Classification 2

IE500 Data Mining

Outline

- Decision Trees
- Overfitting
- Evaluation Metrics
- Naïve Bayes
- Support Vector Machines
- Artificial Neural Networks
- Evaluation Methods
- Hyperparameter Selection

Naïve Bayes

- Probabilistic classification technique based on Bayes theorem
 - successful, old-school method for various tasks: NLP, recommendation, ...
- Goal: Estimate the most probable class label for a given record
- Probabilistic formulation of the classification task:
 - consider each attribute and class label as random variables
 - given a record with attributes $(A_1, A_2, ..., A_n)$ the goal is to find the class C that maximizes the conditional probability $P(C | A_1, A_2, ..., A_n)$
- Example: Should we play golf?
 - P(Play=yes | Outlook=rainy, Temperature=cool)
 - P(Play=no | Outlook=rainy, Temperature=cool)
- Question: How to estimate these probabilities given training data?

Bayes Classifier

- Thomas Bayes (1701-1761)
 - British mathematician and priest
 - tried to formally prove the existence of God
- Bayes Theorem
 - important theorem in probability theory
 - was only published after Bayes' death

Bayes Classifier

- Question:
 - How likely is class C, given that we observe attributes A
 - This is called a conditional probability, denoted P(C|A)
 - e.g.: Given some attributes A, what is the likelihood of a certain class C?
- Bayes Theorem

$$P(C|A) = \frac{P(A|C) P(C)}{P(A)}$$

- Computes one conditional probability P(C|A) out of another P(A|C)
- given that the base probabilities P(A) and P(C) are known
- Useful in situations where P(C|A) is unknown
 - while P(A|C), P(A) and P(C) are known or easy to determine/estimate?

Bayes Classifier

- Prior probability of class C:
 - probability of class C <u>before</u> attributes are seen
 - we play golf in 70% of all cases -> P(C) = 0.7
- Posterior probability of class C:
 - probability of class C <u>after</u> attributes A is seen
 - evidence: It is windy and raining -> P(C|A) = 0.2

Estimating the Prior Probability P(C)

- The prior probability $P(C_j)$ for each class is estimated by
 - counting the records in the training set that are labeled with class $P(C_i)$
 - dividing the count by the overall number of records
- Example:
 - P(Play=no) = 5/14
 - P(Play=yes) = 9/14

Training Data

Outlook	Temp	Humidity	Windy	Play	
Sunny	Hot	High	False	No	
Sunny	Hot	High	True	No	
Overcast	Hot	High	False	Yes	
Rainy	Mild	High	False	Yes	
Rainy	Cool	Normal	False	Yes	
Rainy	Cool	Normal	True	No	
Overcast	Cool	Normal	True	Yes	
Sunny	Mild	High	False	No	
Sunny	Cool	Normal	False	Yes	
Rainy	Mild	Normal	False	Yes	
Sunny	Mild	Normal	True	Yes	
Overcast	Mild	High	True	Yes	
Overcast	Hot	Normal	False	Yes	
Rainy	Mild	High	True	No	

Estimating the Class-Conditional Probability P(A|C)

- Naïve Bayes assumes that all attributes are statistically independent
 - knowing the value of one attribute says nothing about the value of another
 - this independence assumption is almost never correct!
 - but ... this scheme works well in practice
- The **independence assumption** allows the joint probability P(A|C) to be reformulated as the product of the individual probabilities $P(A_i|C_j)$

$$P(A_1, A_2, ..., A_n | C_j) = P(A_1 | C_j) * P(A_2 | C_j) * ... * P(A_3 | C_j) = \prod_{i=1}^{n} P(A_i | C_j)$$

P(Outlook=rainy, Temperature=cool | Play=yes) = P(Outlook=rainy | Play=yes) * P(Temperature=cool | Play=yes)

• Result: The probabilities $P(A_i|C_j)$ for all A_i and C_j can be estimated directly from the training data

Estimating the Probabilities $P(A_i|C_j)$

Out	tlook		Temper	ature		Hun	nidity			Windy		PI	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5			Our	tlook	Temp	-lumidity	Windy	Play

- The probabilities $P(A_i|C_i)$ are estimated by
 - Count how often an attribute value co-occurs with class C_j
 - Divide by the overall number of examples belonging to class C_i

Example:

"Outlook=sunny" occurs on 2/9 examples in class "Yes" P(Outlook=sunny|Yes) = 2/9

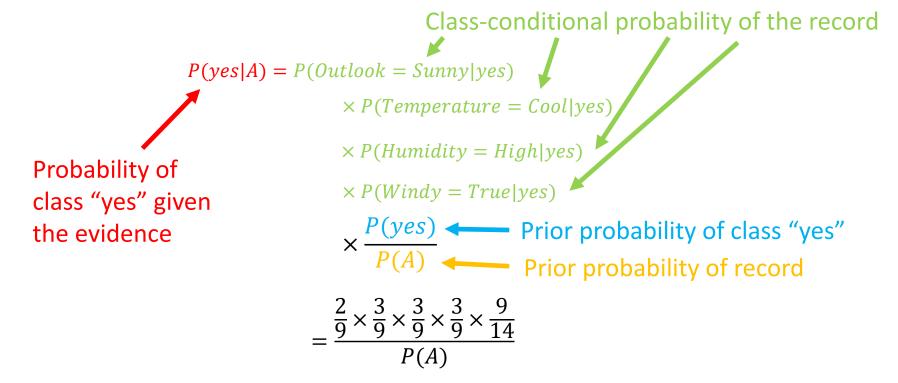
University of Mannheim | IE500 Data Mining | Classification 2 | Version 10.03.202

