
Data Mining I
Classification, Part 2

Heiko Paulheim

Heiko Paulheim 2

Outline

1. What is Classification? ✔

2. k Nearest Neighbors ✔

3. Naïve Bayes ✔

4. Decision Trees

5. Evaluating Classification

6. The Overfitting Problem

7. Rule Learning

8. Other Classification Approaches

9. Parameter Tunining

Heiko Paulheim 3

Lazy vs. Eager Learning

• Both k-NN and Naïve Bayes are “lazy” methods

• They do not build an explicit model!

– “learning” is only performed on demand for unseen records

Heiko Paulheim 4

Today: Eager Learning

• Actually, we have two goals

– classify unseen instances

– learn a model

• Model

– explains how to classify unseen instances

– sometimes: interpretable by humans

Heiko Paulheim 5

Decision Tree Classifiers

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model: Decision Tree

Terminal node
= decision

Heiko Paulheim 6

Another Example of a Possible Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

MarSt

Refund

TaxInc

YESNO

NO

NO

Yes No

Married
Single,

Divorced

< 80K > 80K

There can be more than one tree
that fits the same data!

Heiko Paulheim 7

Decision Boundary

y < 0.33?

 : 0
 : 3

 : 4
 : 0

y < 0.47?

 : 4
 : 0

 : 0
 : 4

x < 0.43?

Yes

Yes

No

No Yes No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
• Border line between two neighboring regions of different classes

is known as decision boundary

• Decision boundary is parallel to axes because test condition
involves a single attribute at-a-time

y<0.47

x<
0.43

y<0.33

Heiko Paulheim 8

Applying a Decision Tree to Test Data

Start from the root of
tree.

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Assign Cheat to
“No”

Heiko Paulheim 9

Decision Tree Induction

• How to learn a decision Tree from test data?

• Finding an optimal decision tree is NP-hard

• Tree building algorithms use a greedy, top-down, recursive
partitioning strategy to induce a reasonable solution

– also known as: divide and conquer

• Many different algorithms have been proposed:

– Hunt’s Algorithm

– ID3

– CHAID

– C4.5

Heiko Paulheim 10

General Structure of Hunt’s Algorithm

• Let Dt be the set of training records
that reach a node t

• General Procedure:

– If Dt contains only records that
belong to the same class yt,
then t is a leaf node labeled as yt

– If Dt contains records that belong
to more than one class, use an
attribute test to split the data into
smaller subsets

– Recursively apply the procedure
to each subset

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Dt

?

Heiko Paulheim 11

Hunt’s Algorithm

Data

Refund

Don’t
Cheat

??

Yes No

Refund

Don’t
Cheat

Yes No

Marital
Status

Don’t
Cheat

Cheat

Single,
Divorced

Married

Taxable
Income

Don’t
Cheat

< 80K >= 80K

Refund

Don’t
Cheat

Yes No

Marital
Status

Don’t
Cheat

??

Single,
Divorced

Married

Heiko Paulheim 12

Tree Induction Issues

• Determine how to split the records

– How to specify the attribute test condition?

– How to determine the best split?

• Determine when to stop splitting

Heiko Paulheim 13

How to Specify the Attribute Test Condition?

• Depends on attribute types

– Nominal

– Ordinal

– Continuous

• Depends on number of ways to split

– 2-way split

– Multi-way split

Heiko Paulheim 14

Splitting Based on Nominal Attributes

 Multi-way split: Use as many partitions as distinct values

 Binary split: Divides values into two subsets.
 Need to find optimal partitioning

CarType
Family

Sports
Luxury

CarType
{Family,
Luxury} {Sports}

CarType
{Sports,
Luxury} {Family} OR

Heiko Paulheim 15

 Multi-way split: Use as many partitions as distinct values.

 Binary split: Divides values into two subsets,
 while keeping the order.

 Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Size
Small

Medium

Large

Size
{Small} {Medium,

Large}

Size
{Small,

Medium} {Large} OR

Heiko Paulheim 16

Splitting Based on Continuous Attributes

Taxable
Income
> 80K?

