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Lazy vs. Eager Learning

• Both k-NN and Naïve Bayes are “lazy” methods 

• They do not build an explicit model!

– “learning” is only performed on demand for unseen records
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Today: Eager Learning

• Actually, we have two goals

– classify unseen instances

– learn a model

• Model

– explains how to classify unseen instances

– sometimes: interpretable by humans
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Decision Tree Classifiers

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model:  Decision Tree

Terminal node
= decision
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Another Example of a Possible Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

MarSt

Refund

TaxInc

YESNO

NO

NO

Yes No

Married 
Single, 

Divorced

< 80K > 80K

There can be more than one tree 
that fits the same data!
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Decision Boundary

y < 0.33?

     : 0
     : 3

     : 4
     : 0

y < 0.47?

    : 4
    : 0

     : 0
     : 4

x < 0.43?

Yes

Yes

No

No Yes No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
• Border line between two neighboring regions of different classes 

is known as decision boundary

• Decision boundary is parallel to axes because test condition 
involves a single attribute at-a-time

y<0.47

x<
0.43

y<0.33
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Applying a Decision Tree to Test Data

Start from the root of 
tree.

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data

Assign Cheat to 
“No”
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Decision Tree Induction

• How to learn a decision Tree from test data?

• Finding an optimal decision tree is NP-hard

• Tree building algorithms use a greedy, top-down, recursive 
partitioning strategy to induce a reasonable solution

– also known as: divide and conquer

• Many different algorithms have been proposed:

– Hunt’s Algorithm

– ID3

– CHAID 

– C4.5
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General Structure of Hunt’s Algorithm

• Let Dt be the set of training records 
that reach a node t

• General Procedure:

– If Dt contains only records that 
belong to the same class yt, 
then t is a leaf node labeled as yt

– If Dt contains records that belong 
to more than one class, use an 
attribute test to split the data into 
smaller subsets 

– Recursively apply the procedure 
to each subset

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Dt

?
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Hunt’s Algorithm

Data

Refund

Don’t 
Cheat

??

Yes No

Refund

Don’t 
Cheat

Yes No

Marital
Status

Don’t 
Cheat

Cheat

Single,
Divorced

Married

Taxable
Income

Don’t 
Cheat

< 80K >= 80K

Refund

Don’t 
Cheat

Yes No

Marital
Status

Don’t 
Cheat

??

Single,
Divorced

Married
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Tree Induction Issues

• Determine how to split the records

– How to specify the attribute test condition?

– How to determine the best split?

• Determine when to stop splitting
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How to Specify the Attribute Test Condition?

• Depends on attribute types

– Nominal

– Ordinal

– Continuous

• Depends on number of ways to split

– 2-way split

– Multi-way split
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Splitting Based on Nominal Attributes

 Multi-way split: Use as many partitions as distinct values

 Binary split:  Divides values into two subsets. 
   Need to find optimal partitioning

CarType
Family

Sports
Luxury

CarType
{Family, 
Luxury} {Sports}

CarType
{Sports, 
Luxury} {Family} OR
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 Multi-way split: Use as many partitions as distinct values. 

 Binary split:  Divides values into two subsets, 
                       while keeping the order. 

   Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Size
Small

Medium

Large

Size
{Small} {Medium,

Large}

Size
{Small, 

Medium} {Large} OR
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Splitting Based on Continuous Attributes

Taxable
Income
> 80K?

Yes No

Taxable
Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K
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Splitting Based on Continuous Attributes

• Different ways of handling

– Discretization to form an ordinal categorical attribute

• equal-interval binning 
• equal-frequency binning
• binning based on user-provided boundaries 

– Binary Decision: (A < v) or (A  v)

• usually sufficient in practice
• consider all possible splits 
• find the best cut (i.e., the best v) based on a 

purity measure (see later)
• can be computationally expensive
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Discretization Example

• Attribute values (for one attribute e.g., age): 

– 0, 4, 12, 16, 16, 18, 24, 26, 28

• Equal-width binning  – for bin width of e.g., 10: 

– Bin 1: 0, 4  [-∞,10) bin 

– Bin 2: 12, 16, 16, 18 [10,20) bin

– Bin 3: 24, 26, 28 [20,+∞) bin
• ∞ denotes negative infinity, +∞ positive infinity

• Equal-frequency binning – for bin density of e.g., 3:

– Bin 1: 0, 4, 12  [-∞, 14) bin

– Bin 2: 16, 16, 18 [14, 21) bin

– Bin 3: 24, 26, 28 [21,+∞] bin
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How to determine the Best Split?

