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A Couple of Questions

• What is this?

• Why do you know?

• How have you come to that knowledge?
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Introductory Example

• Learning a new concept, e.g., "Tree"

"tree" "tree" "tree"

"not a tree" "not a tree" "not a tree"
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Introductory Example

• Example: learning a new concept, e.g., "Tree"

– we look at (positive and negative) 
examples

– ...and derive a model

• e.g., "Trees are big, green plants"

• Goal: Classification of new instances

"tree?"

Warning:
Models are only 

approximating examples!
Not guaranteed to be
correct or complete!
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What is Classification?

• Classic programming:

– if more than 10 orders/year and more than $100k spent

set customer.isPremiumCustomer = true

• The prevalent style of programming computers

– works well as long as we know the rules

– e.g.: what makes a customer a premium customer?

give instructions

compute results
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What is Classification?

• Sometimes, it's not so easy

• E.g., due to missing knowledge

– if customer is likely to order a new phone

send advertisement for new phones

• E.g., due to difficult formalization as an algorithm

– if customer review is angry

send apology

give instructions

compute results
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What is Classification?

• A different paradigm:

– User provides computer with examples

– Computer finds model by itself

– Notion: the computer learns from examples (term: machine learning)

• Example

– labeled examples of angry and non-angry customer reviews

– computer finds model for telling if a customer is angry

provide examples

compute results

build
model
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Classification: Formal Definition

• Given:

– a set of labeled records, consisting of

• data fields (a.k.a. attributes or features)

• a class label (e.g., true/false)

• Generate

– a function f(r)

• input: a record

• output: a class label

– which can be used for classifying previously unseen records

• Variants:

– single class problems (e.g., only true/false)

– multi class problems

– multi label problems (more than one class per record, not covered in this lecture)

– hierarchical multi class/label problems (with class hierarchy, e.g., product categories)
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What is Classification?

• Classification is a supervised learning problem

– i.e., given labeled data, learn a prediction function for those labels

http://dilbert.com/strip/2013-02-02
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The Classification Workflow
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Classification Applications – Examples

• Attributes: a set of symptoms (headache, sore throat...)

– class: does the patient suffer from disease X?

• Attributes: the values in your tax declaration

– class: are you trying to cheat?

• Attributes: your age, income, debts, …

– class: are you getting credit by your bank?

• Attributes: the countries you phoned with in the last 6 months

– class: are you a terrorist?
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Classification Applications – Examples

• Attributes: words in a product review

– Class: Is it a fake review?

• Attributes: words and header fields of an e-mail

– Class: Is it a spam e-mail?
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Classification Applications – Examples

• A controversial example

– Class: whether you are searched by the police

– Class: whether you are selected at the airport for an extra check

http://lubbockonline.com/stories/030609/loc_405504016.shtml
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Classification Algorithms

• Recap:

– we give the computer a set of labeled examples

– the computer learns to classify new (unlabeled) examples

• How does that work?
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k Nearest Neighbors

• Problem

– find out what the weather is in a certain 
place

– where there is no weather station

– how could you do that?

x
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k Nearest Neighbors

• Idea: use the average of the
nearest stations

• Example:

– 3x sunny

– 2x cloudy

– result: sunny

• Approach is called

– “k nearest neighbors”

– where k is the number of neighbors to consider

– in the example: k=5

– in the example: “near” denotes geographical proximity

x
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k Nearest Neighbors

• Further examples:

• Is a customer going to buy a product?

→ have similar customers bought that product?

• What party are you going to vote for?

→ what party do your (closest) friends/family members vote for?

• Is a film going to win an oscar?

→ have similar films won an oscar?

• and so on...
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Experiment

• Trying to predict: do you want to watch “Ad Astra” 
(coming to cinemas tomorrow)?

• Binary attributes: have you watched these 2019 films?

1) Replicas

2) Lego Movie 2

3) Captain Marvel

4) The Kid

5) Shazam!

6) Long Shot

7) Dark Phoenix

8) Secret Life of Pets 2

9) Angry Birds Movie 2
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Recap: Similarity and Distance

• k Nearest Neighbors

– requires a notion of similarity (i.e., what is “near”?)

• Review: similarity measures for clustering

– similarity of individual data values

– similarity of data points

• Think about scales and normalization!

• Which similarity measure was used in our experiment?