Yes No

Taxable
Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K

Heiko Paulheim 17

Splitting Based on Continuous Attributes

• Different ways of handling

– Discretization to form an ordinal categorical attribute

• equal-interval binning
• equal-frequency binning
• binning based on user-provided boundaries

– Binary Decision: (A < v) or (A  v)

• usually sufficient in practice
• consider all possible splits
• find the best cut (i.e., the best v) based on a

purity measure (see later)
• can be computationally expensive

Heiko Paulheim 18

Discretization Example

• Attribute values (for one attribute e.g., age):

– 0, 4, 12, 16, 16, 18, 24, 26, 28

• Equal-width binning – for bin width of e.g., 10:

– Bin 1: 0, 4 [-∞,10) bin

– Bin 2: 12, 16, 16, 18 [10,20) bin

– Bin 3: 24, 26, 28 [20,+∞) bin
• ∞ denotes negative infinity, +∞ positive infinity

• Equal-frequency binning – for bin density of e.g., 3:

– Bin 1: 0, 4, 12 [-∞, 14) bin

– Bin 2: 16, 16, 18 [14, 21) bin

– Bin 3: 24, 26, 28 [21,+∞] bin

Heiko Paulheim 19

How to determine the Best Split?

Own
Car?

C0: 6
C1: 4

C0: 4
C1: 6

C0: 1
C1: 3

C0: 8
C1: 0

C0: 1
C1: 7

Car
Type?

C0: 1
C1: 0

C0: 1
C1: 0

C0: 0
C1: 1

Student
ID?

...

Yes No Family

Sports

Luxury c1
c10

c20

C0: 0
C1: 1

...

c11

Before Splitting: 10 records of class 0,
 10 records of class 1

Which test condition is the best?

Heiko Paulheim 20

How to determine the Best Split?

• Nodes with homogeneous class distribution are preferred

• Need a measure of node impurity:

• Common measures of node impurity:

– Gini Index

– Entropy

– Misclassification error

C0: 5
C1: 5

C0: 9
C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

Heiko Paulheim 21

Gini Index

• Named after Corrado Gini (1885-1965)

• Used to measure the distribution of income

– 1: somebody gets everything

– 0: everybody gets an equal share

Heiko Paulheim 22

Measure of Impurity: GINI

• Gini-based purity measure for a given node t :

(NOTE: p(j | t) is the relative frequency of class j at
node t).

– Maximum (1 - 1/nc) when records are equally
distributed among all classes, implying least
interesting information

– Minimum (0.0) when all records belong to one class,
implying most interesting information


j

tjptGINI 2)]|([1)(

C1 0
C2 6

Gini=0.000

C1 2
C2 4

Gini=0.444

C1 3
C2 3

Gini=0.500

C1 1
C2 5

Gini=0.278

Heiko Paulheim 23

Examples for Computing GINI

C1 0
C2 6

C1 2
C2 4

C1 1
C2 5

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0


j

tjptGINI 2)]|([1)(

P(C1) = 1/6 P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

P(C1) = 2/6 P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444

Heiko Paulheim 24

Splitting Based on GINI

• When a node p is split into k partitions (children), the quality of split
is computed as

– where ni = number of records at child i,

– n = number of records at node p.

• Intuition:

– The GINI index of each partition is weighted

– according to the partition's size





k

i

i
split iGINI

n

n
GINI

1

)(

Heiko Paulheim 25

Binary Attributes: Computing GINI Index

• Splits into two partitions

B?

Yes No

Node N1 Node N2

 Parent

C1 6

C2 6

Gini = 0.500

Gini(N1)
= 1 – (5/7)2 – (2/7)2
= 0.408

Gini(N2)
= 1 – (1/5)2 – (4/5)2
= 0.320

Gini(Children)
= 7/12 * 0.408 +
 5/12 * 0.320
= 0.371

N1 N2
C1 5 1
C2 2 4
Gini=0.371

Heiko Paulheim 26

Categorical Attributes: Computing Gini Index

• For each distinct value, gather counts for each
class in the dataset

• Use the count matrix to make decisions

CarType
{Sports,
Luxury}

{Family}

C1 3 1
C2 2 4

Gini 0.400

CarType

{Sports}
{Family,
Luxury}

C1 2 2
C2 1 5

Gini 0.419

CarType

Family Sports Luxury

C1 1 2 1
C2 4 1 1

Gini 0.393

Multi-way split Two-way split
(find best partition of values)

Heiko Paulheim 27

Continuous Attributes: Computing Gini Index

• Use Binary Decisions based on one value

• Several Choices for the splitting value

– Number of possible splitting values
= Number of distinct values

• Each splitting value has a count matrix
associated with it

– Class counts in each of the partitions,
A < v and A  v

• Simple method to choose best v

– For each v, scan the database to gather
count matrix and compute its Gini index

– Computationally Inefficient!
Repetition of work

Taxable
Income
> 80K?