L/	/5	irue		3/5	1	3/5			
							\perp		
	Out	look	Tem	ıp	Hι	ımidity		Windy	Play
	Sun	ny	Hot		Hi	gh		False	No
	Sunny		Hot		Hi	gh		True	No
	Ove	ercast	Hot		Hi	gh		False	Yes
	Rair	ny	Milc		Hi	gh		False	Yes
	Rair	ny	Coo		No	ormal		False	Yes
	Rair	ny	Coo	ı	No	ormal		True	No
	Ove	ercast	Coo		No	ormal		True	Yes
	Sun	ny	Milc	l	Hi	gh		False	No
	Sun	ny	Coo	l	No	ormal		False	Yes
	Rair	ny	Milc	ı	No	ormal		False	Yes
	Sun	ny	Milc	ı	No	ormal		True	Yes
	Ove	ercast	Milc	I	Hi	gh		True	Yes
2 9	Ove	ercast	Hot		No	ormal		False	Yes
	Rair	าง	Milc	I	Hi	gh		True	No

Classifying a New Record

Unseen record

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?



Classifying a New Record

Outlook		Tempe	erature	•	Humidity Win		indy	Pla		ay			
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Class conditional probability
Prior probability

Likelihood of the two classes

For "yes" = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

For "no" = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Conversion into a probability by normalization:

P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205

P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

Choose Maximum

11

Handling Numerical Attributes

Option 1:

Discretize numerical attributes before learning classifier.

- Temp= 37°C -> "Hot"
- Temp= 21°C -> "Mild"
- Option 2:

Make assumption that numerical attributes have a **normal distribution** given the class.

- use training data to estimate parameters of the distribution
 (e.g., mean and standard deviation)
- once the probability distribution is known, it can be used to estimate the conditional probability $P(A_i|C_i)$

Handling Numerical Attributes

The probability density function for the normal distribution is

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- It is defined by two parameters:
 - Sample mean $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$

– Standard deviation
$$\sigma = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \mu)^2}$$

Both parameters can be estimated from the training data

Handling Numerical Attributes

Outlook		Tempe	rature	Humidity		Windy			Play		
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	64, 68,	65, 71,	65, 70,	70, 85,	False	6	2	9	5
Overcast	4	0	69, 70,	72, 80,	70, 75,	90, 91,	True	3	3		
Rainy	3	2	72,	85,	80,	95,					
Sunny	2/9	3/5	$\mu = 73$	μ =75	μ =79	μ =86	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	σ =6.2	σ =7.9	σ =10.2	σ =9.7	True	3/9	3/5		
Rainy	3/9	2/5									

Example calculation:

$$f(temp = 66 \mid yes) = \frac{1}{\sqrt{2\pi} * 6.2} e^{-\frac{(66-73)^2}{2*(6.2)^2}} = 0.034$$

Classifying a New Day

Unseen record

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	

```
Likelihood of "yes" = 2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036

Likelihood of "no" = 3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136

P("yes") = 0.000036 / (0.000036 + 0.000136) = 20.9\%

P("no") = 0.000136 / (0.000036 + 0.000136) = 79.1\%
```

 But note: Some numeric attributes are not normally distributed, and you may thus need to choose a different probability density function or use discretization

Handling Missing Values

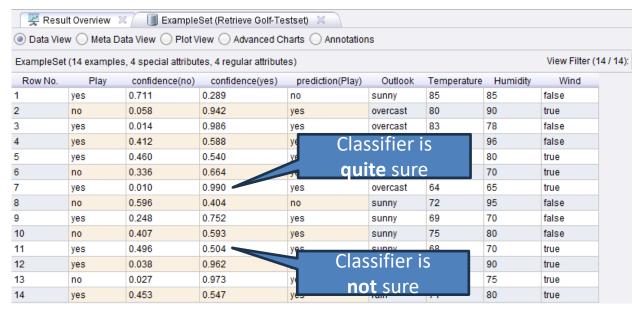
- Missing values may occur in training and in unseen classification records
- Training: Record is not included into frequency count for attribute value-class combination
- Classification: Attribute will be omitted from calculation

Example: Unseen record

record	Outlook	Temp.	Humidity	Windy	Play	
record	?	Cool	High	True	?	
		\	-			ı
Likeliho	ood of "yes	$s'' = 3/9 \times$	$\times 3/9 \times 3/9$	$9 \times 9/14$	= 0.02	238
Likeliho	ood of "no	" = 1/5 ×	4/5 × 3/5	× 5/14 =	= 0.034	43
P("yes"	') = 0.0238	/ (0.023	8 + 0.0343) = 41%		
P("no") = 0.0343	/ (0.0238	3 + 0.0343)	= 59%		

The Zero-Frequency Problem

- What if an attribute value doesn't occur with every class value?
 (e.g. no "Outlook = overcast" for class "no")
 - class-conditional probability will be zero! $P(Outlook = Overcast|no) = \frac{0}{5} = 0$
- Problem: Posterior probability will also be zero! P(no|A) = 0No matter how likely the other values are!
- Remedy: Add 1 to the count for every attribute value-class combination (Laplace Estimator)
- Result: Probabilities will never be zero! also: stabilizes probability estimates
- Original: $P(A_i|C) = \frac{N_{ic}}{N_c}$ Laplace: $P(A_i|C) = \frac{N_{ic}+1}{N_c+c}$ c = number of attribute values of A



