

Data Mining I

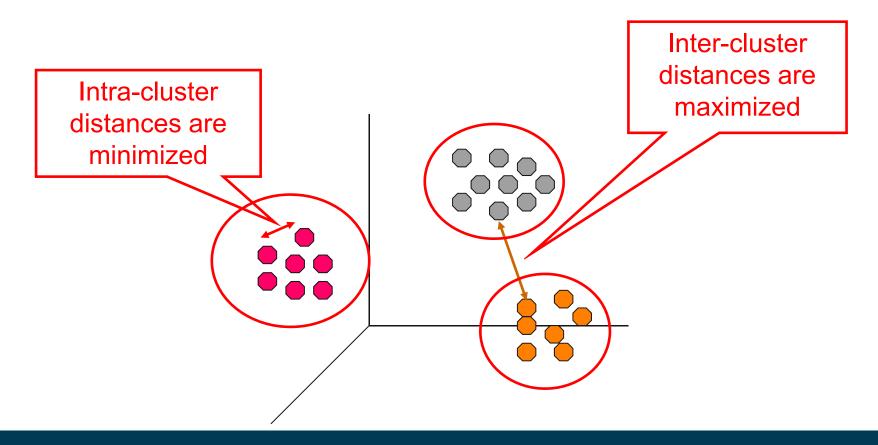
Cluster Analysis

Outline

- 1. What is Cluster Analysis?
- 2. K-Means Clustering
- 3. Density-based Clustering
- 4. Hierarchical Clustering
- 5. Proximity Measures

1. What is Cluster Analysis?

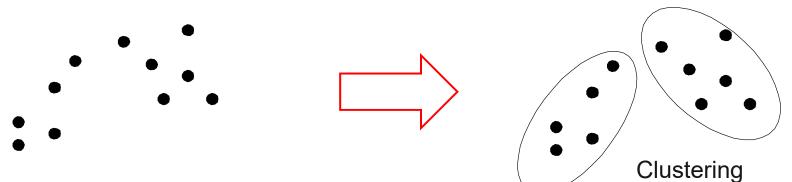
- Finding groups of objects such that
 - the objects in a group will be similar to one another
 - and different from the objects in other groups.
- Goal: Get a better understanding of the data.



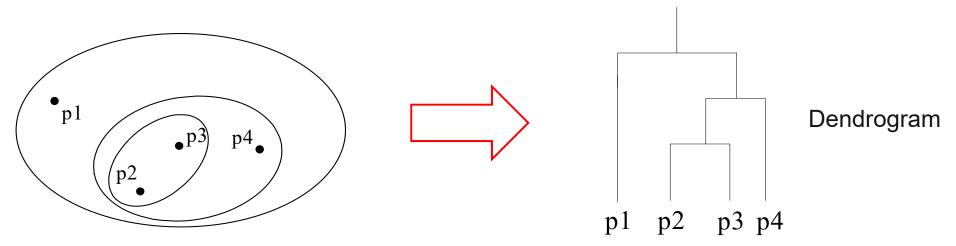
Types of Clusterings

Partitional Clustering

 A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset



- Hierarchical Clustering
 - A set of nested clusters organized as a hierarchical tree



Aspects of Cluster Analysis

A clustering algorithm

- Partitional algorithms
- Density-based algorithms
- Hierarchical algorithms
- ...

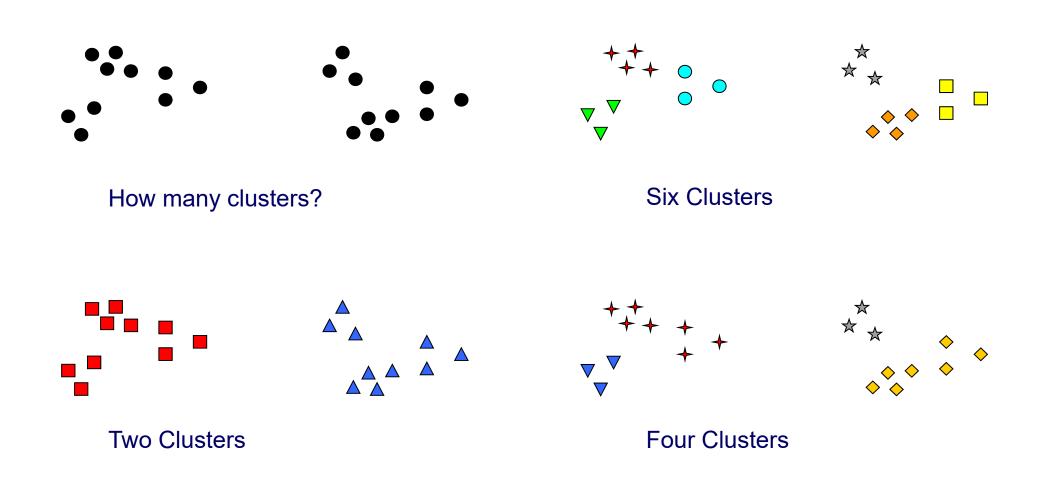
- A proximity (similarity, or dissimilarity) measure

- Euclidean distance
- Cosine similarity
- Domain-specific similarity measures
- ...

Clustering Quality

- Intra-clusters distance \Rightarrow minimized.
- Inter-clusters distance \Rightarrow maximized.

The Notion of a Cluster is Ambiguous



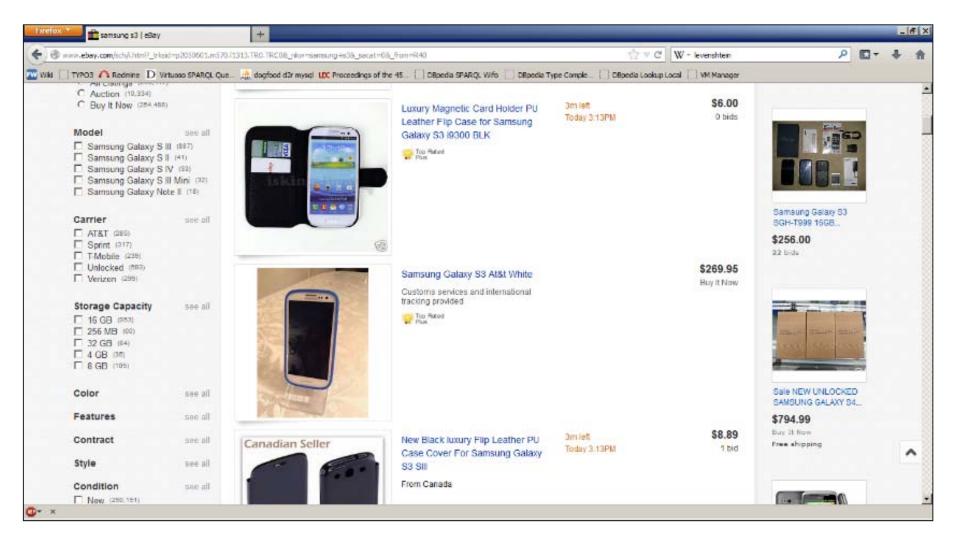
The usefulness of a clustering depends on the goals of the analysis.

Example Application: Market Research

- Identify groups of similar customers
- Level of granularity depends on the task at hand
- Relevant customer attributes depend on the task at hand

