UNIVERSITÄT MANNHEIM

Heiko Paulheim

Outline

- 1. What is Classification?
- 2. k Nearest Neighbors and Nearest Centroids
- 3. Naïve Bayes
- 4. Decision Trees
- 5. Evaluating Classification
- 6. The Overfitting Problem
- 7. Rule Learning
- 8. Other Classification Approaches
- 9. Parameter Tuning

A Couple of Questions

- What is this?
- Why do you know?
- How have you come to that knowledge?

Introductory Example

Learning a new concept, e.g., "Tree"

"tree"

"tree"

"not a tree"

"not a tree"

"not a tree"

Introductory Example

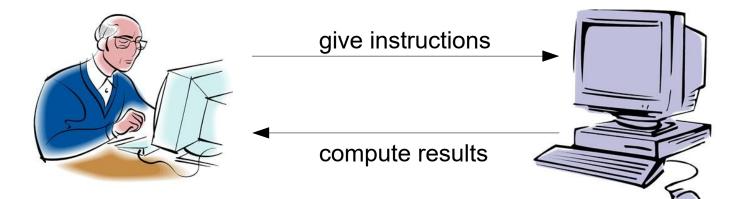
- Example: learning a new concept, e.g., "Tree"
 - we look at (positive and negative) examples
 - ...and derive a model
 - e.g., "Trees are big, green plants"

Goal: Classification of new instances

"tree?"

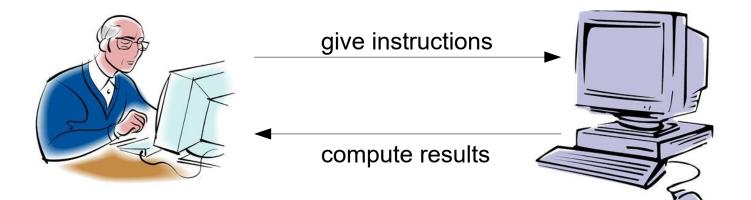
Warning: Models are only approximating examples! Not guaranteed to be correct or complete!

- Classic programming:
 - if more than 10 orders/year and more than \$100k spent
 set customer.isPremiumCustomer = true
- The prevalent style of programming computers
 - works well as long as we know the rules
 - e.g.: what makes a customer a premium customer?

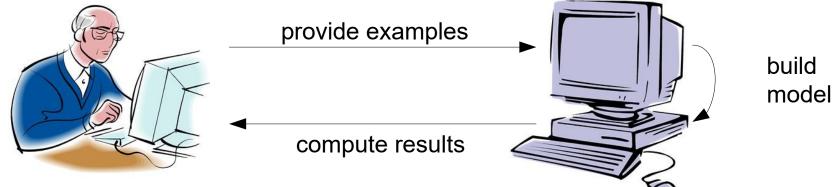


- Sometimes, it's not so easy
- E.g., due to missing knowledge
 - if customer is likely to order a new phone send advertisement for new phones
- E.g., due to difficult formalization as an algorithm
 - if customer review is angry

send apology



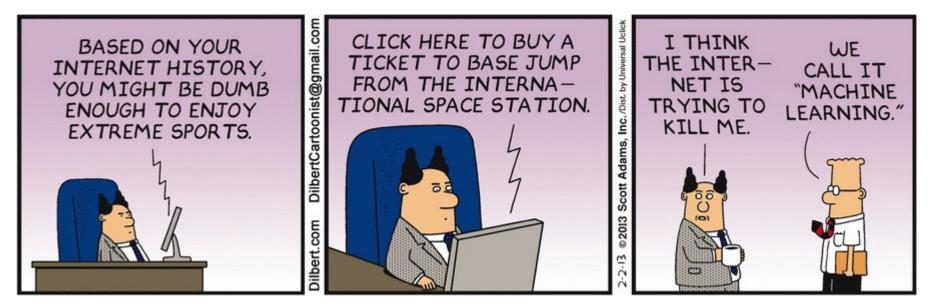
- A different paradigm:
 - User provides computer with examples
 - Computer finds model by itself
 - Notion: the computer *learns* from examples (term: *machine learning*)
- Example
 - labeled examples of angry and non-angry customer reviews
 - computer finds model for telling if a customer is angry



Classification: Formal Definition

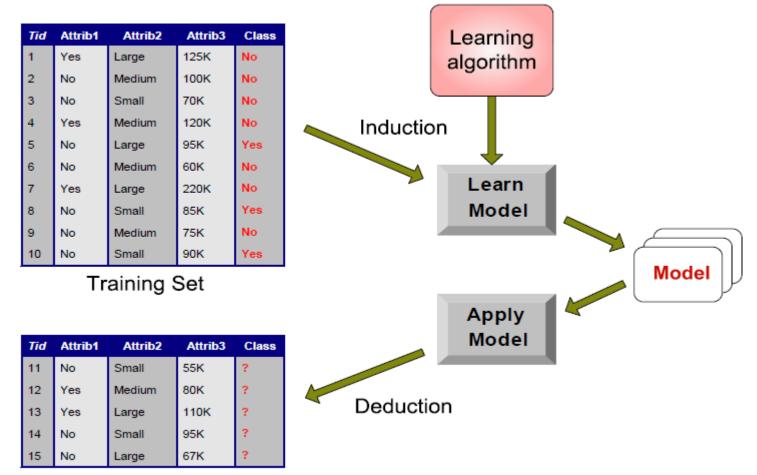
- Given:
 - a set of labeled records, consisting of
 - data fields (a.k.a. attributes or features)
 - a class label (e.g., true/false)
- Generate
 - a function f(r)
 - input: a record
 - output: a class label
 - which can be used for classifying previously unseen records
- Variants:
 - single class problems (e.g., only true/false)
 - multi class problems
 - multi label problems (more than one class per record, not covered in this lecture)
 - hierarchical multi class/label problems (with class hierarchy, e.g., product categories)

