBoost

- Gradient Tree Boosting
 - $Obj(\Theta) = L(\Theta) + \Omega(\Theta)$
 - We can not use methods such as stochastic gradient descent (SGD)
 - Solution: Additive Training (Boosting)
 - Start with a simple model and enhance it in every round
- Regularization
 - How to define the complexity of a tree?

$$\Omega(\Theta) = y3 + \frac{1}{2}\lambda(4+0.01+1)$$

Model Evaluation

- Central Question:
 - How good is a model at classifying unseen records? (generalization performance)
- This week: Evaluation Metrics
 - How to measure the performance of a model?
- Next week: Evaluation Methods
 - How to obtain reliable estimates?

Confusion Matrix

- Focus on the **predictive capability** of a model
 - Looking at correctly/incorrectly classified instances
 - Two class problem (positive/negative class)
 - First word: true, if prediction is correct (otherwise false)
 - Second word: positive or negative (dependent on the predicted label)

		Predicted Class				
		Class=Yes	Class=No			
Actual Class		True Positives	False Negatives			
	Class=res	(TP)	(FN)			
		False Positives	True Negatives			
	CIASS=INO	(FP)	(TN)			

Metrics for Performance Evaluation

• Most frequently used metrics:

$-\Lambda ccuracu -$	TP+TN	Correct predictions
– Accuracy –	$\frac{1}{TP+TN+FP+FN}$	All predictions

- Error Rate = 1 - Accuracy

		Predicte	d Class	
		Class=Yes	Class=No	
		ТР	FN	
Actual Class	Class=res	25	4	$\frac{25+15}{25+15} = 0.8$
		FP	TN	$\frac{1}{25} + 15 + 6 + 4 = 0.0$
	Class=NO	6	15	

What is a Good Accuracy?

- i.e., when are you done?
 - at 75% accuracy?
 - at 90% accuracy?
 - at 95% accuracy?
- Depends on difficulty of the problem!
- Baseline: naive guessing
 - always predict majority class
- Compare
 - Predicting coin tosses with accuracy of 50%
 - Predicting dice roll with accuracy of 50%
 - Predicting lottery numbers (6 out of 49) with accuracy of 50%

Limitation of Accuracy: Unbalanced Data

- Classes often have very unequal frequency
 - Fraud detection: 98% transactions OK, 2% fraud
 - E-commerce: 99% surfers don't buy, 1% buy

• Consider a 2-class problem:

...

- Number of negative examples = 9990,
 Number of positive examples = 10
- if model predicts all examples to belong to the negative class, the accuracy is 9990/10000 = 99.9 %
- Accuracy is misleading because model does not detect any positive example

Precision and Recall

Precision and Recall – A Problematic Case

		Predicted Class				
		Class=Yes	Class=No			
Actual Class		ТР	FN			
	Class=res	1	99			
	Class=No	FP	TN			
		0	1000			

- This confusion matrix gives us
 - precision p = 100%
 - recall r = 1%
- Because we only classified one positive example correctly and no negative examples wrongly
- Thus, we want a measure that
 - combines precision and recall and is large if both values are large

F₁ -Measure

- F₁-score combines precision and recall into one measure
- F₁-score is the harmonic mean of precision and recall
 - The harmonic mean of two numbers tends to be closer to the smaller of the two
 - Thus for the F₁-score to be large, both p and r must be large

F_1 -Measure Graph

- Low threshold: Low precision, high recall
- Restrictive threshold: High precision, low recall

F_{β} -Measure

• More general $F_{\beta} = (1 + \beta^2) * \frac{p * r}{(\beta^2 * p) + r}$

 $-\beta = 2$ weights recall higher, $\beta = 0.5$ weights precision higher

Cost-Sensitive Model Evaluation

• Associate a cost for each error

Use case: Credit card fraud

Cost	Matrix	Predicted Class			
COSt		Class=Yes	Class=No		
Actual	Class=Yes	-1	100		
Class	Class=No	1	0		

- it is expensive to miss fraudulent transactions
- false alarms are not too expensive

Mod	ol M1	Predicted Class			
Iviou		Class=Yes	Class=No		
Actual	Class=Yes	162	38		
Class	Class=No	160	240		

Mod	ol M2	Predicted Class			
WIOU		Class=Yes	Class=No		
Actual	Class=Yes	155	45		
Class	Class=No	5	395		

Accuracy = 67%

Cost = 3798 Better model

Accuracy = 92% Cost = 4350

ROC Curves

- Some classification algorithms provide **confidence scores**
 - how sure the algorithms is with its prediction
 - e.g., KNN (the neighbor's vote), Naive Bayes (the probability)
- ROC curves visualize true positive rate and false positive rate in relation to the algorithm's confidence
- Drawing a ROC Curve
 - Sort classifications according to confidence scores (e.g.: fraction of neighbours in k-NN model)
 - Evaluate
 - Correct prediction: draw one step up
 - Incorrect prediction: draw one step to the right

Interpreting ROC Curves

- Best possible result:
 - all correct predictions have higher confidence than all incorrect ones
- The steeper, the better
 - random guessing results in the diagonal
 - so a decent algorithm should result in a curve significantly above the diagonal
- Comparing algorithms:
 - Curve A above curve B means algorithm
 A better than algorithm B
- Measure for comparing models
 - Area under ROC curve (AUC)

Online Lectures

 For the exercise and exam, the online lectures are relevant as well

Questions?

Literature for this Slideset

- Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar: Introduction to Data Mining.
 2nd Edition. Pearson.
- Chapter 3: Classification
 - Chapter 3.3: Decision Tree Classifier
 - Chapter 3.4: Overfitting
- Chapter 6.10.6: Random Forests

Introduction to Data Mining

SECOND EDITION

Pang-Ning Tan • Michael Steinbach • Anuj Karpatne • Vipin Kumar