Example Application: E-Commerce

- Identify offers of the same product, e.g. on eBay



Example Application: Image Recognition

Identify parts of an image that belong to the same object

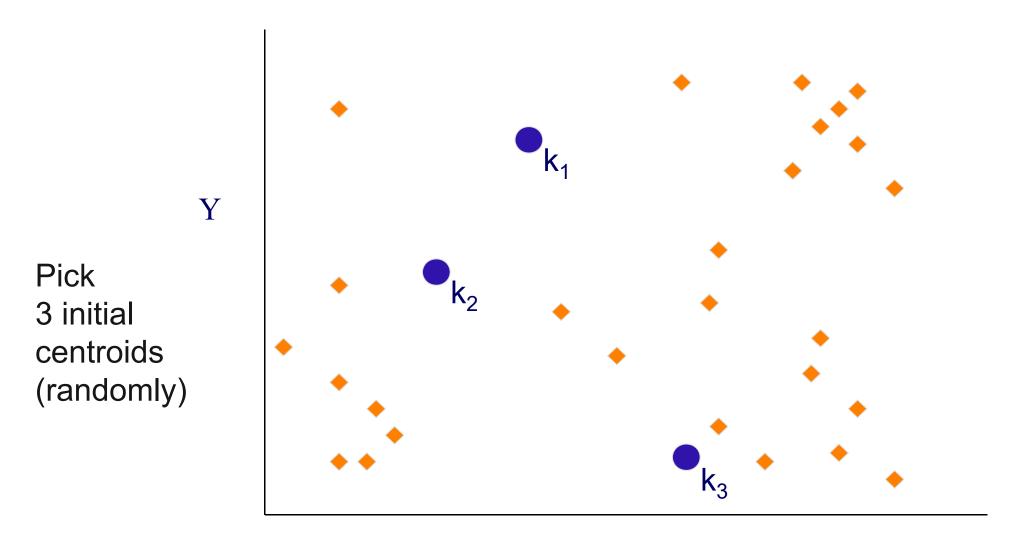


Cluster Analysis as Unsupervised Learning

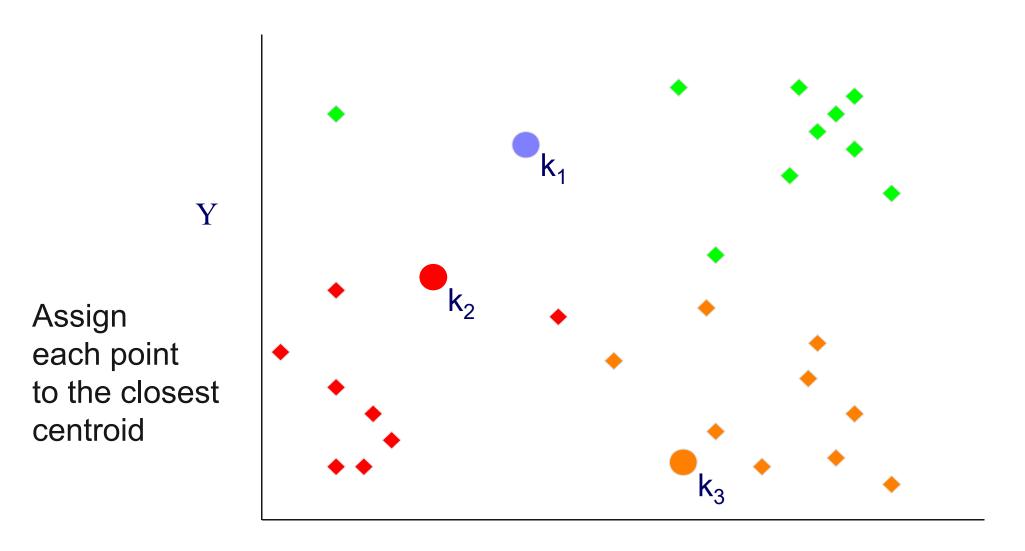
- Supervised learning: Discover patterns in the data that relate data attributes with a target (class) attribute.
 - These patterns are then utilized to predict the values of the target attribute in unseen data instances.
 - The set of classes is known before.
 - Training data is often provided by human annotators.
- Unsupervised learning: The data has no target attribute.
 - We want to <u>explore the data</u> to find some intrinsic structures in it.
 - The set of classes/clusters is not known before.
 - No training data is used.
- Cluster Analysis is an unsupervised learning task.

2. K-Means Clustering

- Partitional clustering approach.
- Each cluster is associated with a centroid (center point).
- Each point is assigned to the cluster with the closest centroid.
- Number of clusters, K, must be specified manually.
- The basic algorithm is very simple:
- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

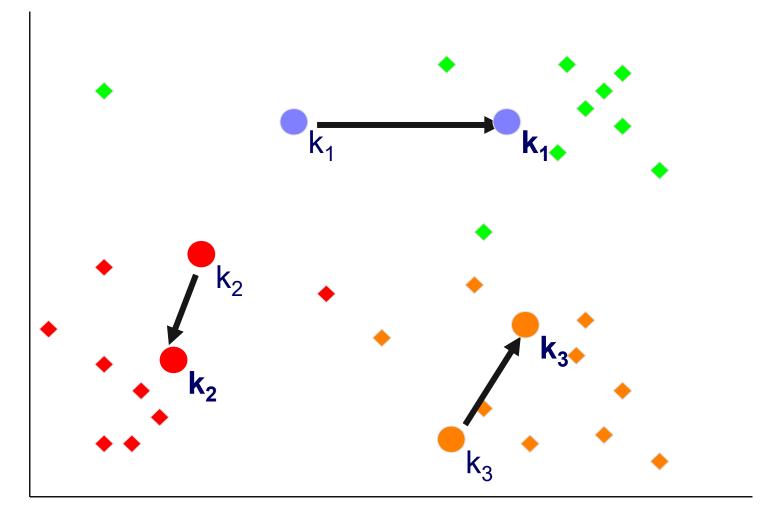


University of Mannheim – Bizer: Data Mining I – HWS2019 (Version: 5.9.2019) – Slide 12



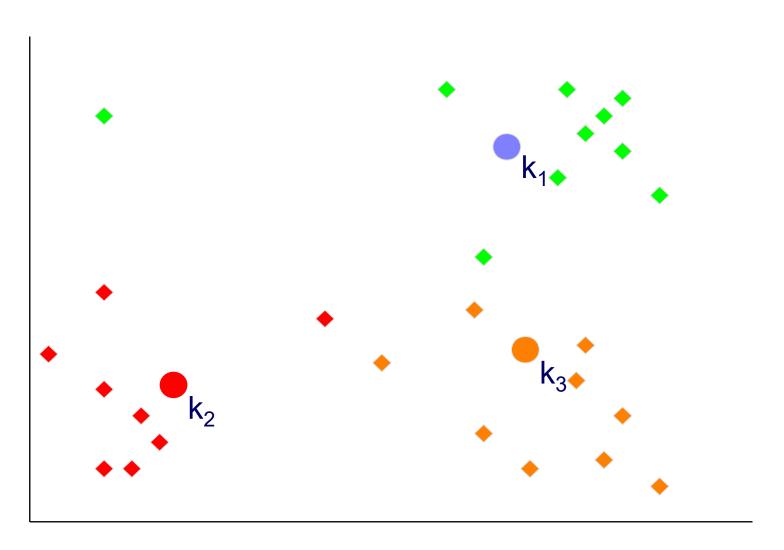
Y

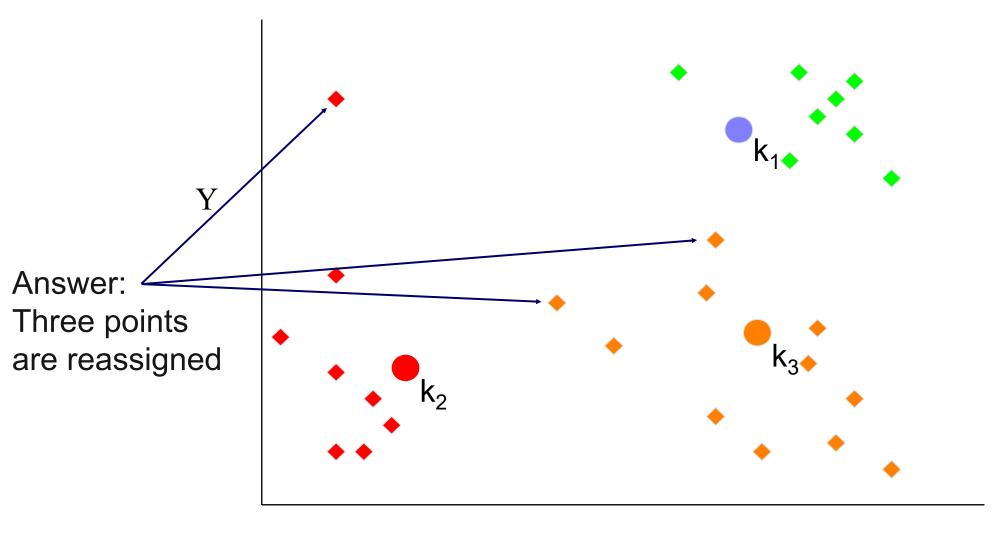
Move each centroid to the mean of each cluster



Reassign points closest to a different new cluster center

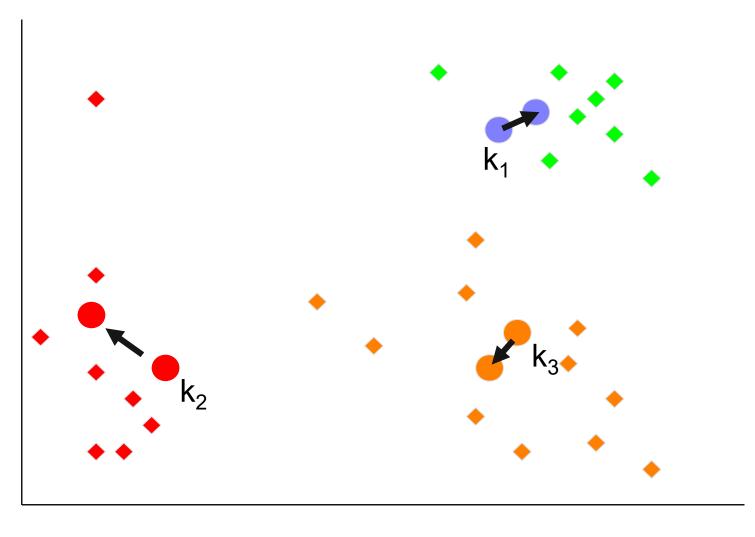
Question: Which points are reassigned?