– we could have used different ones

– probably with different outcomes
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Nearest-Neighbor Classifiers

• Requires three things
– The set of stored records
– A distance metric to compute 

distance between records
– The value of k, the number 

of nearest neighbors to 
retrieve

Unknown record
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Nearest-Neighbor Classifiers

• To classify an unknown 
record:
– Compute distance to each 

training record
– Identify k nearest 

neighbors 
– Use class labels of nearest 

neighbors to determine the 
class label of unknown 
record

• by taking majority vote
• by weighing the vote 

according to distance

Unknown record
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Definition of the k Nearest Neighbors

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

    The k nearest neighbors of a record x are data 
points that have the k smallest distance to x.
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Choosing a Good Value for k

– If k is too small, sensitive to noise points

– If k is too large, neighborhood may include 
points from other classes

– Rule of thumb: Test k values between 1 and 10.

X
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Discussion of K-Nearest Neighbor

• Often very accurate

• … but slow as training data needs to be searched

• Can handle decision boundaries which are not 
parallel to the axes

• Assumes all attributes are equally important

– Remedy: Attribute selection or using attribute weights



9/18/19 Heiko Paulheim 26 

Decision Boundaries of a k-NN Classifier

• k=1

• Single noise points have influence on model
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Decision Boundaries of a k-NN Classifier

• k=3

• Boundaries become smoother

• Influence of noise points is reduced
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KNN in RapidMiner & Python

scaler = MinMaxScaler()
features_norm = scaler.fit_transform(features)
model = KNeighborsClassifier(n_neighbors=3)
model.fit(features_norm,label)
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Applying the Model

test_norm = scaler.transform(test)
model.predict(test_norm)
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Contrast: Nearest Centroids

• a.k.a. Rocchio classifier

• Training: compute centroid for each class

– center of all points of that class

– like: centroid for a cluster

• Classification:

– assign each data point to nearest centroid

• RapidMiner: 

– available in Mannheim RapidMiner Toolbox Extension

• Python:

– scikit_learn.neighbors.NearestCentroid

Sounds pretty 
much just like 

k-NN, huh?
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k-NN vs. Nearest Centroid

• Basic problem: two circles

– Both k-NN and Nearest Centroid are rather perfect
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k-NN vs. Nearest Centroid

• Some data points are mislabeled

– k-NN loses performance

– Nearest Centroid is stable
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k-NN vs. Nearest Centroid

• One class is significantly smaller than the other

– k-NN loses performance

– Nearest Centroid is stable
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k-NN vs. Nearest Centroid

• Outliers are contained in the dataset

– k-NN is stable

– Nearest Centroid loses performance
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k-NN vs. Nearest Centroid

• k-NN

– slow at classification time (linear in number of data points)

– requires much memory (storing all data points)

– robust to outliers

• Nearest Centroid

– fast at classification time (linear in number of classes)

– requires only little memory (storing only the centroids)

– robust to label noise

– robust to class imbalance

• Which classifier is better?

– that strongly depends on the problem at hand!
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Bayes Classifier

• Based on Bayes Theorem

• Thomas Bayes (1701-1761)

– British mathematician and priest

– tried to formally prove the existence of God

• Bayes Theorem

– important theorem in probability theory

– was only published after Bayes' death
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Conditional Probability and Bayes Theorem

• A probabilistic framework for solving classification problems

• Conditional Probability:

 

• Bayes theorem:

P (C∣A)=
P (A∣C )P(C )

P( A)

P (C∣A)=
P( A ,C )
P( A)

P (A∣C )=
P( A ,C )
P(C )
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Conditional Probability and Bayes Theorem

• Bayes Theorem

– Computes one conditional probability P(C|A) out of another P(A|C)

– given that the base probabilities P(A) and P(C) are known

• Useful in situations where P(C|A) is unknown

– while P(A|C), P(A) and P(C) are known or easy to determine/estimate

• Example:

– Given a symptom, what's the probability that I have a certain disease?
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Example of Bayes Theorem

• ELISA Test

– the most common test for HIV

• Numbers:

– If you're infected, ELISA shows 
a positive result with p=99.9%

– If you're not infected, ELISA shows
a negative result with p=99.5%

• Assume you have a positive test

– What's the probability that you're infected with HIV?