- Classification is a *supervised* learning problem
 - i.e., given labeled data, learn a prediction function for those labels



http://dilbert.com/strip/2013-02-02

The Classification Workflow



Unseen Records

Classification Applications – Examples

- Attributes: a set of symptoms (headache, sore throat...)
 - class: does the patient suffer from disease X?
- Attributes: the values in your tax declaration
 - class: are you trying to cheat?
- Attributes: your age, income, debts, ...
 - class: are you getting credit by your bank?
- Attributes: the countries you phoned with in the last 6 months
 - class: are you a terrorist?

Classification Applications – Examples

- Attributes: words in a product review
 - Class: Is it a fake review?
- Attributes: words and header fields of an e-mail
 - Class: Is it a spam e-mail?

Classification Applications – Examples

- A controversial example
 - Class: whether you are searched by the police
 - Class: whether you are selected at the airport for an extra check



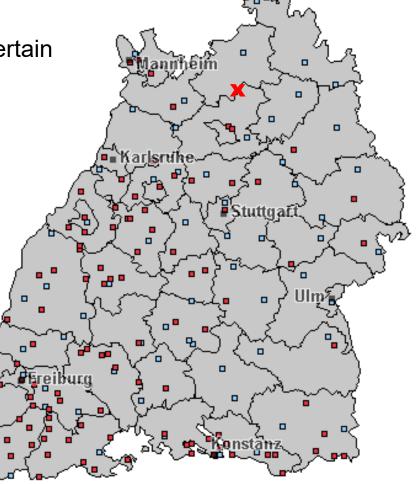
http://lubbockonline.com/stories/030609/loc_405504016.shtml

Classification Algorithms

- Recap:
 - we give the computer a set of labeled examples
 - the computer learns to classify new (unlabeled) examples
- How does that work?

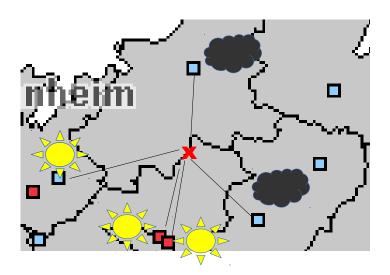
k Nearest Neighbors

- Problem
 - find out what the weather is in a certain place
 - where there is no weather station
 - how could you do that?



k Nearest Neighbors

- Idea: use the average of the nearest stations
- Example:
 - 3x sunny
 - 2x cloudy
 - result: sunny
- Approach is called
 - "k nearest neighbors"
 - where k is the number of neighbors to consider
 - in the example: k=5
 - in the example: "near" denotes geographical proximity



k Nearest Neighbors

- Further examples:
- Is a customer going to buy a product?
 - \rightarrow have similar customers bought that product?
- What party are you going to vote for?
 - \rightarrow what party do your (closest) friends/family members vote for?
- Is a film going to win an oscar?
 - \rightarrow have similar films won an oscar?
- and so on...

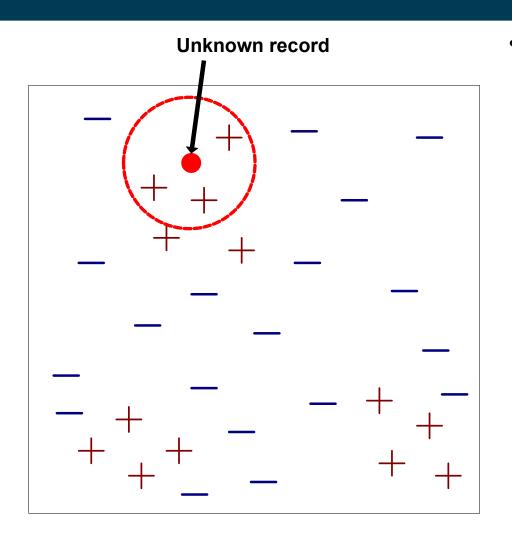
Experiment

- Trying to predict: do you want to watch "Ad Astra" (coming to cinemas tomorrow)?
- Binary attributes: have you watched these 2019 films?
 - 1) Replicas
 - 2) Lego Movie 2
 - 3) Captain Marvel
 - 4) The Kid
 - 5) Shazam!
 - 6) Long Shot
 - 7) Dark Phoenix
 - 8) Secret Life of Pets 2
 - 9) Angry Birds Movie 2