Y

 Re-compute cluster means
 Move centroids to new cluster means



Standard Convergence Criterion

1. no (or minimum) change of centroids

Alternative Convergence Criterions

- 1. no (or minimum) re-assignments of data points to different clusters
- 2. stop after X iterations
- 3. minimum decrease in the sum of squared error (SSE)
 - see next slide

Evaluating K-Means Clusterings

- Most common cohesion measure: Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest centroid.
 - To get SSE, we square these errors and sum them.

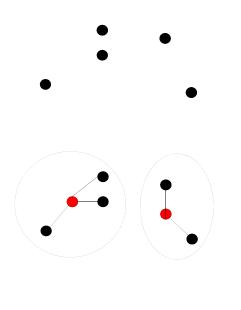
$$SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2$$

- C_i is the *j*-th cluster
- m_i is the centroid of cluster C_i (the mean vector of all the data points in C_i),
- $dist(x, m_i)$ is the distance between data point x and centroid m_i .
- Given several clusterings, we should prefer the one with the smallest SSE.

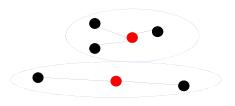
Illustration: Sum of Squared Error

- Clustering problem given:

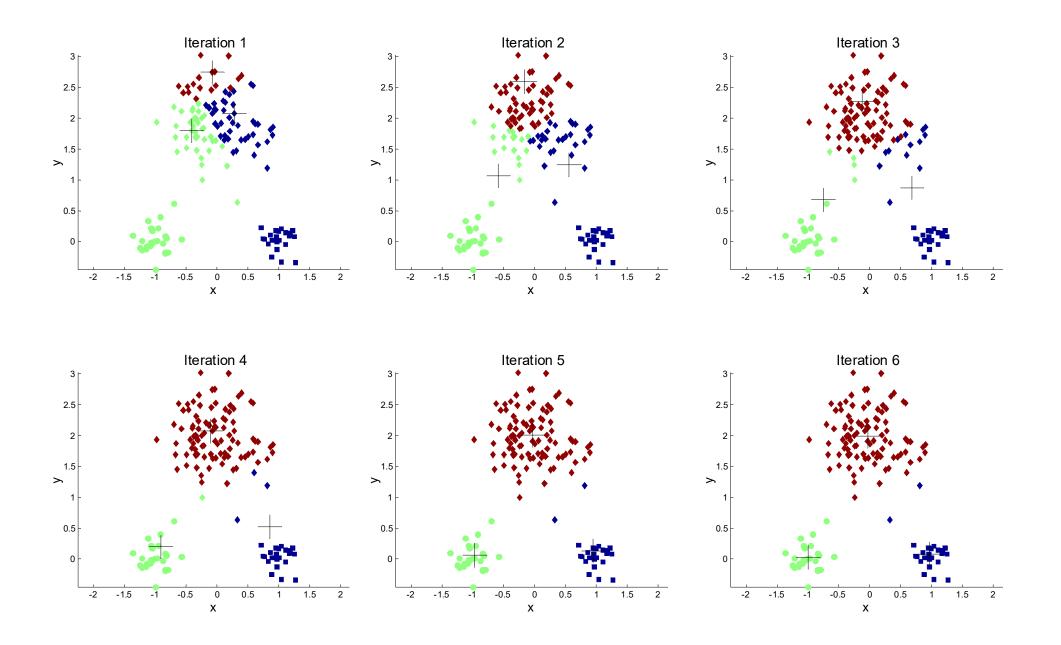
- Good solution:
 - small distances to centroids



- Not so good solution:
 - larger distances to centroids

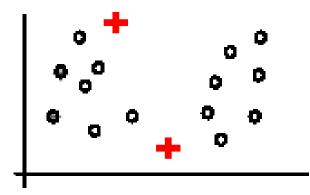


K-Means Clustering – Second Example

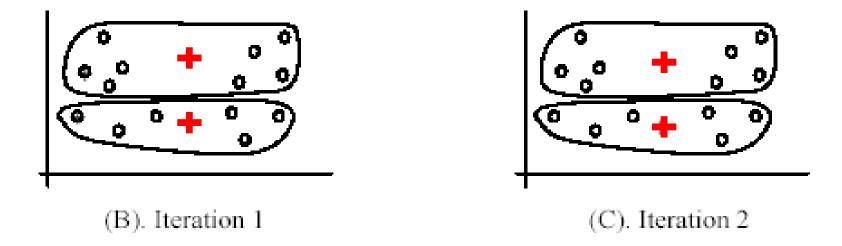


Weaknesses of K-Means: Initial Seeds

Clustering results may vary significantly depending on initial choice of seeds (number and position of seeds).

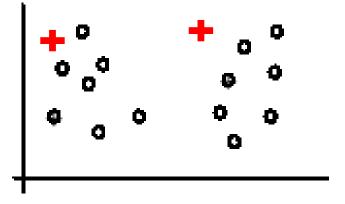


(A). Random selection of seeds (centroids)

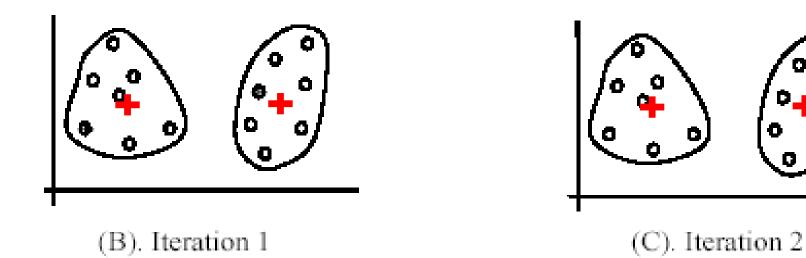


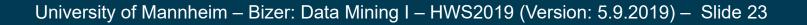
Weaknesses of K-Means: Initial Seeds

If we use different seeds, we get good results.

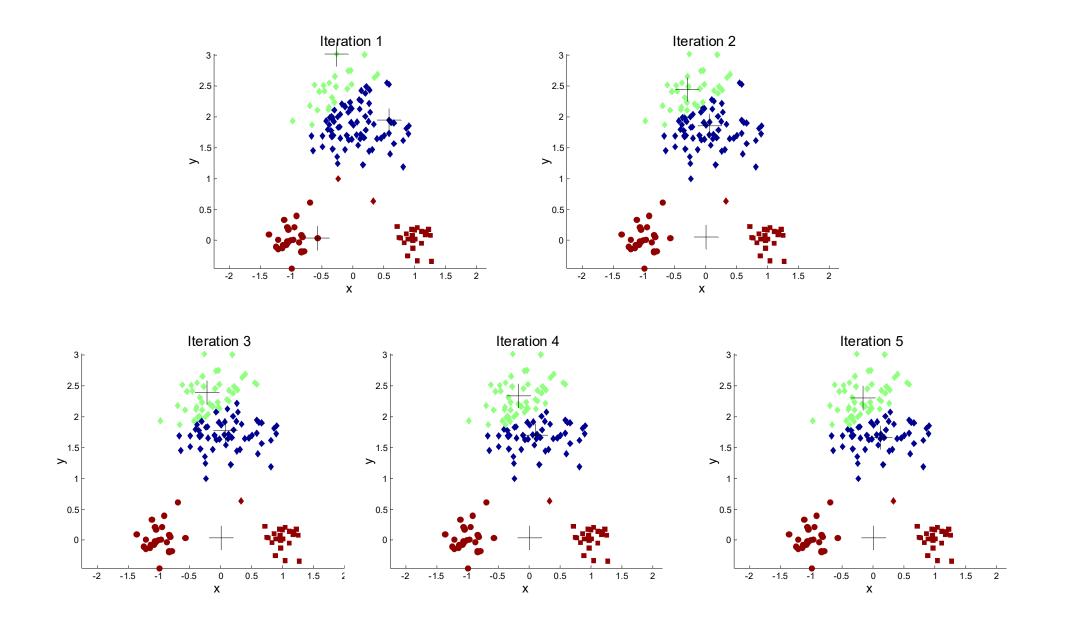


(A). Random selection of k seeds (centroids)





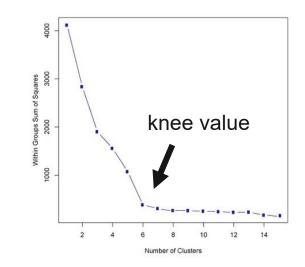
Bad Initial Seeds – Second Example



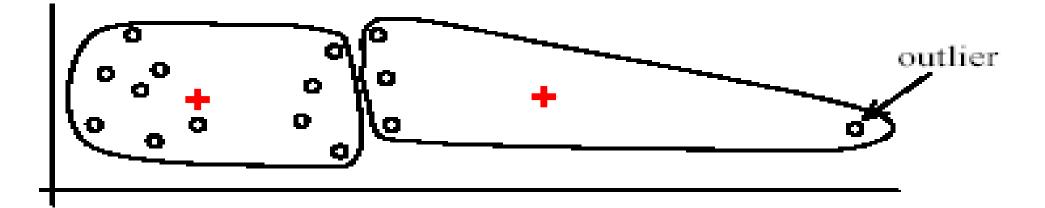
Weaknesses of K-Means: Initial Seeds

Approaches to increase the chance of finding good clusters:

- 1. Restart a number of times with different random seeds
 - chose the resulting clustering with the smallest sum of squared error (SSE)
- 2. Run k-means with different values of k
 - The SSE for different values of k cannot directly be compared.
 - Think: What happens for $k \rightarrow$ number of examples?
 - Workarounds
 - Choose k where SSE improvement decreases (knee value of k)
 - 2. Employ X-Means
 - Variation of K-Means algorithm that automatically determines k
 - starts with small k, then splits large clusters and checks if result improves



Weaknesses of K-Means: Problems with Outliers



(A): Undesirable clusters

(B): Ideal clusters

Approaches to deal with outliers:

1. K-Medoids

- K-Medoids is a K-Means variation that uses the median of each cluster instead of the mean.
- Medoids are the most central existing data points in each cluster.
- K-Medoids is more robust against outliers as the median is less affected by extreme values:
 - Mean and Median of 1, 3, 5, 7, 9 is 5
 - Mean of 1, 3, 5, 7, 1009 is 205
 - Median of 1, 3, 5, 7, 1009 is 5

2. DBSCAN

- Density-based clustering method that removes outliers.
 - see next section

Advantages

- Simple, understandable
- Efficient time complexity:
 O(t k n)

where

- *n* is the number of data points
- *k* is the number of clusters
- t is the number of iterations

Disadvantages

- Need to determine number of clusters
- All items are forced into a cluster
- Sensitive to outliers
- Sensitive to initial seeds

K-Means Clustering in RapidMiner

	Parameters ×					
100% 🔑 🔎 📮 🧣 🐼	Clustering (k-Mean					
	add cluster attribute		٢	^		
Retrieve Data Clustering	add as label	٢				
clu res	remove unlabeled		٢			
	k	4	0			
	max runs	10	1			
	determine good star	od start values				
	measure types	MixedMeasures •	0			
	mixed measure	MixedEuclideanDis •	0			
	max optimization steps	100	Ð	~		

K-Means Clustering Results

	Open in Turbo Prep 👫 Auto Model			Model	Filter (150 / 150 examples):				oles):	New cluster attribute		
Data	Row No.	id	label	cluster	a1	a2	a3					
_	1	id_1	Iris-set	osa cluster_1	5,100	0.000	1.400	0.200				
Σ	2	id_2	Iris-set	osa cluster_1	4.900	3	1.400	0.200				
Statistics	3	id_3	Iris-se	Result History		Examples	Set (Clustering)	× 📟 c	luetor M	odel (Clustering) ×		
	4	id_4	Iris-se	Result instory		Lxamples	set (Glustening)		iuster m			
	5	id_5	Iris-se									
Visualizations	6	id_6	Iris-se		Attribute		clu	ster_0		cluster_1	cluster_2	
	7	id_7 id_8	Iris-se	Description								
	9	id_8	Iris-se Iris-se		a1		6.9	13		5.006	6.252	
Annotations	10	id_9	Iris-se	Folder	a2		3.1	00		3.418	2.855	
	11	id_11	Iris-se		a3		Result Histo	ry	Exam	pleSet (Clustering) 🛛 🗙	📓 Cluster Mode	el (Clustering) 🛛 🗙
	12	id_12	Iris-se		a4							
	13	id_13	Iris-se		1072 J.			Clust	er M	odel		
	14	id_14	Iris-se	~			Description	A THE CONTRACTOR				
				A			Description	Cluster				
				Graph				Cluster Cluster				
								Cluster 3: 28		8 items		
							Folder	Total nu	mber o	f items: 150		
				Centroid			View					
				Table								
							Z					
							Graph					
							Centroid					

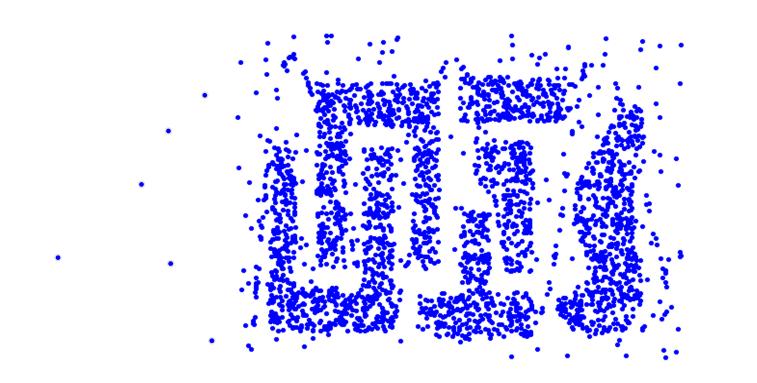
K-Medoits Clustering in RapidMiner

100% 🔎 🔎 📮 🏹 🛐	Parameters ×	ds)		
	🖌 add cluster attribute		<u>م</u>	
Retrieve Data Clustering	add as label	Œ		
clu res	remove unlabeled	Œ		
	k	2	Œ	
	max runs	10	0	
	max optimization steps	100	Œ	
	use local random se	local random seed		
	measure types	MixedMeasures •	œ	
	mixed measure	MixedEuclideanDis •	•	

X-Means Clustering in RapidMiner

	Parameters ×			
100% 🔎 🔎 📮 🧣 💽	X-Means			
^	add cluster attribute		٢	^
X-Means exa clu	add as label			
clu res	remove unlabeled	Ð		
	k min	3	Ð	Boundaries
	k max	60	1	k values
	determine good star	٢		
	measure types	NumericalMeasures	•	
	numerical measure	EuclideanDistance	•	
	clustering algorithm	KMeans	•	~

3. Density-based Clustering



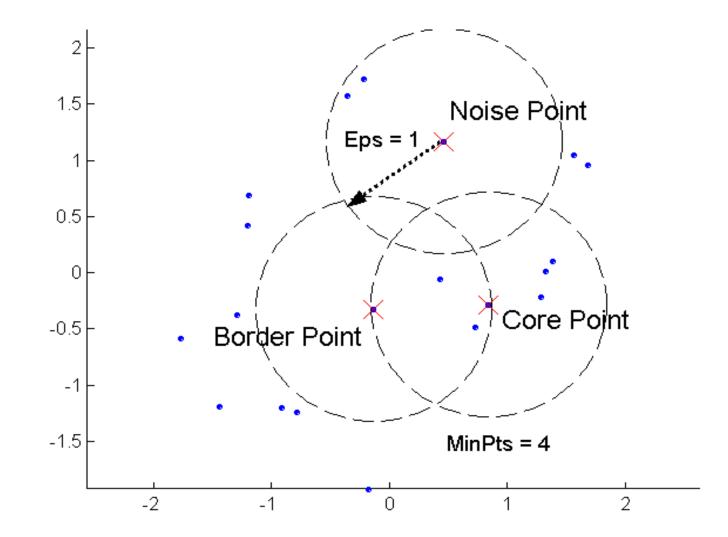
Challenging use case for K-Means:

- Problem 1: Non-globular shapes
- Problem 2: Outliers / Noise points

DBSCAN

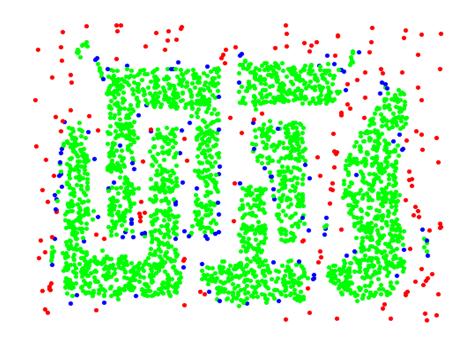
- DBSCAN is a density-based algorithm
 - Density = number of points within a specified radius Epsilon (Eps)
- Divides data points in three classes:
 - 1. A point is a core point if it has at least a specified number of neighboring points (MinPts) within the specified radius Eps
 - The point itself is counted as well
 - These points form the interior of a dense region (cluster)
 - 2. A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - 3. A noise point is any point that is not a core point or a border point

Examples of Core, Border, and Noise Points 1



Examples of Core, Border, and Noise Points 2





Original Points

Point types: core, border and noise

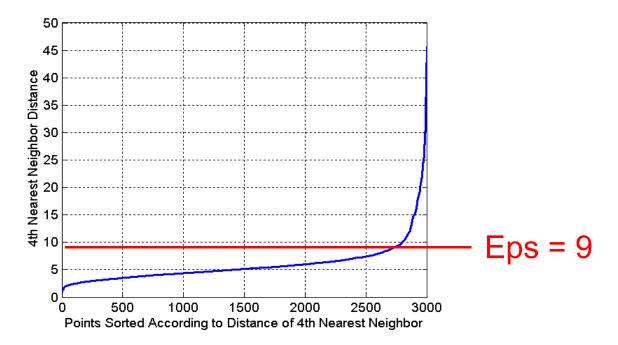
Eliminates noise points and returns clustering of the remaining points:

- 1. Label all points as core, border, or noise points
- 2. Eliminate all noise points
- 3. Put an edge between all core points that are within Eps of each other
- 4. Make each group of connected core points into a separate cluster
- 5. Assign each border point to one of the clusters of its associated core points
 - as a border point can be at the border of multiple clusters
 - use voting if core points belong to different clusters.
 - if equal vote, than assign border point randomly

How to Determine suitable Eps and MinPts values?