Yes No

Heiko Paulheim 28

Continuous Attributes: Computing Gini Index

 For efficient computation: for each attribute,

 Sort the attribute on values

 Linearly scan these values, each time updating the
count matrix and computing gini index

 Choose the split position that has the least gini index
Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions
Sorted Values

Heiko Paulheim 29

Continuous Attributes: Computing Gini Index

 Note: it is enough to compute the GINI for those positions
where the label changes!

Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions
Sorted Values

Heiko Paulheim 30

Alternative Splitting Criteria: Information Gain

• Entropy at a given node t:

(NOTE: p(j | t) is the relative frequency of class j at node t).

– Measures homogeneity of a node

• Maximum (log nc) when records are equally distributed
among all classes implying least information

• Minimum (0.0) when all records belong to one class,
implying most information

– Entropy based computations are similar to the GINI index
computations


j

tjptjptEntropy)|(log)|()(
2

Heiko Paulheim 31

Splitting Based on Information Gain

• Information Gain:

• Parent Node, p is split into k partitions;

• ni is number of records in partition i

– Measures reduction in entropy achieved because of the split
• Choose the split that achieves most reduction (maximizes GAIN)

– Disadvantage: Tends to prefer splits that result in large number
of partitions, each being small but pure

• e.g,. split by ID attribute







 



k

i

i

split
iEntropy

n
n

pEntropyGAIN
1

)()(

Heiko Paulheim 32

How to Find the Best Split

B?

Yes No

Node N3 Node N4

A?

Yes No

Node N1 Node N2

Before Splitting:

C0 N10
C1 N11

C0 N20
C1 N21

C0 N30
C1 N31

C0 N40
C1 N41

C0 N00
C1 N01

M0

M1 M2 M3 M4

M12 M34Gain = M0 – M12 vs M0 – M34

Heiko Paulheim 33

Alternative Splitting Criteria: GainRATIO

• Gain Ratio:

• Parent Node, p is split into k partitions

• ni is the number of records in partition I

– Adjusts Information Gain by the entropy of the partitioning (SplitINFO)

• Higher entropy partitioning (large number of small partitions) is
penalized!

– Designed to overcome the tendency to generate
a large number of small partitions

SplitINFO

GAIN
GainRATIO Split

split
 




k

i

ii

n
n

n
n

SplitINFO
1

log

Heiko Paulheim 34

Alternative Splitting Criteria: Classification Error

• Classification error at a node t :

• Measures misclassification error made by a node.

• Assumption: The node classifies every example to belong to
the majority class

• Maximum (1 - 1/nc) when records are equally distributed
among all classes, implying least interesting information

• Minimum (0.0) when all records belong to one class,
implying most interesting information

)|(max1)(tiPtError
i



Heiko Paulheim 35

Decision Trees in RapidMiner (ID3)

Learns an un-pruned decision tree from nominal attributes only.

Heiko Paulheim 36

Decision Trees in RapidMiner

More flexible algorithm that includes pruning and discretization

Heiko Paulheim 37

Tree Induction in Python

clf = DecisionTreeClassifier()

clf = clf.fit(X,X_labels)

Visualization

tree.plot_tree(clf)

Heiko Paulheim 38

Model Evaluation

● Metrics
● how to measure performance?

● Evaluation methods
● how to obtain meaningful and reliable estimates?

Heiko Paulheim 39

Model Evaluation

● Models are evaluated by looking at
● correctly and incorrectly classified instances

● For a two-class problems, four cases can occur:
● true positives: positive class correctly predicted
● false positives: positive class incorrectly predicted
● true negatives: negative class correctly predicted
● false negatives: negative class incorrectly predicted

Heiko Paulheim 40

Metrics for Performance Evaluation

• Focus on the predictive capability of a model

• Rather than how fast it takes to classify or build models

• Confusion Matrix:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes TP FN

Class=No FP TN

Heiko Paulheim 41

Metrics for Performance Evaluation

• Most frequently used metrics:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes TP FN

Class=No FP TN

FNFPTNTP

TNTP




Accuracy

Accuracy1 RateError

Heiko Paulheim 42

What is a Good Accuracy?

• i.e., when are you done?
– at 75% accuracy?

– at 90% accuracy?

– at 95% accuracy?

• Depends on difficulty of the problem!