• Make a guess!
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Example of Bayes Theorem

• We want to know P(HIV|pos)

– Bayes theorem:

• We still need P(pos)

– the probability of a positive test

• Putting the pieces together:

P(HIV ∣pos )= P ( pos∣HIV )P (HIV )
P ( pos )

P( pos )=P ( pos∣HIV∨¬HIV )

P(HIV ∣pos )= P( pos∣HIV )P (HIV )
P ( pos∣HIV )⋅P (HIV )+P( pos∣¬HIV )⋅P (¬HIV )

=P ( pos∣HIV )⋅P (HIV )+P ( pos∣¬HIV )⋅P (¬HIV )

0.1% in Germany
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Example of Bayes Theorem

• Now: numbers

• That means:

– at more than 80% probability, you are still healthy, given a positive test!

• Reason:

– low overall apriori probability of being HIV positive

= 0.999⋅0.001
0.999⋅0.001+0.005⋅0.999

=0.167

P(HIV ∣pos )= P( pos∣HIV )P (HIV )
P ( pos∣HIV )⋅P (HIV )+P( pos∣¬HIV )⋅P (¬HIV )
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Example of Bayes' Theorem

http://xkcd.com/1236/
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Bayesian Classifiers

• Consider each attribute and class label as random variables

• Given a record with attributes (A1, A2,…,An) 

– Goal is to predict class C

– Specifically, we want to find the value of C that maximizes P(C| A1, A2,
…,An )

• Can we estimate P(C| A1, A2,…,An ) directly from the data?
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Bayesian Classifiers

• Approach:
– compute the probability P(C | A1, A2, …, An) for all values 

of C using the Bayes theorem

– Choose value of C that maximizes 
P(C | A1, A2, …, An)

– Equivalent to choosing value of C that maximizes
     P(A1, A2, …, An|C) P(C)

• How to estimate P(A1, A2, …, An | C )?
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Naïve Bayes Classifier

• Assume independence among attributes Ai when class is 
given:    

– P(A1, A2, …, An |Cj) = P(A1| Cj) P(A2| Cj)… P(An| Cj)
 

– Can estimate P(Ai| Cj) for all Ai and Cj

– New point is classified to Cj if  P(Cj)  P(Ai| Cj)  is 
maximal
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How to Estimate Probabilities from Data?

• Class:  P(C) = Nc/N
– e.g.,  P(No) = 7/10, 

        P(Yes) = 3/10

• For discrete attributes:
  

     P(Ai | Ck) = |Aik|/ Nc 

– where |Aik| is number of 
instances having 
attribute Ai and belongs 
to class Ck

– Examples:

P(Status=Married|No) = 4/7
P(Refund=Yes|Yes)=0



9/18/19 Heiko Paulheim 47 

How to Estimate Probabilities from Data?

• For continuous attributes: 
– Discretize the range into bins 

•  one binary attribute per bin

•  violates independence assumption

– Two-way split:  (A < v) or (A > v)

•  choose only one of the two splits as new attribute

– Probability density estimation:

•  Assume attribute follows a normal distribution

•  Use data to estimate parameters of distribution 
   (e.g., mean and standard deviation)

•  Once probability distribution is known, can use it to estimate the 
conditional probability P(Ai|c)
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How to Estimate Probabilities from Data?

• Normal distribution:

– One for each (Ai,ci) pair

• For (Income, Class=No):

– If Class=No
•  sample mean = 110

•  sample variance = 2975
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How to Estimate Probabilities from Data?

• Example visualization:

– normal distribution

– mean = 110

– variance = 2975

• P(Income=120|No) = 0.0072
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Example of Naïve Bayes Classifier

120K)IncomeMarried,No,Refund( X

 P(X|Class=No) = P(Refund=No|Class=No)
  P(Married| Class=No)
  P(Income=120K| Class=No)

              = 4/7  4/7  0.0072 = 0.0024

 P(X|Class=Yes) = P(Refund=No| Class=Yes)
                      P(Married| Class=Yes)
                      P(Income=120K| Class=Yes)

               = 1  0  (1.2  10-9) = 0

Since P(X|No)P(No) > P(X|Yes)P(Yes)

Therefore P(No|X) > P(Yes|X)
      => Class = No

Given a Test Record:
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Handling missing values

 Missing values may occur in training and classification examples

 Training: Instance is not included in frequency count for attribute 
value-class combination.

 Classification: Attribute will be omitted from calculation.