Python from sklearn.naive_bayes import MultinomialNB from sklearn.naive_bayes import GaussianNB # Train classifier estimator = MultinomialNB(alpha=1.0) estimator.fit(preprocessed_training_data, training_labels)

- Usually larger coherent areas
- Soft margins with uncertain regions
- Arbitrary (often curved) shapes

Naïve Bayes Discussion

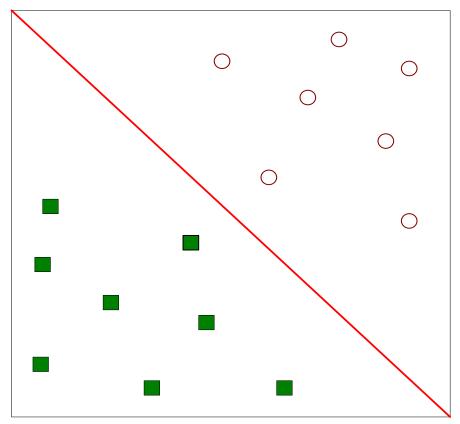
- Naïve Bayes works surprisingly well
 - Even if independence assumption is clearly violated
 - Classification doesn't require accurate probability estimates as long as maximum probability is assigned to correct class
- Robust to isolated noise points as they will be averaged out
- Robust to **irrelevant attributes** as $P(A_i|C)$ distributed uniformly for A_i
- Adding too many redundant attributes can cause problems
 - Solution: Select attribute subset as Naïve Bayes often works better with just a fraction of all attributes
- Technical advantages
 - learning Naïve Bayes classifiers is computationally cheap
 (probabilities can be estimated doing one pass over the training data)
 - Storing the probabilities does not require a lot of memory

Support Vector Machines

- Support vector machines (SVMs) are algorithms for learning linear classifiers for
 - Two class problems (a positive and a negative class)
 - From examples described by continuous attributes
- SVMs
 - achieve very good results especially for high dimensional data
 - invented by V. Vapnik and his co-workers in 1970s in Russia and became known to the West in 1992

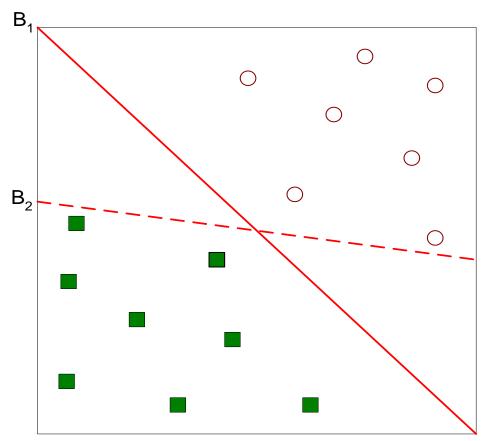
Support Vector Machines

 Find a linear hyperplane (decision boundary) that will separate the data



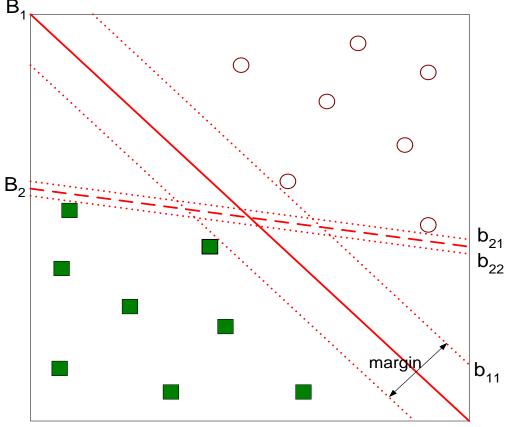
Which Hyperplane is better?

• Which one is better? B1 or B2? How do you define "better"?



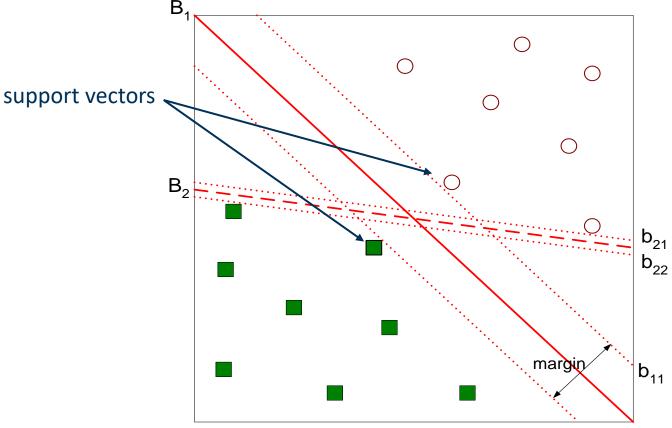
Which Hyperplane is better?

 Find hyperplane maximizes the margin to the closest points (support vectors) to avoid overfitting => B1 is better than B2



Which Hyperplane is better?