• Baseline: naive guessing
– always predict majority class

• Compare
– Predicting coin tosses with accuracy of 50%

– Predicting dice roll with accuracy of 50%

– Predicting lottery numbers (6 out of 49) wth accuracy of 50%

Heiko Paulheim 43
43

Limitation of Accuracy: Unbalanced Data

• Sometimes, classes have very unequal frequency

 Fraud detection: 98% transactions OK, 2% fraud

 eCommerce: 99% don’t buy, 1% buy

 Intruder detection: 99.99% of the users are no intruders

 Security: >99.99% of Americans are not terrorists

• The class of interest is commonly called the positive class, and the rest
negative classes.

• Consider a 2-class problem

 Number of Class 0 examples = 9990, Number of Class 1 examples = 10

 If model predicts everything to be class 0,
accuracy is 9990/10000 = 99.9 %

 Accuracy is misleading because model does not detect
any class 1 example

Heiko Paulheim 44

Precision and Recall

Alternative: Use measures from information retrieval which are biased
towards the positive class.

Precision p is the number of correctly classified positive examples
divided by the total number of examples that are classified as
positive

Recall r is the number of correctly classified positive examples divided
by the total number of actual positive examples in the test set

 r=
TP

TP+FN

p=
TP

TP+FP

Heiko Paulheim 45

Precision and Recall Example

• This confusion matrix gives us

 precision p = 100% and

 recall r = 1%

• because we only classified one positive example
correctly and no negative examples wrongly

• We want a measure that combines precision and recall

Predicted
positive

Predicted
negative

Actual
positive

1 99

Actual
negative

0 1000

Heiko Paulheim 46

F1-Measure

• It is hard to compare two classifiers using two measures

• F1-Score combines precision and recall into one measure

– by using the harmonic mean

• The harmonic mean of two numbers tends to be closer to
the smaller of the two

• For F1-value to be large, both p and r must be large

F 1=
2

1
p
+

1
r

=
2 p r
p+r

Heiko Paulheim 47

F1-Measure

Heiko Paulheim 48

Alternative for Unbalanced Data: Cost Matrix

 PREDICTED CLASS

ACTUAL
CLASS

C(i|j) Class=Yes Class=No

Class=Yes C(Yes|Yes) C(No|Yes)

Class=No C(Yes|No) C(No|No)

C(i|j): Cost of misclassifying class j example as class i

Heiko Paulheim 49

Computing Cost of Classification

Cost
Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(i|j) + -

+ 0 100

- 1 0

Model M1 PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 162 38

- 160 240

Model
M2

PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 155 45

- 5 395

Accuracy = 67%

Cost = 3798

Accuracy = 92%

Cost = 4350

Heiko Paulheim 50

ROC Curves

• Some classification algorithms provide confidence scores

– how sure the algorithms is with its prediction

– e.g., Naive Bayes: the probability

– e.g., Decision Trees: the purity of the respective leaf node

• Drawing a ROC Curve

– Sort classifications according to confidence scores

– Evaluate

• correct prediction: draw one step up

• incorrect prediction: draw one step to the right

Heiko Paulheim 51

ROC Curves

• Drawing ROC Curves in RapidMiner & Python

fpr, tpr, thresholds = roc_curve(actual, predictions)
plt.plot(fpr, tpr)

Heiko Paulheim 52

Example ROC Curve of Naive Bayes

Heiko Paulheim 53

Example ROC Curve of Decision Tree Learner

Heiko Paulheim 54

Interpreting ROC Curves

• Best possible result:

– all correct predictions have higher
confidence than all incorrect ones

• The steeper, the better

– random guessing results in the diagonal

– so a decent algorithm should result
in a curve significantly above the diagonal

• Comparing algorithms:

– Curve A above curve B means
algorithm A better than algorithm B

• Frequently used criterion

– area under curve (aka ROC AUC)

– normalized to 1

Heiko Paulheim 55

Methods for Performance Evaluation

• How to obtain a reliable estimate of performance?