Recap: Similarity and Distance

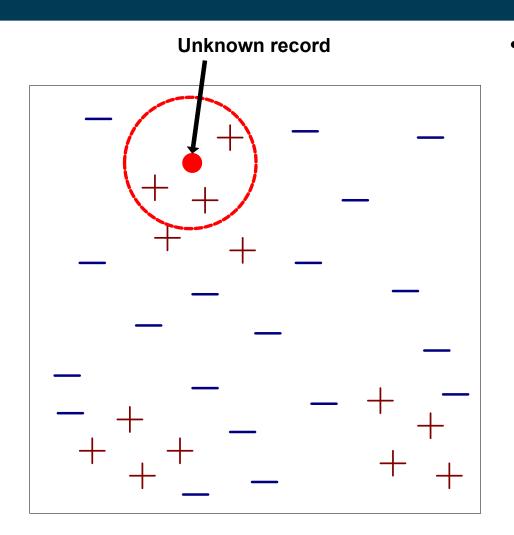
- k *Nearest* Neighbors
 - requires a notion of similarity (i.e., what is "near"?)
- Review: similarity measures for clustering
 - similarity of individual data values
 - similarity of data points
- Think about scales and normalization!
- Which similarity measure was used in our experiment?
 - we could have used different ones
 - probably with different outcomes

Nearest-Neighbor Classifiers



- Requires three things
 - The set of stored records
 - A distance metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve

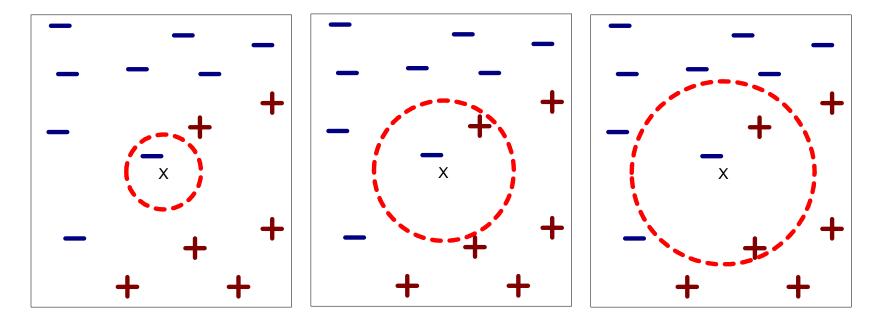
Nearest-Neighbor Classifiers



- To classify an unknown record:
 - Compute distance to each training record
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record
 - by taking majority vote
 - by weighing the vote according to distance

Definition of the k Nearest Neighbors

The k nearest neighbors of a record x are data points that have the k smallest distance to x.



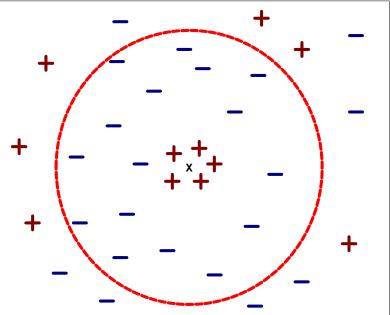
(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

Choosing a Good Value for k

- If k is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classes



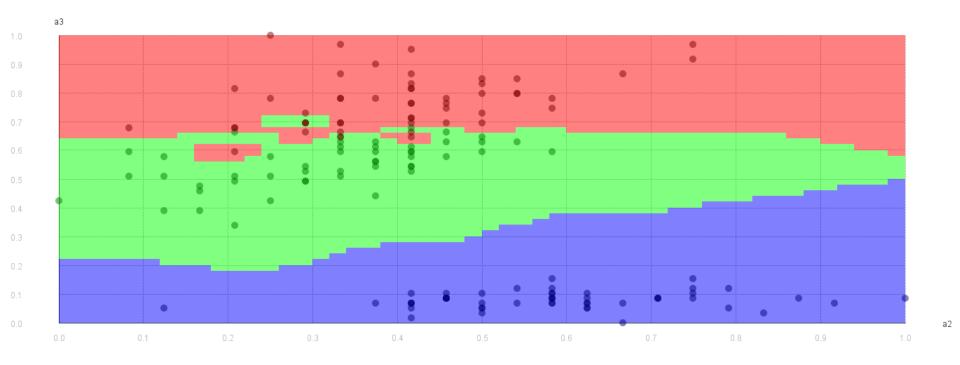
- Rule of thumb: Test k values between 1 and 10.

Discussion of K-Nearest Neighbor

- Often very accurate
- ... but slow as training data needs to be searched
- Can handle decision boundaries which are not parallel to the axes
- Assumes all attributes are equally important
 - Remedy: Attribute selection or using attribute weights

Decision Boundaries of a k-NN Classifier

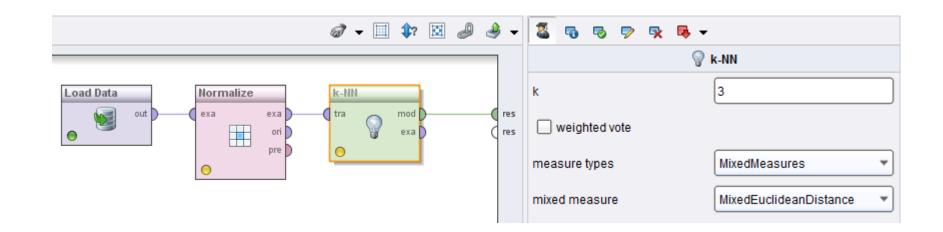
- k=1
- Single noise points have influence on model