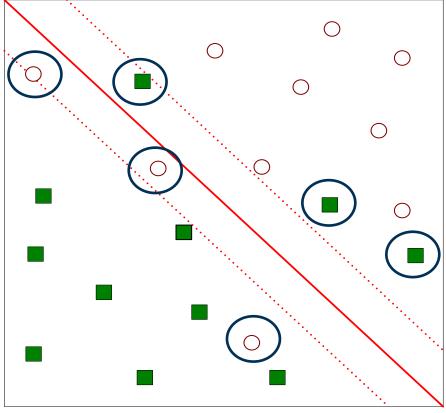
• Find hyperplane **maximizes** the margin to the closest points (support vectors) to avoid overfitting => B1 is better than B2



Not Linearly Separable Data

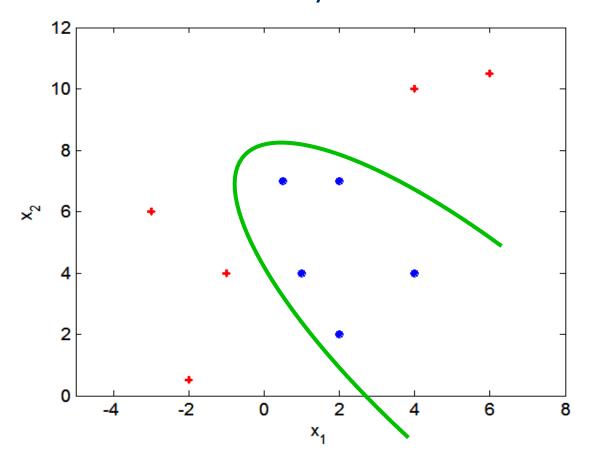
 Introduce slack variables in margin computation which result in a penalty for each data point that violates decision

boundary



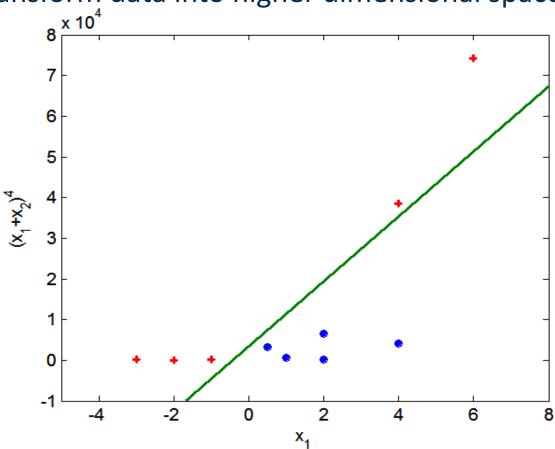
Nonlinear Support Vector Machines

What if decision boundary is not linear?



Nonlinear Support Vector Machines

Transform data into higher dimensional space



Nonlinear Support Vector Machines

- Transformation in higher dimensional space
 - Uses so-called Kernel function
 - Different variants: polynomial function, radial basis function, ...
- Finding a hyperplane in higher dimensional space
 - is computationally expensive
 - Kernel trick: expensive parts of the calculation can be performed in lower dimensional space
- Python:

```
from sklearn.svm import SVC

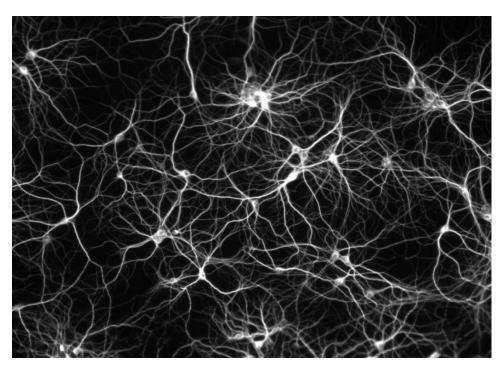
# Train classifier
estimator = SVC(C=1.0, kernel='rbf')
estimator.fit(scaled_training_data, training_labels)
```

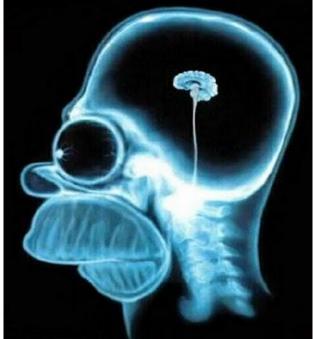
Tuning of SVM

- Instead of randomly trying a few kernel and parameters
 Hsu et al. proposes a systematic method
 - 1. Linearly scaling each attribute to the range [-1, +1] or [0, 1]
 - Use RBF Kernel
 - 3. Use **cross-validation** to find the best parameter C and γ
 - trying exponentially growing sequences of C and γ e.g. $C=2^{-5},2^{-3},...,2^{15}$ $\gamma=2^{-15},2^{-13},...,2^3$
 - 4. Use the best parameter C and γ to train the whole training set
 - 5. Test

<u>Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin:</u>
<u>A Practical Guide to Support Vector Classification</u>

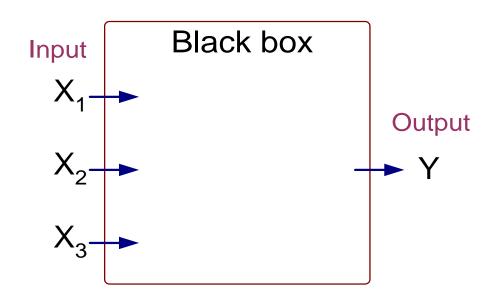
- Inspiration
 - one of the most powerful super computers in the world





Function fitting the training data:
 Output Y is 1 if at least two of the three inputs are equal to 1

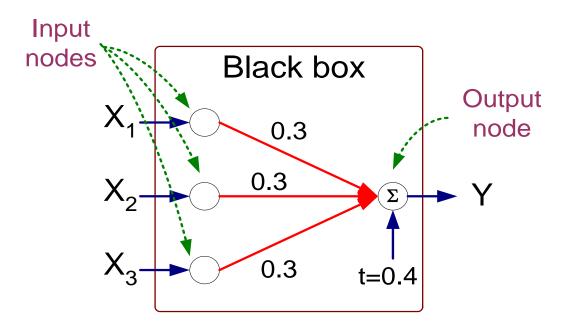
X ₁	X_2	X_3	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0