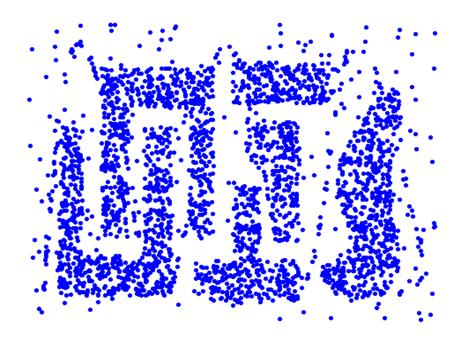
For points in a cluster, their kth nearest neighbor (single point) should be at roughly the same distance. Noise points have their kth nearest neighbor at farther distance.

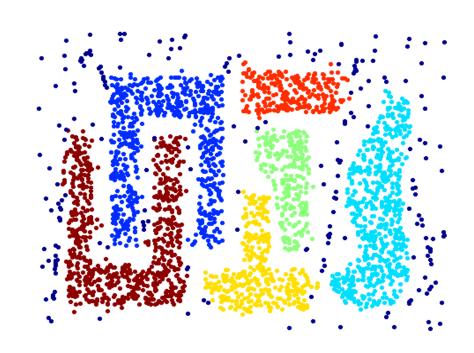
- 1. Start with setting MinPts = 4 (rule of thumb)
- 2. Plot sorted distance of every point to its kth nearest neighbor:



- 3. Set Eps to the sharp increase of the distances (start of noise points)
- 4. Decrease k if small clusters are labeled as noise (subjective decision)
- 5. Increase k if outliers are included into the clusters (subjective decision)

When DBSCAN Works Well

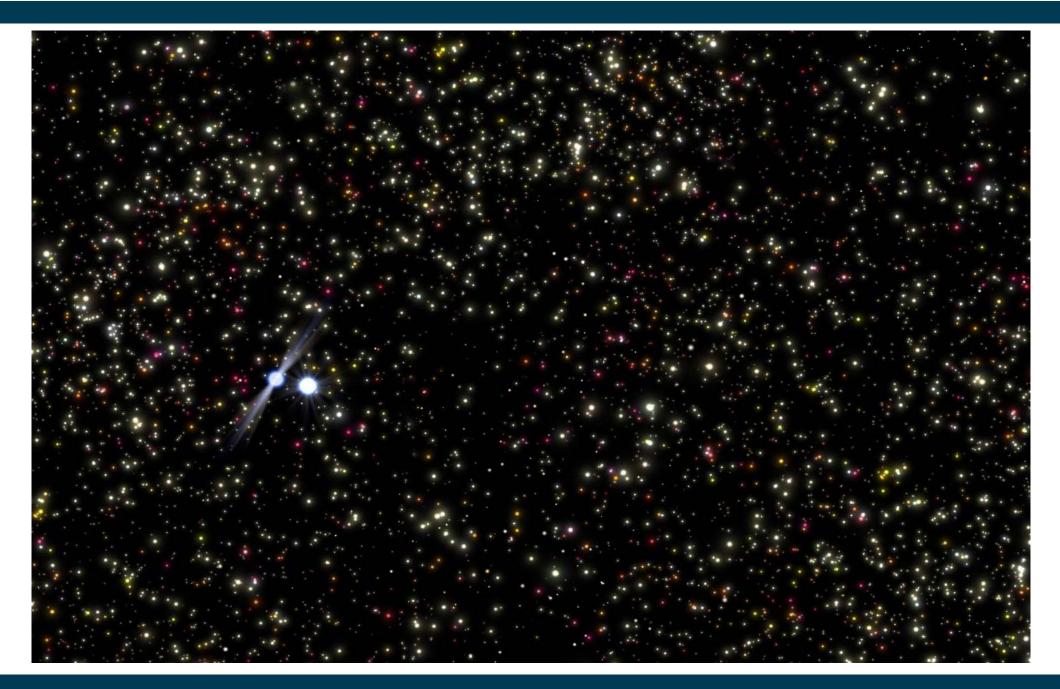




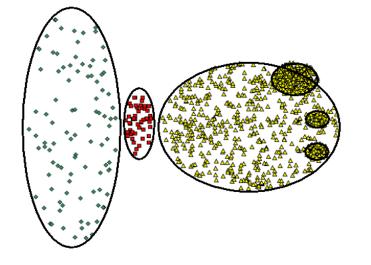
Original Points

- Resistant to noise
- Can handle clusters of different shapes and sizes

Application: Sky Images



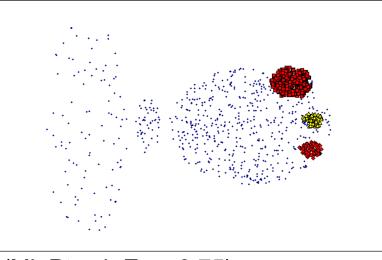
When DBSCAN Does NOT Work Well



Original Points

DBSCAN has problems with datasets of varying densities.

(MinPts=4, Eps=9.92)



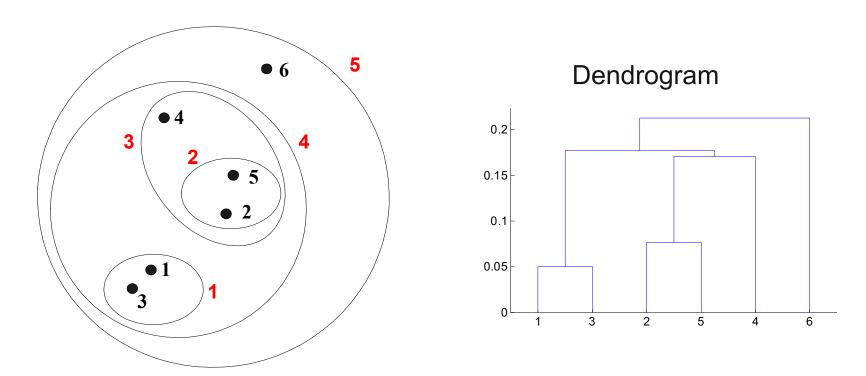
(MinPts=4, Eps=9.75)

DBSCAN in RapidMiner

	📄 Parameters 🙁 🛛 🎯 Context	×					
að - 💷 🛟 🖾 📣 🛶 -	🏅 😼 🕫 🤛 🐱 -						
	🕤 Clusterin	g (DBSCAN)					
Clustering	epsilon	1.0					
exa clu res	min points	5					
C res	add cluster attribute						
	add as label						
	remove unlabeled						
	measure types	MixedMeasures 💌					
	mixed measure	MixedEuclideanDistance					

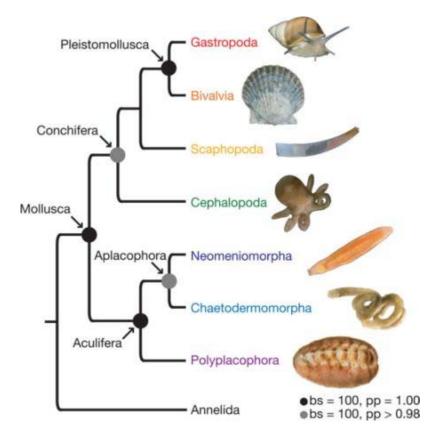
4. Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree.
- Can be visualized as a Dendrogram
 - A tree like diagram that records the sequences of merges or splits.
 - The y-axis displays the former distance between merged clusters.



Strengths of Hierarchical Clustering

- We do not have to assume any particular number of clusters
 - any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level.
- May be used to discover meaningful taxonomies
 - taxonomies of biological species
 - taxonomies of different customer groups



- Agglomerative

- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster (or k clusters) is left

Divisive

- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Agglomerative Clustering is more widely used.