Decision Boundaries of a k-NN Classifier

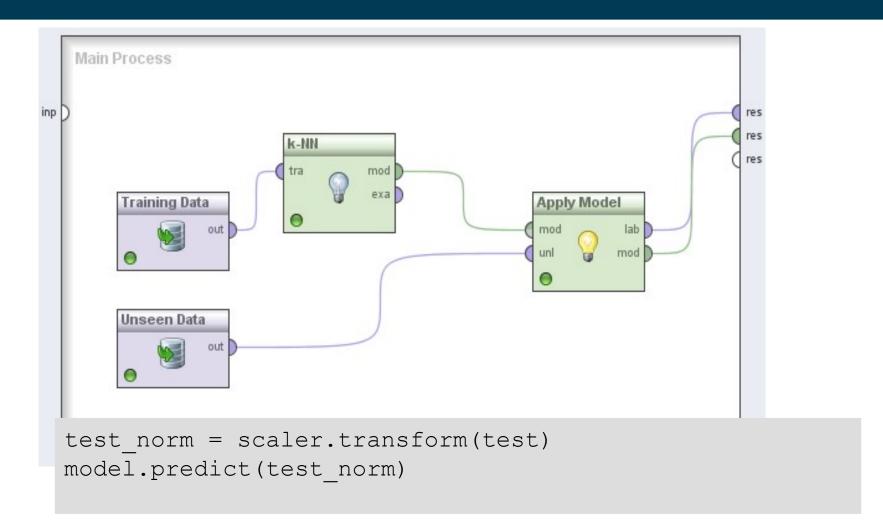
- k=3
- Boundaries become smoother
- Influence of noise points is reduced

KNN in RapidMiner & Python



```
scaler = MinMaxScaler()
features_norm = scaler.fit_transform(features)
model = KNeighborsClassifier(n_neighbors=3)
model.fit(features norm,label)
```

Applying the Model

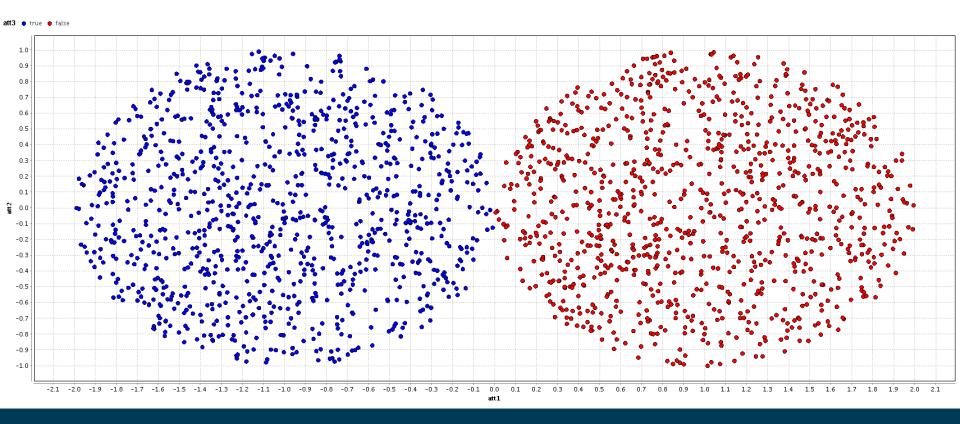


Contrast: Nearest Centroids

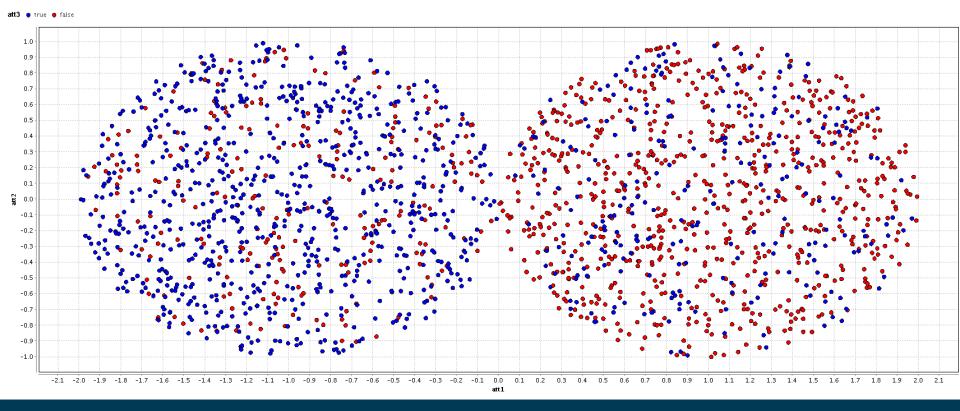
- a.k.a. Rocchio classifier
- Training: compute centroid for each class
 - center of all points of that class
 - like: centroid for a cluster
- Classification:
 - assign each data point to nearest centroid
- RapidMiner:
 - available in Mannheim RapidMiner Toolbox Extension
- Python:
 - scikit_learn.neighbors.NearestCentroid

Sounds pretty much just like k-NN, huh?