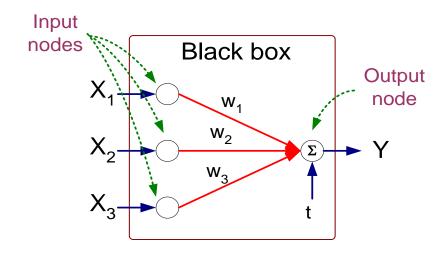
$$Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0)$$

Where
$$I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$$

X ₁	X ₂	X ₃	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0



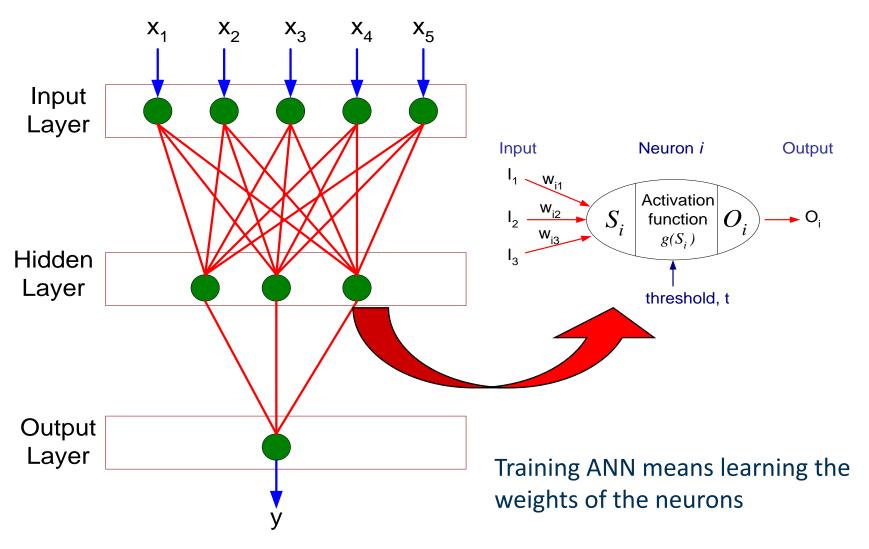
- Model is an assembly of inter-connected nodes (called neurons) and weighted links
- Output node sums up each of its input values according to the weights of its links
- Classification decision:
 Compare output node against some threshold t



Perceptron Model

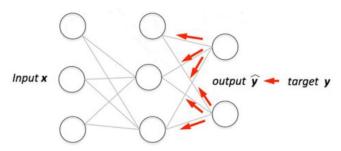
$$Y = I\left(\sum w_i X_i - t > 0\right)$$

Multi-Layer Artificial Neural Networks



Algorithm for Training ANNs

- 1. Initialize the weights $(w_0, w_1, ..., w_k)$, e.g., random or pre-trained
- 2. Adjust the weights in such a way that the output of ANN is as consistent as possible with class labels of the training examples
 - Objective function: $E = \sum_i [Y_i f(w_i, X_i)]^2$
 - Find the weights w_i's that minimize the sum of squared error E
 - using the back propagation algorithm (see Tan/Steinbach: Chapter 6.7,
 - Gemulla: Machine Learning)



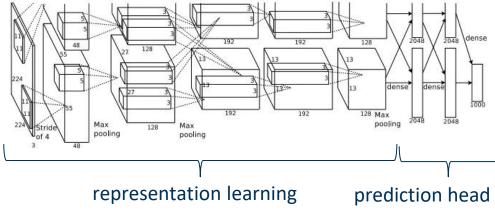
Python

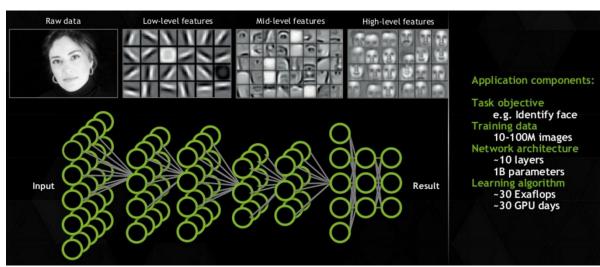
from sklearn.neural_network import MLPClassifier
Train classifier
neuralnet = MLPClassifier(hidden_layer_sizes=(100,), learning_rate_init=.1)
neuralnet.fit(training_data, training_labels)

- Convolutional Neural Networks
- Pre-Trained Language Models: BERT
- Generative Models: T5, GPT3, DALL·E
- Instruct Models: ChatGPT, LaMDA

Convolutional Neural Networks (CNNs)

- Invented in computer vision
- Combine
 - Representation learning (convolutions and pooling)
 - Prediction head (densely connected layers)
- Reduce number of input features via convolutions and pooling
- High capacity of models requires
 - Lots of training data
 - Lots of GPU time

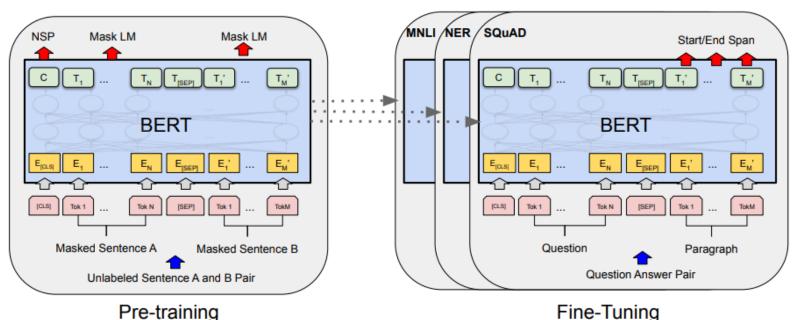




Pre-Trained Language Models

- Introduce pre-training, fine-tuning paradigm
 - Pre-trained on large text corpora
 - Model size: BERT-base 110 million parameters