Own
Car?

C0: 6
C1: 4

C0: 4
C1: 6

C0: 1
C1: 3

C0: 8
C1: 0

C0: 1
C1: 7

Car
Type?

C0: 1
C1: 0

C0: 1
C1: 0

C0: 0
C1: 1

Student
ID?

...

Yes No Family

Sports

Luxury c1
c10

c20

C0: 0
C1: 1

...

c11

Before Splitting: 10 records of class 0,
     10 records of class 1

Which test condition is the best?
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How to determine the Best Split?

• Nodes with homogeneous class distribution are preferred

• Need a measure of node impurity:

• Common measures of node impurity:

– Gini Index

– Entropy

– Misclassification error

C0: 5
C1: 5

C0: 9
C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity
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Gini Index

• Named after Corrado Gini (1885-1965)

• Used to measure the distribution of income

– 1: somebody gets everything

– 0: everybody gets an equal share
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Measure of Impurity: GINI

• Gini-based purity measure for a given node t :

(NOTE: p( j | t) is the relative frequency of class j at 
node t).

– Maximum (1 - 1/nc) when records are equally 
distributed among all classes, implying least 
interesting information

– Minimum (0.0) when all records belong to one class, 
implying most interesting information


j

tjptGINI 2)]|([1)(

C1 0
C2 6

Gini=0.000

C1 2
C2 4

Gini=0.444

C1 3
C2 3

Gini=0.500

C1 1
C2 5

Gini=0.278
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Examples for Computing GINI

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0 


j

tjptGINI 2)]|([1)(

P(C1) = 1/6          P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

P(C1) = 2/6          P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444
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Splitting Based on GINI

• When a node p is split into k partitions (children), the quality of split 
is computed as

– where ni = number of records at child i,

– n  = number of records at node p.

• Intuition:

– The GINI index of each partition is weighted 

– according to the partition's size





k

i

i
split iGINI

n

n
GINI

1

)(
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Binary Attributes: Computing GINI Index

• Splits into two partitions

B?

Yes No

Node N1 Node N2

 Parent 

C1 6 

C2 6 

Gini = 0.500 
 

Gini(N1) 
= 1 – (5/7)2 – (2/7)2 
= 0.408 

Gini(N2) 
= 1 – (1/5)2 – (4/5)2 
= 0.320

Gini(Children) 
= 7/12 * 0.408 + 
   5/12 * 0.320
= 0.371

N1 N2
C1 5 1
C2 2 4
Gini=0.371
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Categorical Attributes: Computing Gini Index

• For each distinct value, gather counts for each 
class in the dataset

• Use the count matrix to make decisions

CarType
{Sports,
Luxury}

{Family}

C1 3 1
C2 2 4

Gini 0.400

CarType

{Sports} 
{Family,
Luxury}

C1 2 2
C2 1 5

Gini 0.419

CarType

Family Sports Luxury

C1 1 2 1
C2 4 1 1

Gini 0.393

Multi-way split Two-way split 
(find best partition of values)
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Continuous Attributes: Computing Gini Index

• Use Binary Decisions based on one value

• Several Choices for the splitting value

– Number of possible splitting values 
= Number of distinct values

• Each splitting value has a count matrix 
associated with it

– Class counts in each of the partitions, 
A < v and A  v

• Simple method to choose best v

– For each v, scan the database to gather 
count matrix and compute its Gini index

– Computationally Inefficient! 
Repetition of work

Taxable
Income
> 80K?

Yes No
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Continuous Attributes: Computing Gini Index

 For efficient computation: for each attribute,

 Sort the attribute on values

 Linearly scan these values, each time updating the 
count matrix and computing gini index

 Choose the split position that has the least gini index
Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions
Sorted Values
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Continuous Attributes: Computing Gini Index

 Note: it is enough to compute the GINI for those positions 
where the label changes!

Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions
Sorted Values
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Alternative Splitting Criteria: Information Gain

• Entropy at a given node t:

(NOTE: p( j | t) is the relative frequency of class j at node t).

– Measures homogeneity of a node

• Maximum (log nc) when records are equally distributed 
among all classes implying least information

• Minimum (0.0) when all records belong to one class, 
implying most information

– Entropy based computations are similar to the GINI index 
computations


j

tjptjptEntropy )|(log)|()(
2
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Splitting Based on Information Gain

• Information Gain: 

• Parent Node, p is split into k partitions;

• ni is number of records in partition i

– Measures reduction in entropy achieved because of the split
• Choose the split that achieves most reduction (maximizes GAIN)

– Disadvantage: Tends to prefer splits that result in large number 
of partitions, each being small but pure

• e.g,. split by ID attribute







 



k

i

i

split
iEntropy

n
n

pEntropyGAIN
1

)()(
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How to Find the Best Split

B?