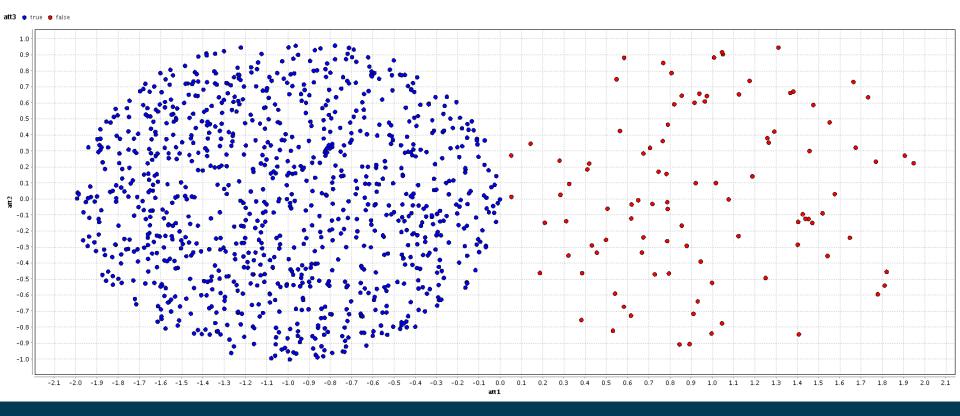
- Basic problem: two circles
 - Both k-NN and Nearest Centroid are rather perfect



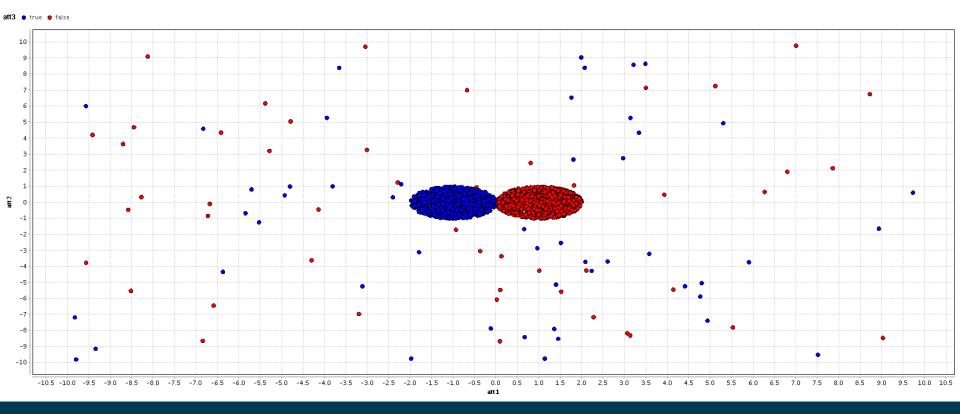
- Some data points are mislabeled
 - k-NN loses performance
 - Nearest Centroid is stable



- One class is significantly smaller than the other
 - k-NN loses performance
 - Nearest Centroid is stable



- Outliers are contained in the dataset
 - k-NN is stable
 - Nearest Centroid loses performance



- k-NN
 - slow at classification time (linear in number of data points)
 - requires much memory (storing all data points)
 - robust to outliers
- Nearest Centroid
 - fast at classification time (linear in number of classes)
 - requires only little memory (storing only the centroids)
 - robust to label noise
 - robust to class imbalance
- Which classifier is better?
 - that strongly depends on the problem at hand!

Bayes Classifier

- Based on Bayes Theorem
- Thomas Bayes (1701-1761)
 - British mathematician and priest
 - tried to formally prove the existence of God
- Bayes Theorem
 - important theorem in probability theory
 - was only published after Bayes' death

Conditional Probability and Bayes Theorem

- A probabilistic framework for solving classification problems
- Conditional Probability:

$$P(C|A) = \frac{P(A,C)}{P(A)}$$
$$P(A|C) = \frac{P(A,C)}{P(C)}$$

• Bayes theorem:

$$P(C|A) = \frac{P(A|C)P(C)}{P(A)}$$

Conditional Probability and Bayes Theorem

- Bayes Theorem
 - Computes one conditional probability P(C|A) out of another P(A|C)
 - given that the base probabilities P(A) and P(C) are known
- Useful in situations where P(C|A) is unknown
 - while P(A|C), P(A) and P(C) are known or easy to determine/estimate
- Example:
 - Given a symptom, what's the probability that I have a certain disease?

Example of Bayes Theorem

- ELISA Test
 - the most common test for HIV
- Numbers:
 - If you're infected, ELISA shows a positive result with p=99.9%
 - If you're not infected, ELISA shows a negative result with p=99.5%

- Assume you have a positive test
 - What's the probability that you're infected with HIV?
- Make a guess!