The basic algorithm is straightforward:

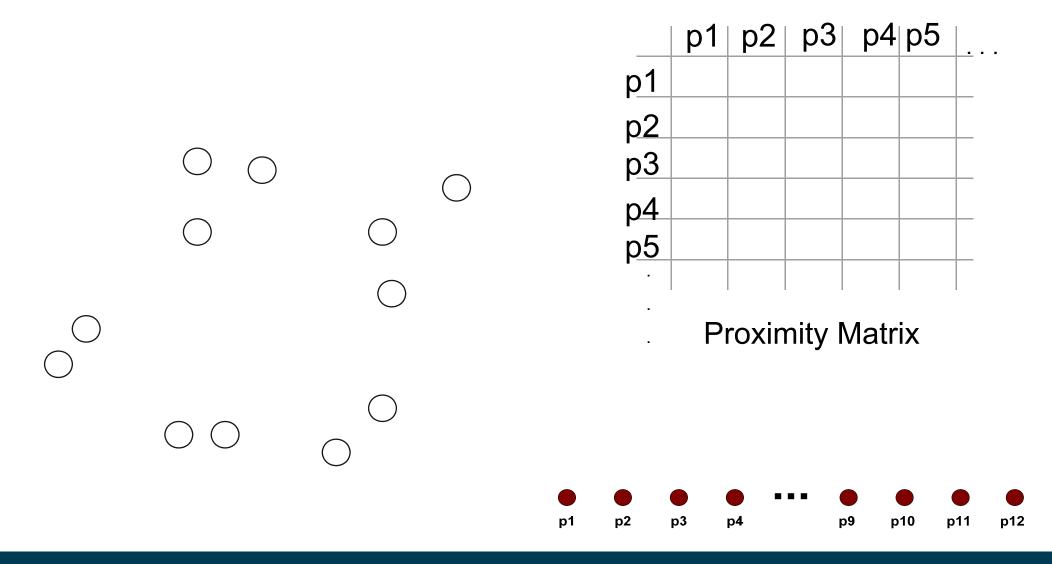
- 1. Compute the proximity matrix
- 2. Let each data point be a cluster
- 3. Repeat
 - 1. Merge the two closest clusters
 - 2. Update the proximity matrix

Until only a single cluster remains

- The key operation is the computation of the proximity of two clusters.
- The different approaches to defining the distance between clusters distinguish the different algorithms.

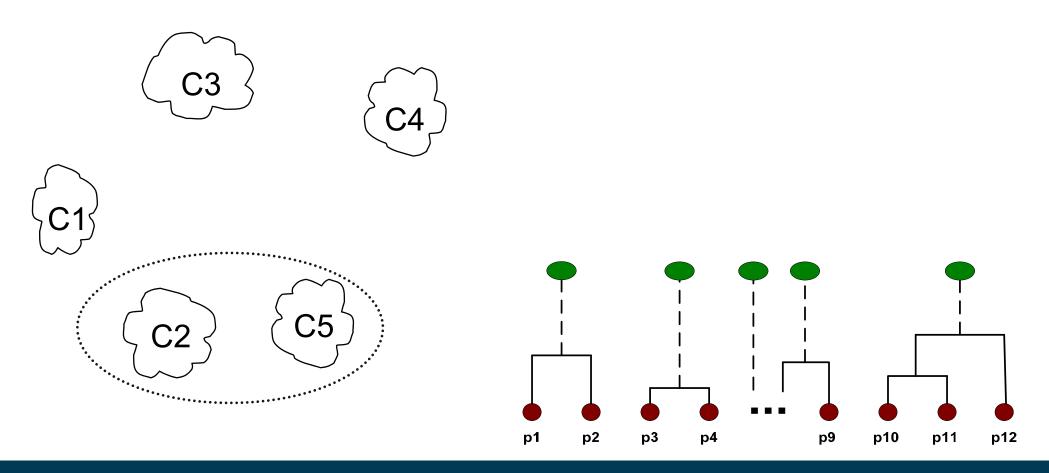
Starting Situation

Start with clusters of individual points and a proximity matrix.

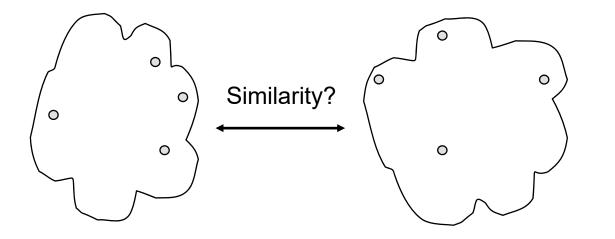


Intermediate Situation

- After some merging steps, we have larger clusters.
- We want to keep on merging the two closest clusters (C2 and C5?)



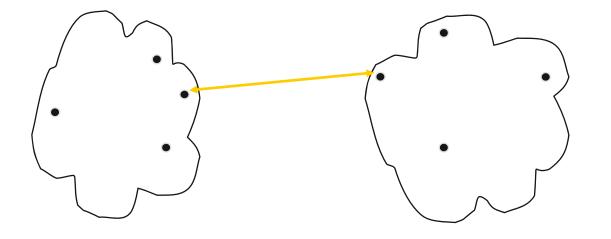
How to Define Inter-Cluster Similarity?



Different Approaches possible:

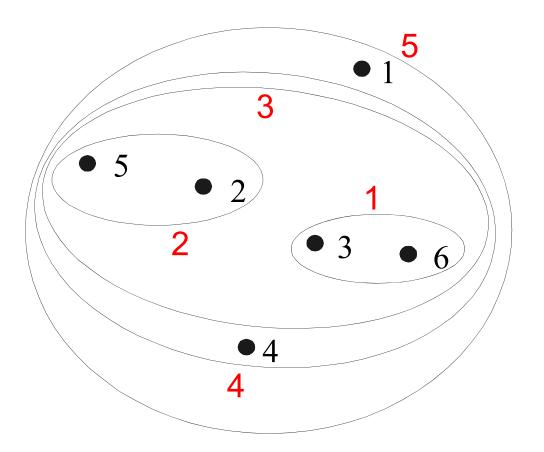
- 1. Single Link
- 2. Complete Link
- 3. Group Average
- 4. Distance Between Centroids

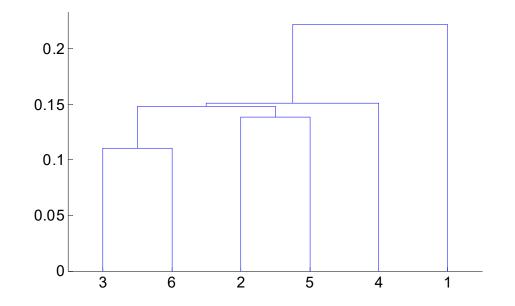
Cluster Similarity: Single Link



- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
- Determined by one pair of points,
 i.e. by one link in the proximity graph.

Example: Single Link

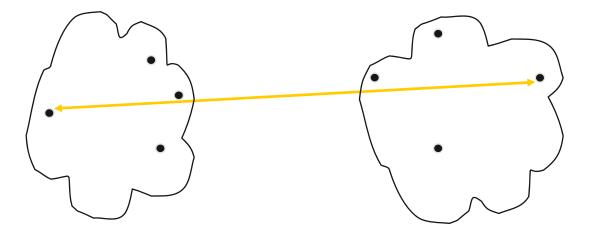




Nested Clusters

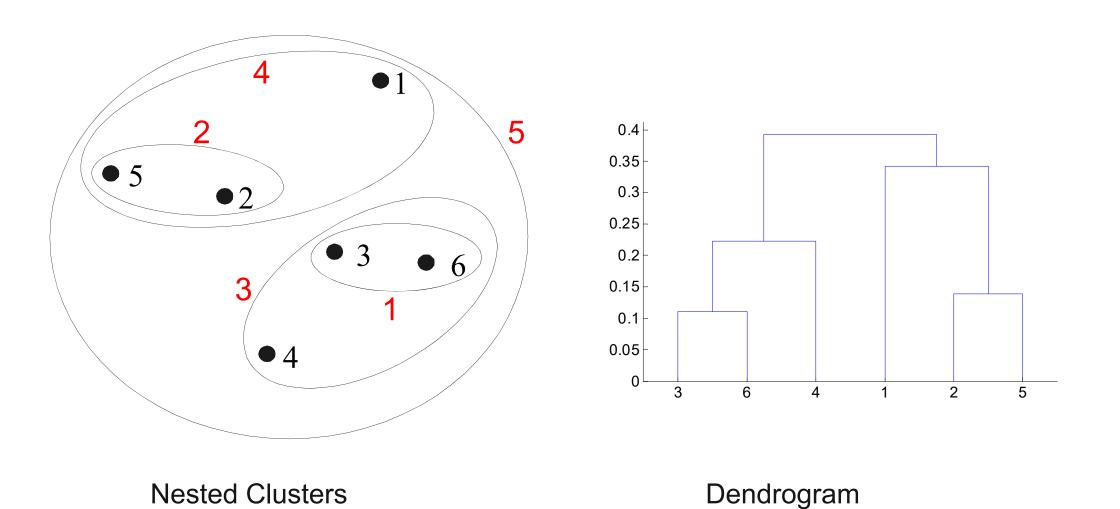
Dendrogram

Cluster Similarity: Complete Linkage

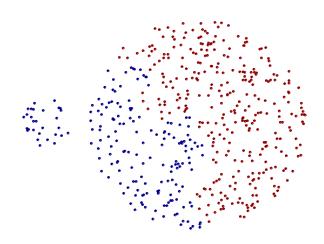


- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
- Determined by all pairs of points in the two clusters

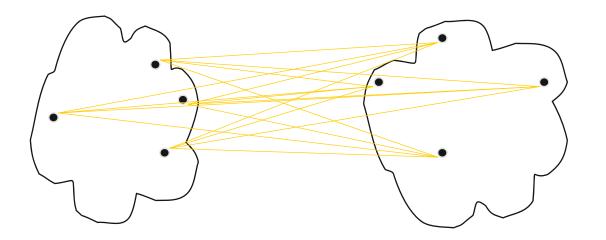
Example: Complete Linkage



- Single Link:
 - Strength: Can handle non-elliptic shapes
 - Limitation: Sensitive to noise and outliers
- Complete Linkage:
 - Strength: Less sensitive to noise and outliers
 - Limitation: Biased towards globular clusters
 - Limitation: Tends to break large clusters, as decisions can not be undone.