Outperform previous models on most NLP tasks

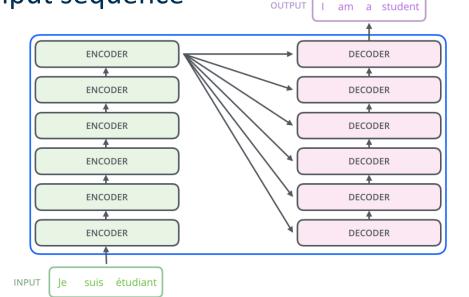


Fine-Tuning

Generative Models

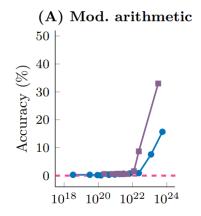
 Use transformer architecture to generate text or images based on embeddings of input sequence

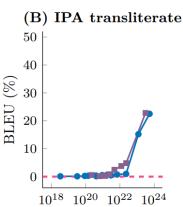
- Models for Text
 - T5, GPT3
- Models for Images
 - DALL·E, Stable Diffusion
- Pretrained on large text and image corpora
 - Web crawls
 - ImageNet, LAION-5B
- Model sizes: 5 to 175 billion parameters
 - accessible mostly via APIs



Instruct Language Models

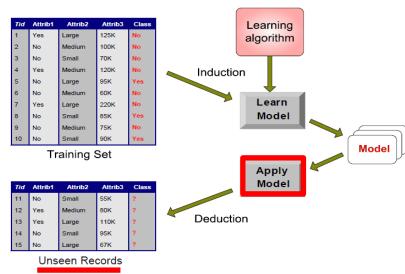
- After being pre-trained on large text corpora, instruct models are fine-tuned with instruction/output pairs
- Show good few-shot performance on wide range of task
 - BIG-bench collects 200+ tasks
- Models show emergent abilities
 - Can perform tasks they were not directly trained for
- Prompt design and in-context learning determine performance of frozen models





Model Evaluation

- Central Question:
 - How good is a model at classifying unseen records?
 (generalization performance)
- Last week: Evaluation Metrics
 - How to measure the performance of a model?
- This week: Evaluation Methods
 - How to obtain reliable estimates?



Model Evaluation

- How to obtain a reliable estimate of the generalization performance?
- General approach: Split labeled records into a training set and a test set
- Never ever test a model on data that was used for training!
 - Because model has been fit to training data, evaluating on training data does not result in a suitable estimate of the performance on unseen data
 - We need to keep training set and test set strictly separate
- Which labeled records to use for training and which for testing?
- Alternative splitting approaches:
 - Holdout Method
 - Random Subsampling
 - Cross Validation

Learning Curve

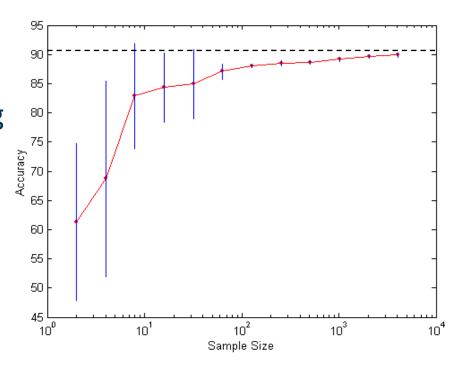
 The learning curve shows how accuracy changes with growing training set size

Conclusion:

- If model performance is low and unstable, get more training data
- Use labeled data rather for training than testing

Problem:

 Labeling additional data is often expensive due to manual effort involved



Holdout Method

- The holdout method reserves a certain amount of the labeled data for testing and uses the remainder for training
 - applied when lots of sample data is available
- Usually: 2/3 for training , 1/3 for testing (or even better 80% / 20%)

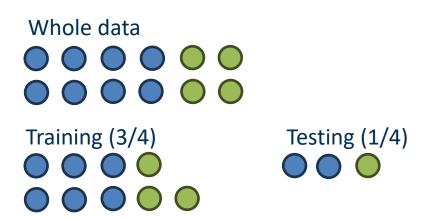
Training Set

Test Set

- For imbalanced datasets, random samples might not be representative
 - few or no records of the minority class (aka positive class) in training or test set

Stratified Sampling

- Stratified sample: Sample each class independently, so that records of the minority class are present in each sample
 - Make sure that each class is represented with approximately equal proportions in both subsets
 - Other attributes may also be considered for stratification
 - e.g., gender, age, ...



Random Subsampling

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for training
 - The performance of the different iterations is averaged

Training Set

Test Set

- Still not optimal as the different test sets may overlap
 - Problem: some outliers might always end up in the test sets
 - Problem: important records for learning (red tree) might always be in test sets

Leave One Out

- Iterate over all examples
 - Train a model on all examples but the current one
 - Evaluate on the current one
- Yields a very accurate estimate
- Uses as much data for training as possible
 - But is computationally infeasible in most cases
- Imagine: a dataset with a million instances
 - One minute to train a single model
 - Leave one out would take almost two years

Cross-Validation

- Compromise of Leave One Out and decent runtime
- Cross-validation avoids overlapping test sets
 - First step: data is split into k subsets of equal size
 - Stratification may be applied
 - Second step: each subset in turn is used for testing and the remainder for training
- This is called k-fold cross-validation
- The error estimates are averaged to yield an overall error estimate
 5-fold cross-validation