Example of Bayes Theorem

 $P(HIV | pos) = \frac{P(pos | HIV)P(HIV)}{P(pos)}$

- We want to know P(HIV|pos)
 - Bayes theorem:

0.1% in Germany

the probability of a positive test

$$P(pos) = P(pos|HIV \lor \neg HIV)$$

$$= P(pos|HIV) \cdot P(HIV) + P(pos|\neg HIV) \cdot P(\neg HIV)$$

• Putting the pieces together:

$$P(HIV | pos) = \frac{P(pos | HIV) P(HIV)}{P(pos | HIV) P(HIV) + P(pos | \neg HIV) P(\neg HIV)}$$

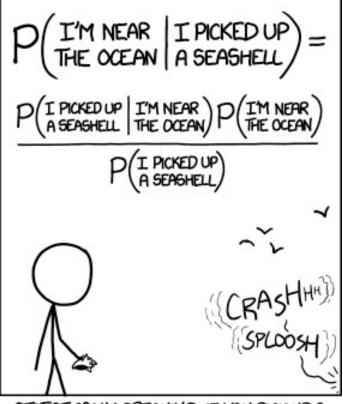
Example of Bayes Theorem

• Now: numbers

$$P(HIV | pos) = \frac{P(pos | HIV) P(HIV)}{P(pos | HIV) P(HIV) P(HIV) + P(pos | \neg HIV) P(\neg HIV)}$$
$$= \frac{0.999 \cdot 0.001}{0.999 \cdot 0.001 + 0.005 \cdot 0.999} = 0.167$$

- That means:
 - at more than 80% probability, you are still healthy, given a positive test!
- Reason:
 - low overall apriori probability of being HIV positive

Example of Bayes' Theorem



STATISTICALLY SPEAKING, IF YOU PICK UP A SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

http://xkcd.com/1236/

9/18/19 Heiko Paulheim

Bayesian Classifiers

- Consider each attribute and class label as random variables
- Given a record with attributes $(A_1, A_2, ..., A_n)$
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes P(C| A₁, A₂, ...,A_n)
- Can we estimate $P(C|A_1, A_2, ..., A_n)$ directly from the data?

Bayesian Classifiers

- Approach:
 - compute the probability $P(C \mid A_1, A_2, ..., A_n)$ for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes $P(C \mid A_1, A_2, ..., A_n)$
- Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$
- How to estimate $P(A_1, A_2, ..., A_n | C)$?

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C_j) = P(A_1 | C_j) P(A_2 | C_j) ... P(A_n | C_j)$
 - Can estimate $P(A_i | C_j)$ for all A_i and C_j
 - New point is classified to C_j if $P(C_j) \prod P(A_i | C_j)$ is maximal

•

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	Νο	Single	90K	Yes

- Class: P(C) = N_c/N - e.g., P(No) = 7/10, P(Yes) = 3/10
- For discrete attributes:
 P(A_i | C_k) = |A_{ik}|/ N_c
 - where |A_{ik}| is number of instances having attribute A_i and belongs to class C_k
 - Examples:

P(Status=Married|No) = 4/7 P(Refund=Yes|Yes)=0

- For continuous attributes:
 - Discretize the range into bins
 - one binary attribute per bin
 - violates independence assumption
 - Two-way split: (A < v) or (A > v)
 - choose only one of the two splits as new attribute
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability P(A_i|c)

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

 $P(Income = 120 | No) = \frac{1}{\sqrt{2\pi}(54.54)} e^{-\frac{(120-110)^2}{2(2975)}} = 0.0072$

Normal distribution: $P(A_i \mid c_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{\frac{1}{2\pi\sigma_{ij}^2}}$

- One for each (A_i,c_i) pair

For (Income, Class=No):

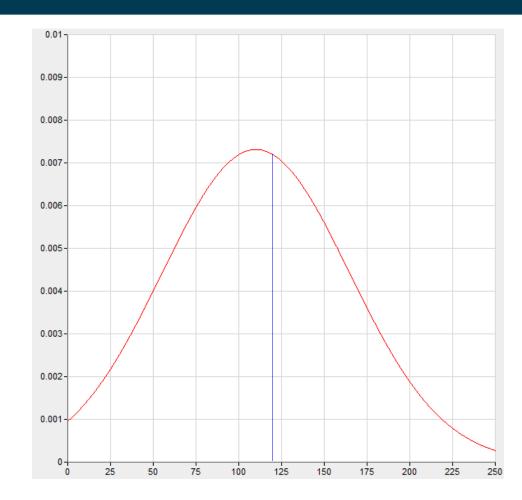
- If Class=No
 - sample mean = 110

 $(120-110)^2$

sample variance = 2975

Heiko Paulheim 9/18/19

- Example visualization:
 - normal distribution
 - mean = 110
 - variance = 2975
- P(Income=120|No) = 0.0072



Example of Naïve Bayes Classifier

Given a Test Record: X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

```
P(\text{Refund}=\text{Yes}|\text{No}) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0
For taxable income:
If class=No:
               sample mean=110
               sample variance=2975
If class=Yes:
               sample mean=90
               sample variance=25
```

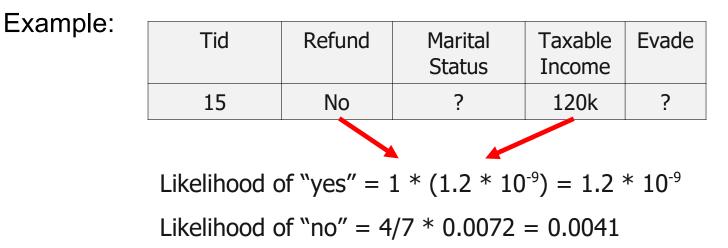
• P(X|Class=No) = P(Refund=No|Class=No) $\times P(Married| Class=No)$ $\times P(Income=120K| Class=No)$ $= 4/7 \times 4/7 \times 0.0072 = 0.0024$

```
• P(X|Class=Yes) = P(Refund=No| Class=Yes)
	\times P(Married| Class=Yes)
	\times P(Income=120K| Class=Yes)
	= 1 \times 0 \times (1.2 \times 10^{-9}) = 0
```

```
Since P(X|No)P(No) > P(X|Yes)P(Yes)
Therefore P(No|X) > P(Yes|X)
=> Class = No
```

Handling missing values

- Missing values may occur in training and classification examples
- Training: Instance is not included in frequency count for attribute value-class combination.
- Classification: Attribute will be omitted from calculation.