Cluster Similarity: Group Average

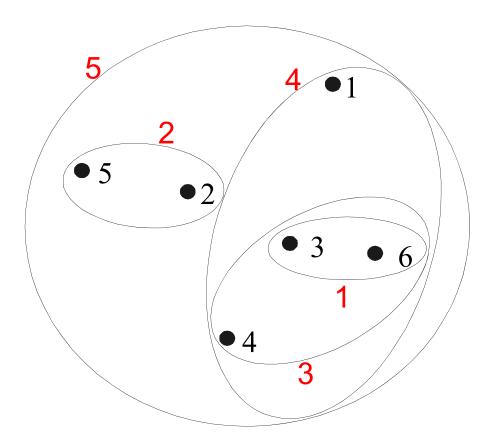


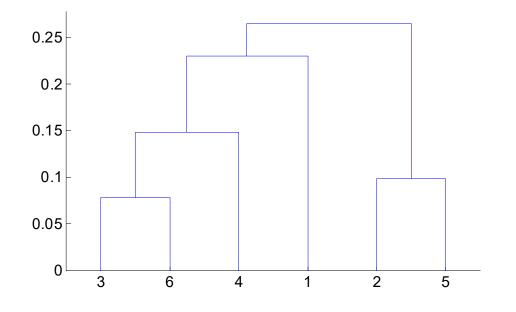
 Proximity of two clusters is the average of pair-wise proximity between all points in the two clusters.

proximity(Cluster_i, Cluster_j) =
$$\frac{\sum_{\substack{p_i \in Cluster_i \\ p_j \in Cluster_j}} \sum_{\substack{p_i \in Cluster_j \\ P_j \in Cluster_$$

- Compromise between single and complete link
 - Strength: Less sensitive to noise and outliers than single link
 - Limitation: Biased towards globular clusters

Example: Group Average





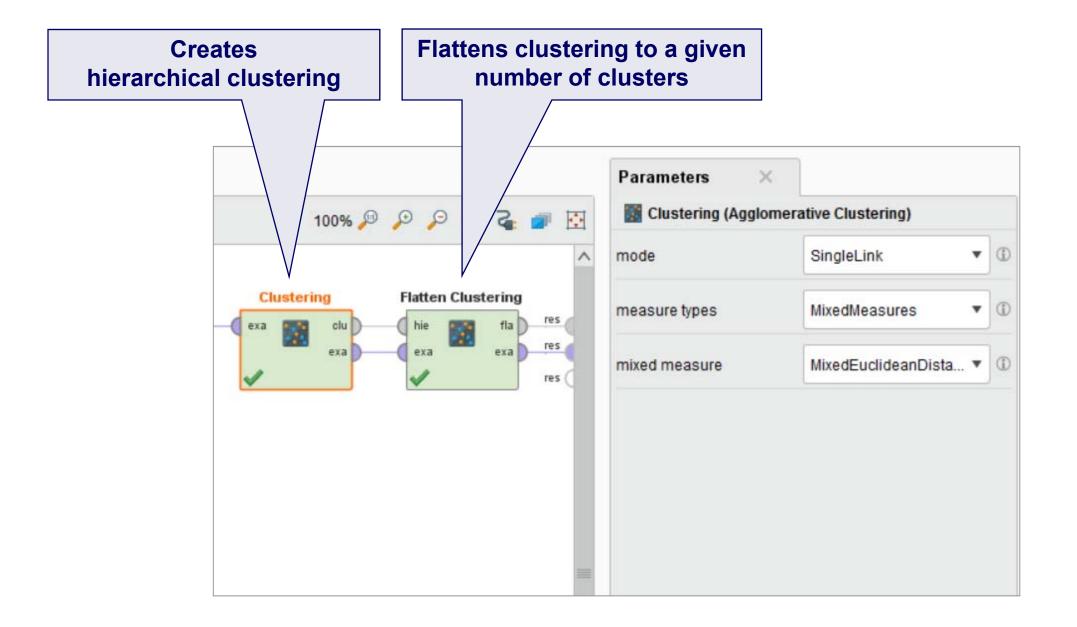
Nested Clusters

Dendrogram

Hierarchical Clustering: Problems and Limitations

- Different schemes have problems with one or more of the following:
 - 1. Sensitivity to noise and outliers
 - 2. Difficulty handling non-elliptic shapes
 - 3. Breaking large clusters
- High Space and Time Complexity
 - O(N²) space since it uses the proximity matrix.
 - N is the number of points.
 - O(N³) time in many cases
 - there are N steps and at each step the size N² proximity matrix must be updated and searched.
 - complexity can be reduced to $O(N^2 \log(N))$ time in some cases.
 - Workaround: Apply hierarchical clustering to a random sample of the original data (<10,000 examples).

Agglomerative Clustering in RapidMiner



5. Proximity Measures

- So far, we have seen different clustering algorithms all of which rely on proximity (distance, similarity, ...) measures.
- Now, we treat proximity measures in more detail.
- A wide range of different measures is used depending on the requirements of the application.
- Similarity
 - Numerical measure of how <u>alike</u> two data objects are.
 - Often falls in the range [0,1]
- Dissimilarity
 - Numerical measure of how <u>different</u> are two data objects
 - Minimum dissimilarity is often 0
 - Upper limit varies

Attribute	Dissimilarity	Similarity		
Type				
Nominal	$d = \left\{ egin{array}{ccc} 0 & ext{if} \; p = q \ 1 & ext{if} \; p eq q \end{array} ight.$	$s = \left\{ egin{array}{ccc} 1 & ext{if} \; p = q \ 0 & ext{if} \; p eq q \end{array} ight.$		
Ordinal	$\begin{aligned} d &= \frac{ p-q }{n-1} \\ \text{(values mapped to integers 0 to } n-1, \\ \text{where } n \text{ is the number of values)} \end{aligned}$	$s = 1 - \frac{ p-q }{n-1}$		
Interval or Ratio	d = p - q	$s = -d, \ s = \frac{1}{1+d}$ or		
		$s = -d, s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_d}{max_d-min_d}$		

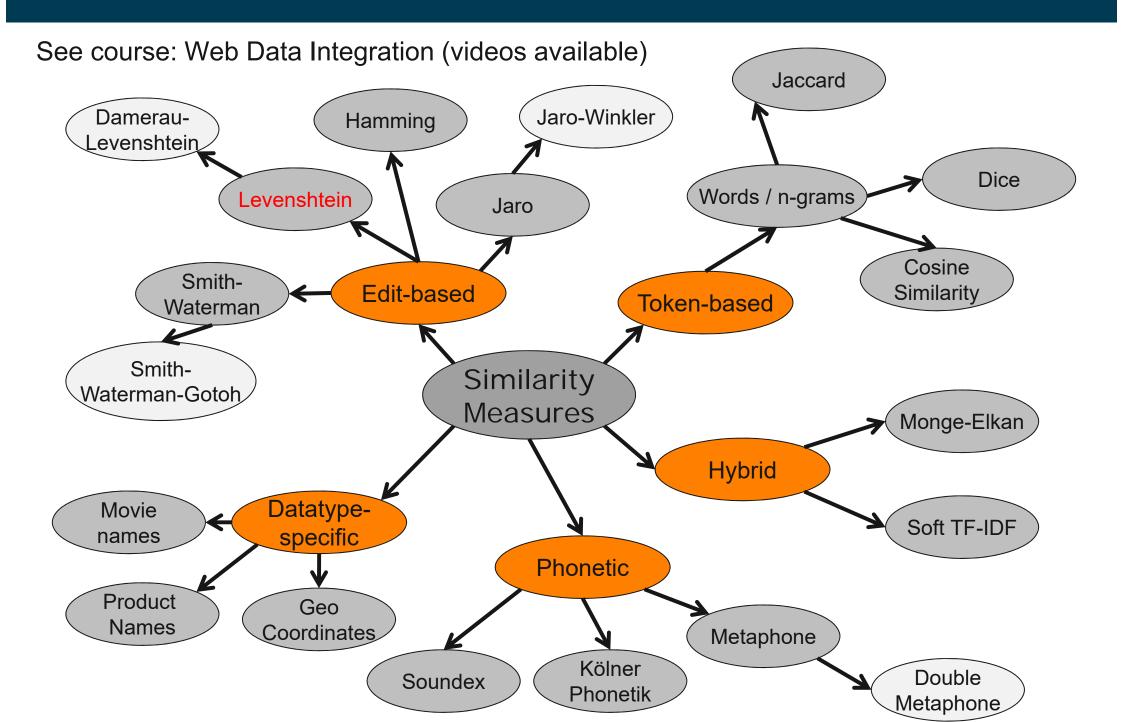
Similarity and dissimilarity for simple attributes