Cross-Validation

- Frequently used value for k: 10
 - Why ten? Extensive experiments have shown that this is a good choice to get an accurate estimate
 - Often the subsets are generated using stratified sampling (to deal with class imbalance)
 - Recent works on very large models have lead to a tendency of lowering that value (default value in scikit-learn is 5)

```
Python
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score

# Specify how examples are split
cross_val = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)

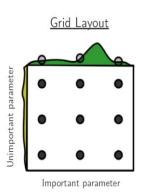
# Run cross-validation and caclulate performance metric
accuracy = cross_val_score(estimator, data, target, cv=cross_val, scoring='accuracy')
```

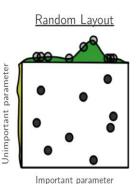
Hyperparameter Selection

- A hyperparameter is a parameter which influences the learning process and whose value is set before the learning begins
 - pruning thresholds for trees and rules
 - gamma and C for SVMs
 - learning rate, hidden layers for ANNs
- By contrast, parameters are learned during training / from training data
 - weights in an ANN, probabilities in Naïve Bayes, splits in a tree
- Many methods work poorly with the default hyperparameters
- How to determine good hyperparameters?
 - Manually play around with different hyperparameter settings
 - Have your machine automatically test many different settings (hyperparameter optimization)

Hyperparameter Optimization

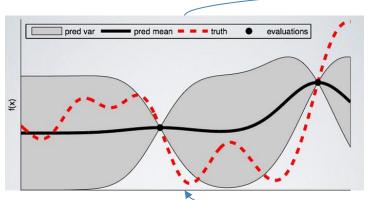
- Goal: Find the combination of hyperparameter values that results in learning the model with the lowest generalization error
- How to determine the parameter value combinations to be tested?
 - Grid Search: Test all combinations in user-defined ranges
 - Random Search: Test combinations of random parameter values
- Paper from 2012 (Bergstra and Bengio):
 - Grid search may easily miss best parameters
 - some hyperparameters are pretty sensitive e.g., 0.02 is a good value, but 0 and 0.05 are not
 - Random search often yields better results





Hyperparameter Optimization

- Evolutionary Search
 - Keep specific parameter values that worked well
- Bayesian optimization
 - Hyperparameter tuning as a learning problem:
 - Given a set of hyperparameters p, predict evaluation score s of model
 - The prediction model is referred to as a surrogate model or oracle
 - Training and evaluating an actual model is costly



Surrogate Model

"test these hyperparameters, please"

"here's the performance of those hyperparameters"

Actual Model

Hyperparameter Optimization

- Done:
 - Which hyperparameter combinations should be tested
 - Often hundreds of combinations are tested
 - reason for cloud computing
- Now:
 - Model Selection: From all learned models M, select the model m_{best} that is expected to generalize best to unseen records
 - On which data should the model be tested?

Model Selection Using a Validation Set

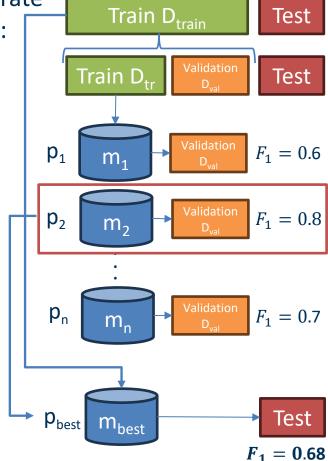
Keep data used for model selection strictly separate

from data used for model evaluation, otherwise:

Selected model m_{best} will overfit to test set

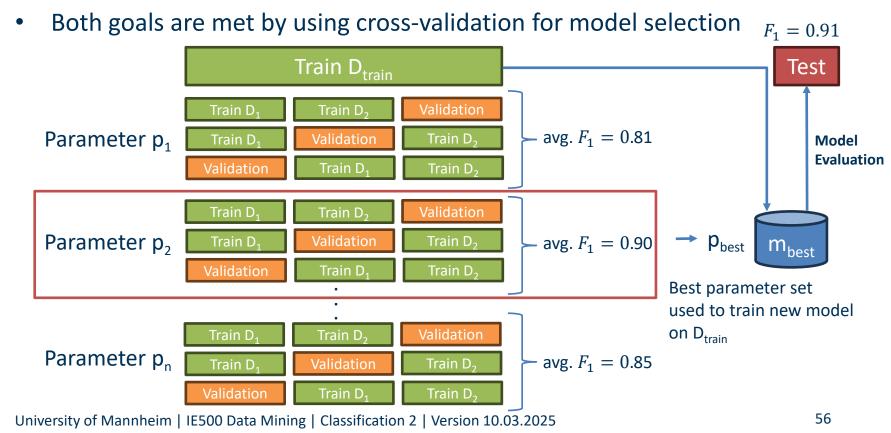
Estimate of generalization error is too optimistic

- Method to find the best model:
 - 1. Split training set D_{train} into validation set D_{val} and training set D_{tr}
 - Learn models m_i on D_{tr} using different hyperparameter value combinations p_i
 - 3. Select best parameter values p_{best} by testing each model m_i on the validation set D_{val}
 - 4. Learn final model m_{best} on complete D_{train} using the parameter values p_{best}
 - 5. Evaluate m_{best} on test set in order to get an unbiased estimate of its generalization performance