From Likelihoods to Probabilities

- A person can either evade or not
 - so why do the likelihoods not add up to 1?
- Recap:

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

We have ignored the denominator so far!

- however, it is the same for all classes
- so we can simply normalize to 1:

Likelihood of "yes" = $1 * (1.2 * 10^{-9}) = 1.2 * 10^{-9}$ Likelihood of "no" = 4/7 * 0.0072 = 0.0041P("yes") = $1.2 * 10^{-9} / (1.2 * 10^{-9} + 0.0041) = 0.0000003$ P("no") = $0.0041 / (1.2 * 10^{-9} + 0.0041) = 0.9999997$

Zero Frequency Problem

- If one of the conditional probabilities is zero, then the entire expression becomes zero
- And it is not unlikely that an exactly same data point has not yet been observed
- Probability estimation:

Original:
$$P(A_i|C) = \frac{N_{ic}}{N_c}$$

Laplace: $P(A_i|C) = \frac{N_{ic}+1}{N_c+c}$

c: number of classes

Naïve Bayes in RapidMiner & Python

	6	Proc	ess	×	E XML	×						🌛 Par	amete	rs 🔀	52 f	1	
	(-		📑 Proce	iss 🕨	ð	- 1?		🔹 🍓	8	5	ا 🌄	> 🕏		-	
	[Main	Droc	0.000									9	Naive E	Bayes	;	
	inp	>		rieve	out	Naive tra	e Baye:	s mod D exa D	5	res		laplad	ce corre	ection			
model	=	Gau	SS.	ian	NB()												
model.	fi	t(f	ea	tur	es,l	abel)											

Anatomy of a Naïve Bayes Model

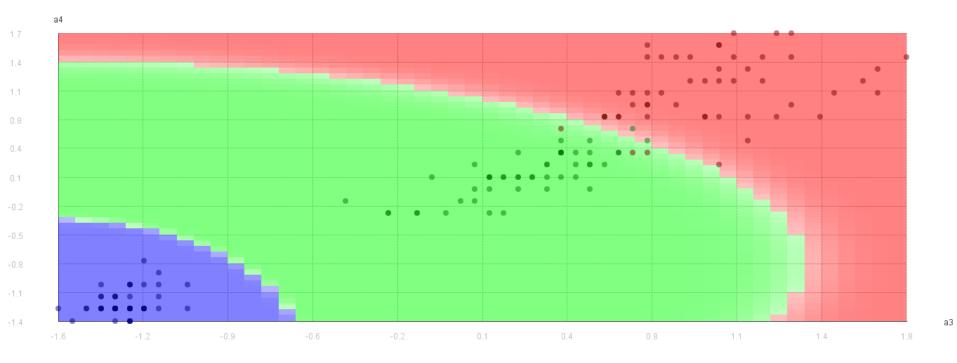
🛛 🛒 Result Ove	erview 🙁 🖉 💡 Simpl	eDistribution ((Naive Bayes) 🏾	/												
🔘 Text View 🔘	Plot View 💿 Distributio	on Table) 🔘 A	nnotations													
Attribute	Parameter	no	yes													
Outlook	value=rain	0.392	0.331													
Outlook	value=overcast	0.014	Result Overvi	ew 🗙	00	imploE	Vietribu	tion (Nai		e) 💟						
Outlook	value=sunny	0.581			-			-								4
Outlook	value=unknown	0.014	- O Text View O Plo			ipution	Table	🔘 Anno	otations							+ 🍭
Temperature	mean	74.600	Attribute:	— no	— yes											
Temperature	standard deviation	7.893	Humidity 🔹		0425							\wedge				
Humidity	mean	84	Rotate Labels		0375						$ \int $	$\langle \rangle$				
Humidity	standard deviation	9.618		0.0	0350						-	++				
Wind	value=true	0.589			0325						11					
Wind	value=false	0.397			0300 -											
Wind	value=unknown	0.014		≥ 0.0	0250											
					0225 -											
				_	0175											
					0150											
					0125											
					0100					1						
					0075											
					0025					//						
									_	_						
					0	10	20	30 4	0 50	60 Hu	70 8 midity	0 90	100	110 120	0 13	0