p and q are attribute values for two data objects

Levenshtein Distance

- Measures the dissimilarity of two strings.
- Measures the minimum number of edits needed to transform one string into the other.
- Allowed edit operations:
 - 1. insert a character into the string
 - 2. delete a character from the string
 - 3. replace one character with a different character
- Examples:
 - Ievensthein('Table', 'Cable') = 1 (1 Substitution)
 - levensthein('Table', 'able') = 1 (1 Deletion)

Further String Similarity Measures



5.2 Proximity of Multidimensional Data Points

- All measures discussed so far cover the proximity of single attribute values
- But we usually have data points with many attributes
 - e.g., age, height, weight, sex...
- Thus, we need proximity measures for data points
 - taking multiple attributes/dimensions into account

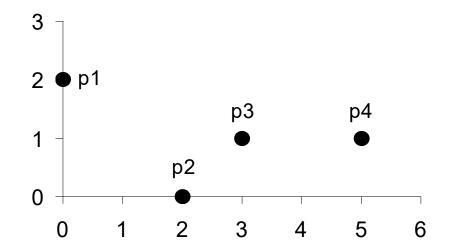
Euclidean Distance

Definition

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where *n* is the number of dimensions (attributes) and p_k and q_k are the kth attributes of data points *p* and *q*.

Example: Euclidean Distance



point	X	У
p1	0	2
p2	2	0
p3	3	1
p4	5	1

	p1	թ2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Normalization

- Attributes should be normalized so that all attributes can have equal impact on the computation of distances.
- Consider the following pair of data points
 - x_i : (0.1, 20) and x_j : (0.9, 720).

dist (
$$\mathbf{x}_i, \mathbf{x}_j$$
) = $\sqrt{(0.9 - 0.1)^2 + (720 - 20)^2} = 700.000457$

- The distance is almost completely dominated by (720-20) = 700.
- Solution: Normalize attributes to all have a common value range, for instance [0,1].

Normalizing Attribute Values in Rapidminer

Process 🗶 👍 XML 🗶							🍃 Par	amet	ters	X 88 88	
← → → ↑ Process →	đ 🗸	\$?		1 2 3	÷	8	5	-	>	× •	ķ -
					1					🗮 No	ormalize
	Clustering			create view							
Retrieve		4	attrit	oute fil	ter ty	pe		subset 💌			
out exa exa ori pre		exa clu clu clu		attri	attributes			Select Attributes			
		0			invert selection						
						include special attributes					
						metl	hod				range transformation 🔻
						min					0.0
					ž	max					1.0

Similarity of Binary Attributes

- Common situation is that objects, *p* and *q*, have only binary attributes.
 - Products in shopping basket
 - Courses attended by students
- We compute similarities using the following quantities:

 M_{11} = the number of attributes where p was 1 and q was 1 M_{00} = the number of attributes where p was 0 and q was 0 M_{01} = the number of attributes where p was 0 and q was 1 M_{10} = the number of attributes where p was 1 and q was 0

- A binary attribute is symmetric if both of its states (0 and 1) have equal importance, and carry the same weights, e.g., male and female
- Similarity measure: Simple Matching Coefficient

$$SMC(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{M_{11} + M_{00}}{M_{01} + M_{10} + M_{11} + M_{00}}$$

Number of matches / number of all attributes values

- Asymmetric: If one of the states is more important than the other.
 - By convention, state 1 represents the more important state.
 - 1 is typically the rare or infrequent state.
 - Examples: Shopping basket, word vector
- Similarity measure: Jaccard Coefficient

$$J(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{M_{11}}{M_{01} + M_{10} + M_{11}}$$

Number of 11 matches / number of not-both-zero attributes values

 $M_{11} = 0$ (the number of attributes where p was 1 and q was 1) $M_{00} = 7$ (the number of attributes where p was 0 and q was 0) $M_{01} = 2$ (the number of attributes where p was 0 and q was 1) $M_{10} = 1$ (the number of attributes where p was 1 and q was 0)

SMC = $(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

SMC versus Jaccard: Question

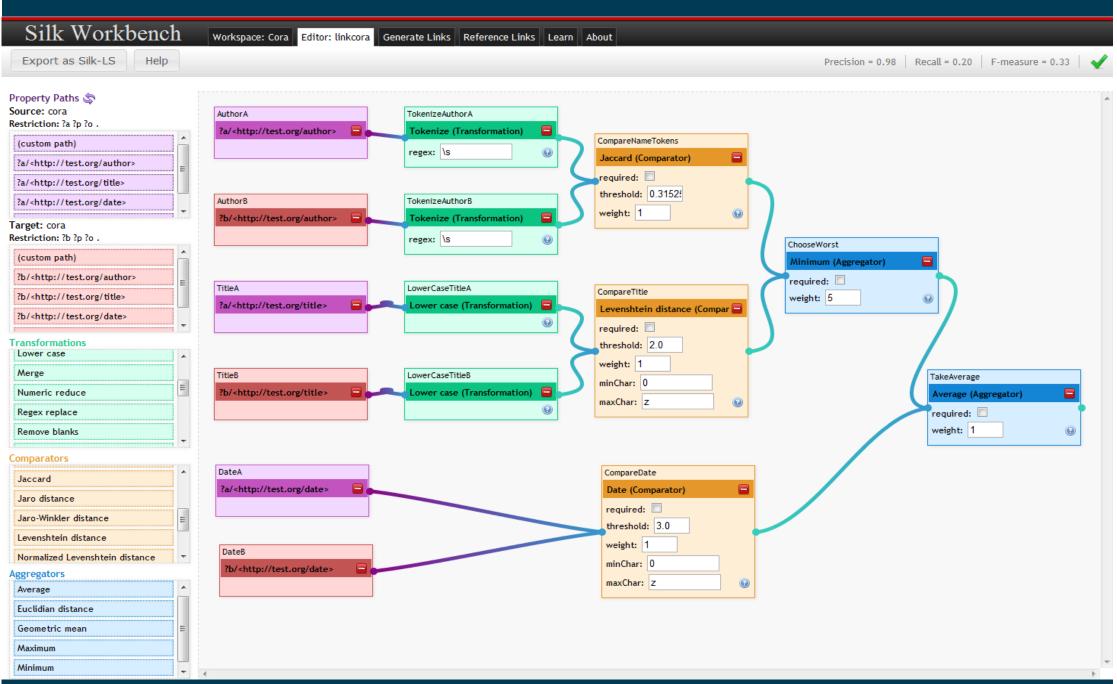
- Which of the two measures would you use
- …for a dating agency?
 - hobbies
 - favorite bands
 - favorite movies
 - ...
- ...for the Wahl-O-Mat?
 - (dis-)agreement with political statements
 - recommendation for voting

Using Weights to Combine Similarities

- You may not want to treat all attributes the same.
 - Use weights w_k which are between 0 and 1 and sum up to 1.
 - Weights are set according to the importance of the attributes.
- Example: Weighted Euclidean Distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt{w_{1}(x_{i1} - x_{j1})^{2} + w_{2}(x_{i2} - x_{j2})^{2} + \dots + w_{r}(x_{ir} - x_{jr})^{2}}$$

Combining different Similarity Measures



- "Best" algorithm depends on
 - 1. the analytical goals of the specific use case
 - 2. the distribution of the data
- Standardization of data, feature selection, distance function, and parameter settings have equally high influence on results.
- Due to these complexities, the common practice is to
 - 1. run several algorithms using different distance functions, feature subsets and parameter settings, and
 - 2. then visualize and interpret the results based on knowledge about the application domain as well as the goals of the analysis.

Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining. Pearson / Addison Wesley.

Chapter 8: Cluster Analysis

Chapter 8.2: K-Means

Chapter 8.3: Agglomerative Hierarchical Clustering

Chapter 8.4: DBSCAN

Chapter 2.4: Measures of Similarity and Dissimilarity