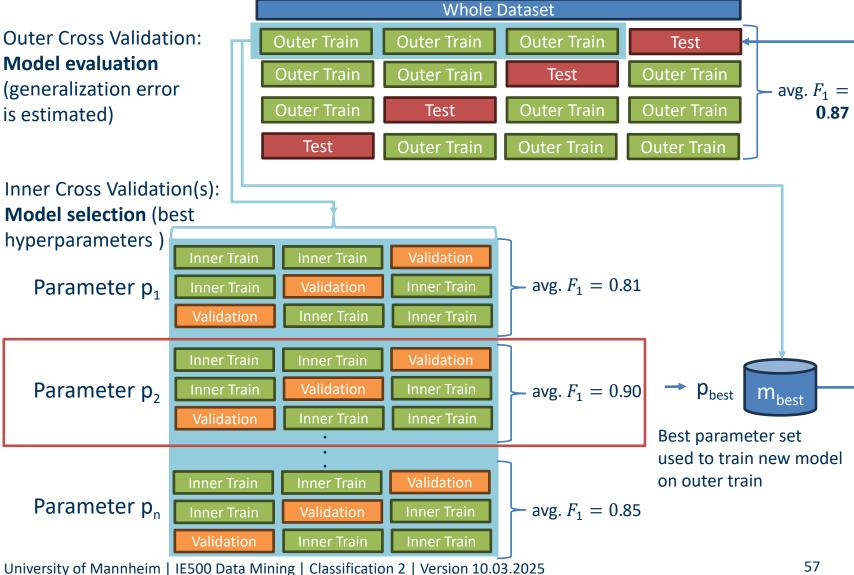


Model Selection Using Cross-Validation OF OF

- But wait, we want to
 - 1. Make sure that all examples are used for validation once
 - Use as much labeled data as possible for training



Nested Cross-Validation



Nested Cross-Validation in Python

Python

```
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC

# Specify hyperparameter combinations for search
parameter_grid = {"C": [1, 10, 100, 1000], "gamma": [.001, .01, .1, 1]}

# Create SVM
estimator_svm = SVC(kernel='rbf')

# Create the grid search for model selection
estimator_gs = GridSearchCV(estimator_svm, parameter_grid, scoring='accuracy', cv=5)

# Run nested cross-validation for model evaluation
accuracy_cv = cross_val_score(estimator_gs, dataset, labels, cv=5, scoring='accuracy')
```

scikit-learn Documentation: Tuning the hyper-parameters of an estimator

https://scikit-learn.org/stable/modules/grid_search.html

scikit-learn Documentation: Nested versus non-nested cross-validation

https://scikit-learn.org/stable/auto examples/model selection/plot nested cross validation iris.html

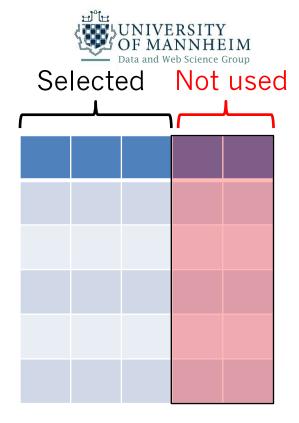
Model Selection - Overview

- For model evaluation with validation set and cross validation
 - Use the test set only once to get one final estimate of the error!
- The more models you train, the better estimate of the error

- Setting: 100 parameter combinations, 5 fold cross validation (inner and outer)
 - Validation set: |P|+1 = 101 models learned
 - Cross Validation: |folds| * |P| + 1 = 5 * 100 + 1 = 501 models learned
 - Nested Cross Validation: $|folds_{Outer}| * ((|folds_{Inner}| * |P|) + 1) = 5*((5*100)+1) = 2505 models learned$

Feature Selection

- Some classification methods automatically select the relevant feature subset as part of the learning process
 - e.g. Decision Trees, Random Forests, ANNs, SVMs
- The performance of other methods depends on the subset of the features provided
 - e.g. KNN, Naïve Bayes



- Automated feature selection approaches
 - Backward selection: start using all features, remove features, test again
 - Forward selection: Find best single feature, add further features, test again
- Use nested cross-validation to estimate the generalization error

Summary: Hyperparameter and Feature Selection

- Hyperparameter selection
 - Default: Always run hyperparameter optimization!
 - Otherwise you cannot say that a method does not work for a task
- Feature selection
 - Default: Check if classification method requires feature selection
 - If yes, run automated feature selection
- Model selection
 - Default: Use nested cross-validation
 - If computation takes too long: use better hardware, reduce number of folds,
 reduce parameter search space, sample data to reduce size
 - If exact replicability of results is required: Use single train, validation, test split
- If your dataset is imbalanced
 - don't forget to balance your training set, not your test set!

Online Lectures

- This week additional material is about comparing classifiers
- Online lectures are exercise and exam relevant

Week	Wednesday (Offline Lecture)	Online Lecture (see Ilias Course)	Thursday (Exercise)
10.02.2025	no lecture		Introduction to Python (13:45–15:15)
17.02.2025	Introduction to Data Mining		Intro
24.02.2025	Preprocessing		Preprocessing
03.03.2025	Classification 1	Nearest Centroids	Classification 1
10.03.2025	Classification 2	Comparing Classifiers	Classification 2
17.03.2025	Regression	Ensembles	Regression
24.03.2025	Clustering and Anomalies	Hierarchical Clustering	Clustering
31.03.2025	Feedback on project outlines	Time Series	Time Series
07.04.2025	Association Analysis and Subgroup Discovery		Association Analysis

Questions?

Literature for this Slideset

- Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar: Introduction to Data Mining.
 2nd Edition. Pearson.
- Chapter 6.4: Naïve Bayes
- Chapter 6.9: Support Vector Machines
- Chapter 6.7 and 6.8:
 Artificial Neural Networks
- Chapter 3.5: Model Selection
- Chapter 3.7: Presence of Hyper-Parameters