• Performance of a model may depend on other factors besides the
learning algorithm:

 Size of training and test sets (it often expensive to get labeled data)

 Class distribution (balanced, skewed)

 Cost of misclassification (your goal)

• Methods for estimating the performance

 Holdout

 Random Subsampling

 Cross Validation

Heiko Paulheim 56

Practical Issue: Overfitting

• Example: predict credit rating

– possible decision tree:

Name Net Income Job status Debts Rating

John 40000 employed 0 +

Mary 38000 employed 10000 -

Stephen 21000 self-employed 20000 -

Eric 2000 student 10000 -

Alice 35000 employed 4000 +

Debts
>5000

Yes No

- +

Heiko Paulheim 57

Name Net Income Job status Debts Rating

John 40000 employed 0 +

Mary 38000 employed 10000 -

Stephen 21000 self-employed 20000 -

Eric 2000 student 10000 -

Alice 35000 employed 4000 +

Practical Issue: Overfitting

• Example: predict credit rating

– alternative decision tree:

Name
=”John”

No Yes

+Name=
“Alice”

Yes No

+ -

Heiko Paulheim 58

Practical Issue: Overfitting

• Both trees seem equally good

– Classify all instances in the training set correctly

– Which one do you prefer?

Debts
>5000

Yes No

- +

Name
=”John”

No Yes

+Name=
“Alice”

Yes No

+ -

Heiko Paulheim 59

Occam's Razor

• Named after William of Ockham (1287-1347)

• A fundamental principle of science

– if you have two theories

– that explain a phenomenon equally well

– choose the simpler one

• Example:

– phenomenon: the street is wet

– theory 1: it has rained

– theory 2: a beer truck has had an accident, and beer has spilled.
The truck has been towed, and magpies picked the glass pieces,
so only the beer remains

Heiko Paulheim 60

Training and Testing Data

• Consider the decision tree again

• Assume you measure the performance
using the training data

• Conclusion:

– We need separate data for testing

Name
=”John”

No Yes

+Name=
“Alice”

Yes No

+ -

Heiko Paulheim 61

Learning Curve

• Learning curve shows
how accuracy changes
with varying sample size

• Conclusion: Use as
much data as possible
for training

• At the same time:
variation drops with
larger evaluation sets

• Conclusion: use as
much data as possible
for evaluation

Heiko Paulheim 62

Holdout Method

• The holdout method reserves a certain amount for testing and uses
the remainder for training

• Usually: one third for testing, the rest for training

• applied when lots of sample data is available

• For unbalanced datasets, samples might not be representative
 Few or none instances of some classes

• Stratified sample: balances the data
 Make sure that each class is represented with approximately equal

proportions in both subsets

Heiko Paulheim 63

Leave One Out

• Iterate over all examples

– train a model on all examples but the current one

– evaluate on the current one

• Yields a very accurate estimate

• Uses as much data for training as possible

– but is computationally infeasible in most cases

• Imagine: a dataset with a million instances

– one minute to train a single model

– Leave one out would take almost two years

Heiko Paulheim 64

Cross-Validation

• Compromise of Leave One Out and decent runtime

• Cross-validation avoids overlapping test sets

 First step: data is split into k subsets of equal size

 Second step: each subset in turn is used for testing
and the remainder for training

• This is called k-fold cross-validation

• The error estimates are averaged to yield an overall error estimate

• Frequently used value for k : 10
– Why ten? Extensive experiments have shown that this is the good choice

to get an accurate estimate

• Often the subsets are stratified before the cross-validation is
performed

Heiko Paulheim 65

Cross-Validation in RapidMiner

clf = KNeighborsClassifier(n_neighbors=3)
scores = cross_val_score(clf, data, target, cv=10)

Heiko Paulheim 66

Overfitting
• Overfitting: Good accuracy

on training data, but poor on
test data.

• Symptoms: Tree too deep
and too many branches

• Typical causes of overfitting

– too little training data

– noise

– poor learning algorithm

Back to Overfitting

Heiko Paulheim 67










Overfitting - Illustration

Prediction for
this value of x?

Polynomial degree 1
(linear function)

 Polynomial degree 4
(n-1 degrees can always fit n points)

□ here

□ or here ?

Heiko Paulheim 68 68

Overfitting and Noise

Likely to overfit the data

Heiko Paulheim 69

How to Address Overfitting?

• Pre-Pruning (Early Stopping Rule)

– Stop the algorithm before it becomes a fully-grown
tree

– Typical stopping conditions for a node:
• Stop if all instances belong to the same class
• Stop if all the attribute values are the same

– Less restrictive conditions:
• Stop if number of instances within a node is less than

some user-specified threshold
• Stop if expanding the current node only slightly improves

the impurity measure (user-specified threshold)

Heiko Paulheim 70

How to Address Overfitting?