Yes No

Node N3 Node N4

A?

Yes No

Node N1 Node N2

Before Splitting:

C0 N10 
C1 N11 

 

 

C0 N20 
C1 N21 

 

 

C0 N30 
C1 N31 

 

 

C0 N40 
C1 N41 

 

 

C0 N00 
C1 N01 

 

 

M0

M1 M2 M3 M4

M12 M34Gain = M0 – M12 vs  M0 – M34
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Alternative Splitting Criteria: GainRATIO 

• Gain Ratio: 

• Parent Node, p is split into k partitions

• ni is the number of records in partition I

– Adjusts Information Gain by the entropy of the partitioning (SplitINFO)

• Higher entropy partitioning (large number of small partitions) is 
penalized!

– Designed to overcome the tendency to generate 
a large number of small partitions

SplitINFO

GAIN
GainRATIO Split

split
 




k

i

ii

n
n

n
n

SplitINFO
1

log
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Alternative Splitting Criteria: Classification Error

• Classification error at a node t :

• Measures misclassification error made by a node.

• Assumption: The node classifies every example to belong to 
the majority class

• Maximum (1 - 1/nc) when records are equally distributed 
among all classes, implying least interesting information

• Minimum (0.0) when all records belong to one class, 
implying most interesting information

)|(max1)( tiPtError
i


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Decision Trees in RapidMiner (ID3)

Learns an un-pruned decision tree from nominal attributes only. 



Heiko Paulheim 36 

Decision Trees in RapidMiner

More flexible algorithm that includes pruning and discretization
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Tree Induction in Python

clf = DecisionTreeClassifier()

clf = clf.fit(X,X_labels)

# Visualization

tree.plot_tree(clf) 
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Model Evaluation

● Metrics
● how to measure performance?

● Evaluation methods
● how to obtain meaningful and reliable estimates?
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Model Evaluation

● Models are evaluated by looking at
● correctly and incorrectly classified instances

● For a two-class problems, four cases can occur:
● true positives: positive class correctly predicted
● false positives: positive class incorrectly predicted
● true negatives: negative class correctly predicted
● false negatives: negative class incorrectly predicted
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Metrics for Performance Evaluation

• Focus on the predictive capability of a model

• Rather than how fast it takes to classify or build models

• Confusion Matrix:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes TP FN

Class=No FP TN
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Metrics for Performance Evaluation

• Most frequently used metrics:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes TP FN

Class=No FP TN

FNFPTNTP

TNTP




Accuracy 

Accuracy1 RateError 
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What is a Good Accuracy?

• i.e., when are you done?
– at 75% accuracy?

– at 90% accuracy?

– at 95% accuracy?

• Depends on difficulty of the problem!

• Baseline: naive guessing
– always predict majority class

• Compare
– Predicting coin tosses with accuracy of 50%

– Predicting dice roll with accuracy of 50%

– Predicting lottery numbers (6 out of 49) wth accuracy of 50%
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Limitation of Accuracy: Unbalanced Data

• Sometimes, classes have very unequal frequency

 Fraud detection: 98% transactions OK, 2% fraud

 eCommerce: 99% don’t buy, 1% buy

 Intruder detection: 99.99% of the users are no intruders

 Security: >99.99% of Americans are not terrorists

• The class of interest is commonly called the positive class, and the rest 
negative classes.

• Consider a 2-class problem

 Number of Class 0 examples = 9990, Number of Class 1 examples = 10

 If model predicts everything to be class 0, 
accuracy is 9990/10000 = 99.9 %

 Accuracy is misleading because model does not detect 
any class 1 example
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Precision and Recall

Alternative: Use measures from information retrieval which are biased 
towards the positive class.