 Example:
Tid Refund Marital 

Status
Taxable 
Income

Evade

15 No ? 120k ?

Likelihood of “yes” = 1 * (1.2 * 10-9) = 1.2 * 10-9

Likelihood of “no” = 4/7 * 0.0072 = 0.0041
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From Likelihoods to Probabilities

• A person can either evade or not

– so why do the likelihoods not add up to 1?

• Recap:

We have ignored the denominator so far!

– however, it is the same for all classes

– so we can simply normalize to 1:
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Likelihood of “yes” = 1 * (1.2 * 10-9) = 1.2 * 10-9

Likelihood of “no” = 4/7 * 0.0072 = 0.0041

P(“yes”) = 1.2 * 10-9 / (1.2 * 10-9 + 0.0041) = 0.0000003

P(“no”) = 0.0041  / (1.2 * 10-9 + 0.0041) = 0.9999997
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Zero Frequency Problem

• If one of the conditional probabilities is zero, 
then the entire expression becomes zero

• And it is not unlikely that an exactly same data point 
has not yet been observed

• Probability estimation:

Original: P( Ai∣C )=
N ic
N c

Laplace: P( Ai∣C )=
N ic+1

N c+c

c: number of classes
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Naïve Bayes in RapidMiner & Python

model = GaussianNB()
model.fit(features,label)
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Anatomy of a Naïve Bayes Model
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Using Conditional Probabilities for Naïve Bayes

classifier is quite sure

classifier is not sure
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Decision Boundary of Naive Bayes Classifier

• Usually larger coherent areas

• Soft margins with uncertain regions

• Arbitrary (often curved) shapes
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Naïve Bayes (Summary)

• Robust to isolated noise points

– they have a small impact on the probabilities

• Handle missing values by ignoring the instance during probability 
estimate calculations

• Robust to irrelevant attributes

• Independence assumption may not hold for some attributes
– Use other techniques such as Bayesian Belief Networks (BBN)
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Why Naïve Bayes?

• Recap:

– we assume that all the attributes are independent

• This does not hold for many real world datasets

– e.g., persons: sex, weight, height

– e.g., cars: weight, fuel consumption

– e.g., countries: population, area, GDP

– e.g., food: ingredients

– e.g., text: word occurrences (“Donald”, “Trump”, “Duck”)

– ...
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Naïve Bayes Discussion

• Naïve Bayes works surprisingly well.

– even if independence assumption is clearly violated

– Classification doesn’t require accurate probability estimates as 
long as maximum probability is assigned to correct class

• However: Adding too many redundant attributes will cause 
problems

– Solution: Select attribute subset as Naïve Bayes often works as 
well or better with just a fraction of all attributes.

• Technical advantages:

– Learning Naïve Bayes classifiers is computationally cheap as 
probabilities can be estimated doing one pass over the training 
data

– Storing the probabilities does not require a lot of memory
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Redundant Variables

• Consider two variables which are perfectly correlated

– i.e., one is redundant

– e.g.: a measurement in different units

• Violate independence assumption in Naive Bayes

– Can, at large scale, skew the result

– Consider, e.g., a price attribute in 20 currencies

→ price variable gets 20 times more influence

• May also skew the distance measures in k-NN

– But the effect is not as drastic

– Depends on the distance measure used
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Irrelevant Variables

• Consider a random variable x, and two classes A and B

– For Naive Bayes: p(x=v|A) = p(x=v|B) for any value v

– Since it is random, it does not depend on the class variable

– The overall result does not change

• For kNN:
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Comparison kNN and Naïve Bayes

• Computation

– Naïve Bayes is often faster

• Naïve Bayes uses all data points

– Naive Bayes is less sensitive to label noise

– k-NN is less sensitive to outliers

• Redundant attributes

– are less problematic for kNN

• Irrelevant attributes

– are less problematic for Naïve Bayes

– attribute values equally distributed across classes 
→ same factor for each class

• In both cases

– attribute pre-selection makes sense (see Data Mining II)
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Lazy vs. Eager Learning

• k-NN, and Naïve Bayes are all “lazy” methods 

• They do not build an explicit model!

– “learning” is only performed on demand for unseen records

• Nearest Centroid is a simple “eager” method
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Lazy vs. Eager Learning

• We have seen three of the most common techniques for lazy 
learning

– k nearest neighbors

– Naïve Bayes

• ...and a very simple technique for eager learning

– Nearest Centroids

• We will see more eager learning in the next lectures

– where explicit models are built

– e.g., decision trees

– e.g., rule sets
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Questions?
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