Using Conditional Probabilities for Naïve Bayes

🔀 Resi	It Overview	👔 Example	Set (Retrieve Golf-Te	stset) 🔀					
Data Vie	w 🔘 Meta Da	ata View 🔘 Plot V	iew 🔘 Advanced Cl	narts 🔘 Annotatior	ıs				
ExampleSe	t (14 example:	s, 4 special attribut	tes, 4 regular attribute	es)				View Filter (1	4 / 14):
Row No.	Play	confidence(no)	confidence(yes)	prediction(Play)	Outlook	Temperature	Humidity	Wind	
1	yes	0.711	0.289	no	sunny	85	85	false	
2	no	0.058	0.942	yes	overcast	80	90	true	
3	yes	0.014	0.986	yes	overcast	83	78	false	
4	yes	0.412	0.588	yes	rain	70	96	false	
5	yes	0.460	0.540	yes	rain	68	80	true	
6	no	0.336	0.664	yes	rain	65	70	true	
7	yes	0.010	0.990		oifior io d			true	
8	no	0.596	0.404	no Class	siller is c	quite sur	e	false	
9	yes	0.248	0.752	yes	sunny	69	70	false	
10	no	0.407	0.593	yes	sunny	75	80	false	
11	yes	0.496	0.504	no clas	ecifior ic	not sure		true	
12	yes	0.038	0.962	yes Clas				true	
13	no	0.027	0.973	yes	overcast	81	75	true	
14	yes	0.453	0.547	yes	rain	71	80	true	

Decision Boundary of Naive Bayes Classifier

- Usually larger coherent areas
- Soft margins with uncertain regions
- Arbitrary (often curved) shapes



Naïve Bayes (Summary)

- Robust to isolated noise points
 - they have a small impact on the probabilities
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)

Why Naïve Bayes?

- Recap:
 - we assume that all the attributes are independent
- This does not hold for many real world datasets
 - e.g., persons: sex, weight, height
 - e.g., cars: weight, fuel consumption
 - e.g., countries: population, area, GDP
 - e.g., food: ingredients
 - e.g., text: word occurrences ("Donald", "Trump", "Duck")

- ...

Naïve Bayes Discussion

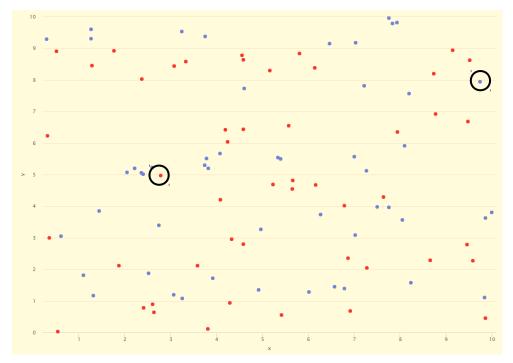
- Naïve Bayes works surprisingly well.
 - even if independence assumption is clearly violated
 - Classification doesn't require accurate probability estimates as long as maximum probability is assigned to correct class
- However: Adding too many redundant attributes will cause problems
 - Solution: Select attribute subset as Naïve Bayes often works as well or better with just a fraction of all attributes.
- Technical advantages:
 - Learning Naïve Bayes classifiers is computationally cheap as probabilities can be estimated doing one pass over the training data
 - Storing the probabilities does not require a lot of memory

Redundant Variables

- Consider two variables which are perfectly correlated
 - i.e., one is redundant
 - e.g.: a measurement in different units
- Violate independence assumption in Naive Bayes
 - Can, at large scale, skew the result
 - Consider, e.g., a price attribute in 20 currencies
 - \rightarrow price variable gets 20 times more influence
- May also skew the distance measures in k-NN
 - But the effect is not as drastic
 - Depends on the distance measure used

Irrelevant Variables

- Consider a random variable x, and two classes A and B
 - For Naive Bayes: p(x=v|A) = p(x=v|B) for any value v
 - Since it is random, it does not depend on the class variable
 - The overall result does not change



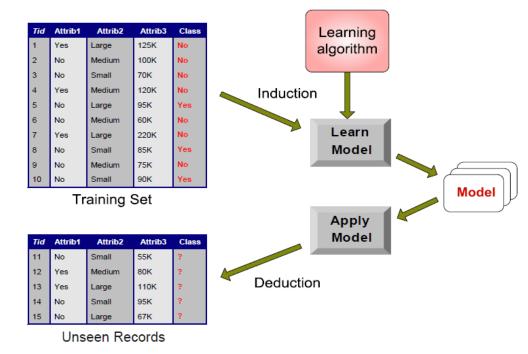
• For kNN:

Comparison kNN and Naïve Bayes

- Computation
 - Naïve Bayes is often faster
- Naïve Bayes uses all data points
 - Naive Bayes is less sensitive to label noise
 - k-NN is less sensitive to outliers
- *Redundant* attributes
 - are less problematic for kNN
- *Irrelevant* attributes
 - are less problematic for Naïve Bayes
 - attribute values equally distributed across classes
 → same factor for each class
- In both cases
 - attribute pre-selection makes sense (see Data Mining II)

Lazy vs. Eager Learning

- k-NN, and Naïve Bayes are all "lazy" methods
- They do not build an explicit model!
 - "learning" is only performed on demand for unseen records
- Nearest Centroid is a simple "eager" method



Lazy vs. Eager Learning

- We have seen three of the most common techniques for lazy learning
 - k nearest neighbors
 - Naïve Bayes
- ...and a very simple technique for eager learning
 - Nearest Centroids
- We will see more eager learning in the next lectures
 - where explicit models are built
 - e.g., decision trees
 - e.g., rule sets

Questions?