Precision p is the number of correctly classified positive examples 
divided by the total number of examples that are classified as 
positive

Recall r is the number of correctly classified positive examples divided 
by the total number of actual positive examples in the test set

 r=
TP

TP+FN

p=
TP

TP+FP
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Precision and Recall Example

• This confusion matrix gives us

 precision p = 100% and 

 recall r = 1% 

• because we only classified one positive example 
correctly and no negative examples wrongly

• We want a measure that combines precision and recall

Predicted 
positive

Predicted 
negative

Actual 
positive

1 99

Actual 
negative

0 1000
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F1-Measure

• It is hard to compare two classifiers using two measures

• F1-Score combines precision and recall into one measure

– by using the harmonic mean

• The harmonic mean of two numbers tends to be closer to 
the smaller of the two

• For F1-value to be large, both p and r must be large

F 1=
2

1
p
+

1
r

=
2 p r
p+r
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F1-Measure
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Alternative for Unbalanced Data: Cost Matrix

      PREDICTED CLASS

ACTUAL
CLASS

C(i|j) Class=Yes Class=No

Class=Yes C(Yes|Yes) C(No|Yes)

Class=No C(Yes|No) C(No|No)

C(i|j): Cost of misclassifying class j example as class i
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Computing Cost of Classification

Cost 
Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(i|j) + -

+ 0 100

- 1 0

Model M1 PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 162 38

- 160 240

Model 
M2

PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 155 45

- 5 395

Accuracy = 67%

Cost = 3798

Accuracy = 92%

Cost = 4350
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ROC Curves

• Some classification algorithms provide confidence scores

– how sure the algorithms is with its prediction

– e.g., Naive Bayes: the probability

– e.g., Decision Trees: the purity of the respective leaf node

• Drawing a ROC Curve

– Sort classifications according to confidence scores

– Evaluate

• correct prediction: draw one step up

• incorrect prediction: draw one step to the right
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ROC Curves

• Drawing ROC Curves in RapidMiner & Python

fpr, tpr, thresholds = roc_curve(actual, predictions)
plt.plot(fpr, tpr)
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Example ROC Curve of Naive Bayes
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Example ROC Curve of Decision Tree Learner
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Interpreting ROC Curves

• Best possible result:

– all correct predictions have higher
confidence than all incorrect ones

• The steeper, the better

– random guessing results in the diagonal

– so a decent algorithm should result
in a curve significantly above the diagonal

• Comparing algorithms:

– Curve A above curve B means
algorithm A better than algorithm B

• Frequently used criterion

– area under curve (aka ROC AUC)

– normalized to 1
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Methods for Performance Evaluation

• How to obtain a reliable estimate of performance?

• Performance of a model may depend on other factors besides the 
learning algorithm:

 Size of training and test sets (it often expensive to get labeled data)

 Class distribution (balanced, skewed)

 Cost of misclassification (your goal)

• Methods for estimating the performance

 Holdout

 Random Subsampling

 Cross Validation
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Practical Issue: Overfitting

• Example: predict credit rating

– possible decision tree:

Name Net Income Job status Debts Rating

John 40000 employed 0 +

Mary 38000 employed 10000 -

Stephen 21000 self-employed 20000 -

Eric 2000 student 10000 -

Alice 35000 employed 4000 +

Debts
>5000

Yes No

- +
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Name Net Income Job status Debts Rating

John 40000 employed 0 +

Mary 38000 employed 10000 -

Stephen 21000 self-employed 20000 -

Eric 2000 student 10000 -

Alice 35000 employed 4000 +

Practical Issue: Overfitting

• Example: predict credit rating

– alternative decision tree:

Name
=”John”

No Yes

+Name=
“Alice”

Yes No

+ -
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Practical Issue: Overfitting

• Both trees seem equally good

– Classify all instances in the training set correctly

– Which one do you prefer?

Debts
>5000

Yes No

- +

Name
=”John”

No Yes

+Name=
“Alice”

Yes No

+ -
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Occam's Razor

• Named after William of Ockham (1287-1347)

• A fundamental principle of science

– if you have two theories

– that explain a phenomenon equally well

– choose the simpler one

• Example:

– phenomenon: the street is wet

– theory 1: it has rained

– theory 2: a beer truck has had an accident, and beer has spilled. 
The truck has been towed, and magpies picked the glass pieces,
so only the beer remains
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Training and Testing Data

• Consider the decision tree again

• Assume you measure the performance
using the training data

• Conclusion:

– We need separate data for testing

Name
=”John”

No Yes

+Name=
“Alice”

Yes No

+ -
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Learning Curve

• Learning curve shows 
how accuracy changes 
with varying sample size

• Conclusion: Use as 
much data as possible 
for training

• At the same time:
variation drops with 
larger evaluation sets

• Conclusion: use as 
much data as possible 
for evaluation
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Holdout Method

• The holdout method reserves a certain amount for testing and uses 
the remainder for training

• Usually: one third for testing, the rest for training

• applied when lots of sample data is available

• For unbalanced datasets, samples might not be representative
 Few or none instances of some classes