• Post-pruning

1. Grow decision tree to its entire size

2. Trim the nodes of the decision tree in a bottom-up fashion

• using a validation data set
• or an estimate of the generalization error

3. If generalization error improves after trimming

• replace sub-tree by a leaf node
• Class label of leaf node is determined from majority class of

instances in the sub-tree

Heiko Paulheim 71

Training vs. Generalization Errors

• Training error

– also: resubstitution error, apparent error

– errors made in training

– evidence: misclassified training instances

• Generalization error

– errors made on unseen data

– evidence: no apparent evidence

• Training error can be computed

• Generalization error must be estimated

Heiko Paulheim 72

Estimating the Generalization Error

• Training errors: error on training ( e(t))

• Generalization errors: error on testing ( e’(t))

• Methods for estimating generalization errors:
1. (Too) Optimistic approach: e’(t) = e(t)

2. Pessimistic approach:
• For each leaf node: e’(t) = (e(t)+0.5)

 (user-defined 0.5 penalty for large trees)
• Total errors: e’(T) = e(T) + N  0.5

 (N: number of leaf nodes)
• For a tree with 30 leaf nodes and 10 errors on training

 (out of 1000 instances):
 Training error = 10/1000 = 1%

 Generalization error = (10 + 300.5)/1000 = 2.5%

3. Reduced Error Pruning (REP):
• use validation data set to estimate generalization

error

Heiko Paulheim 73

Example of Post-Pruning

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10

Error = 10/30

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

= (9 + 4  0.5)/30 = 11/30

PRUNE!

Class = Yes 8

Class = No 4

Class = Yes 3

Class = No 4

Class = Yes 4

Class = No 1

Class = Yes 5

Class = No 1

Heiko Paulheim 74

Discussion of Decision Trees

• Advantages:

– Inexpensive to construct

– Fast at classifying unknown records

– Easy to interpret by humans for small-sized trees

– Accuracy is comparable to other classification techniques
for many simple data sets

• Disadvantages:

– Decisions are based only one a single attribute at a time

– Can only represent decision boundaries that are parallel to the axes

Heiko Paulheim 75

Comparing Decision Trees and k-NN

• Decision boundaries

– k-NN: arbitrary

– Decision trees: rectangular

• Sensitivity to scales

– k-NN: needs normalization

– Decision tree: does not require normalization (why?)

• Runtime & memory

– k-NN is cheap to train, but expensive for classification

– decision tree is expensive to train, but cheap for classification

Heiko Paulheim 76

Questions?

	Folie 1
	Outline
	Folie 3
	Folie 4
	3. Decision Tree Classifiers
	Another Example of a possible Decision Tree
	Decision Boundary
	Applying a Decision Tree to Test Data
	Decision Tree Induction
	General Structure of Hunt’s Algorithm
	Hunt’s Algorithm
	Tree Induction Issues
	How to Specify the Attribute Test Condition?
	Splitting Based on Nominal Attributes
	Splitting Based on Ordinal Attributes
	Splitting Based on Continuous Attributes
	Folie 17
	Discretization Example
	How to determine the Best Split?
	Folie 20
	Folie 21
	Measure of Impurity: GINI
	Examples for computing GINI
	Splitting Based on GINI
	Binary Attributes: Computing GINI Index
	Categorical Attributes: Computing Gini Index
	Continuous Attributes: Computing Gini Index
	Folie 28
	Folie 29
	Alternative Splitting Criteria: Information Gain
	Splitting Based on Information Gain
	How to Find the Best Split
	Alternative Splitting Criteria: GainRATIO
	Alternative Splitting Criteria: Classification Error
	Decision Trees in RapidMiner (ID3)
	Decision Trees in RapidMiner
	3. Model Evaluation
	Folie 38
	Folie 39
	3.1 Metrics for Performance Evaluation
	Folie 41
	Folie 42
	Limitation of Accuracy: Unbalanced Data
	Precision and Recall
	Precision and Recall Example
	F1-Measure
	Folie 47
	Alternative for Unbalanced Data: Cost Matrix
	Computing Cost of Classification
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	3.2 Methods for Performance Evaluation
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Learning Curve
	Holdout Method
	Folie 63
	Cross-Validation
	X-Validation in RapidMiner
	Folie 66
	Folie 67
	Example of Overfitting
	How to Address Overfitting?
	Folie 70
	Folie 71
	Estimating the Generalization Error
	Folie 73
	Discussion of Decision Trees
	Folie 75
	Questions?