• Stratified sample: balances the data
 Make sure that each class is represented with approximately equal 

proportions in both subsets
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Leave One Out

• Iterate over all examples

– train a model on all examples but the current one

– evaluate on the current one

• Yields a very accurate estimate

• Uses as much data for training as possible

– but is computationally infeasible in most cases

• Imagine: a dataset with a million instances

– one minute to train a single model

– Leave one out would take almost two years
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Cross-Validation

• Compromise of Leave One Out and decent runtime

• Cross-validation avoids overlapping test sets

 First step: data is split into k subsets of equal size

 Second step: each subset in turn is used for testing 
and the remainder for training

• This is called k-fold cross-validation

• The error estimates are averaged to yield an overall error estimate

• Frequently used value for k : 10
– Why ten? Extensive experiments have shown that this is the good choice 

to get an accurate estimate

• Often the subsets are stratified before the cross-validation is 
performed
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Cross-Validation in RapidMiner

clf = KNeighborsClassifier(n_neighbors=3)
scores = cross_val_score(clf, data, target, cv=10)
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Overfitting
• Overfitting: Good accuracy 

on training data, but poor on 
test data.

• Symptoms: Tree too deep 
and too many branches

• Typical causes of overfitting

– too little training data

– noise

– poor learning algorithm

Back to Overfitting
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 

 

 
 

 

Overfitting - Illustration

Prediction for 
this value of x?

Polynomial degree 1
(linear function)

    Polynomial degree 4
(n-1 degrees can always fit n points)

□ here

□ or here ?
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Overfitting and Noise

Likely to overfit the data
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How to Address Overfitting?

• Pre-Pruning (Early Stopping Rule)

– Stop the algorithm before it becomes a fully-grown 
tree

– Typical stopping conditions for a node:
•  Stop if all instances belong to the same class
•  Stop if all the attribute values are the same

– Less restrictive conditions:
• Stop if number of instances within a node is less than 

some user-specified threshold
• Stop if expanding the current node only slightly improves 

the impurity measure (user-specified threshold) 
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How to Address Overfitting?

• Post-pruning

1. Grow decision tree to its entire size

2. Trim the nodes of the decision tree in a bottom-up fashion 

•   using a validation data set
•   or an estimate of the generalization error

3. If generalization error improves after trimming 

• replace sub-tree by a leaf node
• Class label of leaf node is determined from majority class of 

instances in the sub-tree
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Training vs. Generalization Errors

• Training error

– also: resubstitution error, apparent error

– errors made in training

– evidence: misclassified training instances

• Generalization error

– errors made on unseen data

– evidence: no apparent evidence

• Training error can be computed

• Generalization error must be estimated
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Estimating the Generalization Error

• Training errors: error on training ( e(t) )

• Generalization errors: error on testing ( e’(t))

• Methods for estimating generalization errors:
1. (Too) Optimistic approach:  e’(t) = e(t)

2. Pessimistic approach: 
•   For each leaf node: e’(t) = (e(t)+0.5) 

  (user-defined 0.5 penalty for large trees)
•   Total errors: e’(T) = e(T) + N  0.5 

  (N: number of leaf nodes)
•   For a tree with 30 leaf nodes and 10 errors on training 

  (out of 1000 instances):
          Training error = 10/1000 = 1%

             Generalization error = (10 + 300.5)/1000 = 2.5%

3. Reduced Error Pruning (REP):
•  use validation data set to estimate generalization

error
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Example of Post-Pruning

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10

Error = 10/30

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

= (9 + 4  0.5)/30 = 11/30

PRUNE!

Class = Yes 8

Class = No 4

Class = Yes 3

Class = No 4

Class = Yes 4

Class = No 1

Class = Yes 5

Class = No 1
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Discussion of Decision Trees

• Advantages:

– Inexpensive to construct

– Fast at classifying unknown records

– Easy to interpret by humans for small-sized trees

– Accuracy is comparable to other classification techniques 
for many simple data sets

• Disadvantages:

– Decisions are based only one a single attribute at a time

– Can only represent decision boundaries that are parallel to the axes
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Comparing Decision Trees and k-NN

• Decision boundaries

– k-NN: arbitrary

– Decision trees: rectangular

• Sensitivity to scales

– k-NN: needs normalization

– Decision tree: does not require normalization (why?)

• Runtime & memory

– k-NN is cheap to train, but expensive for classification

– decision tree is expensive to train, but cheap for classification
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Questions?
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