
Data Mining I
Classification, Part 3

Heiko Paulheim

10/2/19 Heiko Paulheim 2

Outline

1. What is Classification? ✔

2. k Nearest Neighbors ✔

3. Naïve Bayes ✔

4. Decision Trees ✔

5. Evaluating Classification ✔

6. The Overfitting Problem ✔

7. Rule Learning

8. Other Classification Approaches

9. Parameter Tuning

10/2/19 Heiko Paulheim 3

Rule-Based Classifiers

• Classify records by using a collection of “if…then…” rules

• Rule: (Condition)  y

– where
• Condition is a conjunctions of attributes

• y is the class label

– LHS: rule antecedent or condition

– RHS: rule consequent

– Examples of classification rules:
• (Blood Type=Warm)  (Lay Eggs=Yes)  Birds

• (Taxable Income < 50K)  (Refund=Yes)  Evade=No

10/2/19 Heiko Paulheim 4

Rule-based Classifier (Example)

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians

Name Blood Type Give Birth Can Fly Live in Water Class
human warm yes no no mammals
python cold no no no reptiles
salmon cold no no yes fishes
whale warm yes no yes mammals
frog cold no no sometimes amphibians
komodo cold no no no reptiles
bat warm yes yes no mammals
pigeon warm no yes no birds
cat warm yes no no mammals
leopard shark cold yes no yes fishes
turtle cold no no sometimes reptiles
penguin warm no no sometimes birds
porcupine warm yes no no mammals
eel cold no no yes fishes
salamander cold no no sometimes amphibians
gila monster cold no no no reptiles
platypus warm no no no mammals
owl warm no yes no birds
dolphin warm yes no yes mammals
eagle warm no yes no birds

10/2/19 Heiko Paulheim 5

Application of Rule-Based Classifiers

• A rule r covers an instance x if the attributes of the instance satisfy
the condition of the rule

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians

Rule R1 covers hawk => Bird

Rule R3 covers grizzly bear => Mammal

Name Blood Type Give Birth Can Fly Live in Water Class
hawk warm no yes no ?
grizzly bear warm yes no no ?

10/2/19 Heiko Paulheim 6

Rule Coverage and Accuracy

• Coverage of a rule:

– Fraction of records that satisfy
the antecedent of a rule

• Accuracy of a rule:

– Fraction of records that satisfy
both the antecedent
and consequent of a rule

Tid Refund Marital
Status

Taxable
Income Class

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

(Status=Single)  No

 Coverage = 40%, Accuracy =
50%

10/2/19 Heiko Paulheim 7

How does a Rule-based Classifier Work?

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians

A lemur triggers rule R3, so it is classified as a mammal

A turtle triggers both R4 and R5

A dogfish shark triggers none of the rules

Name Blood Type Give Birth Can Fly Live in Water Class
lemur warm yes no no ?
turtle cold no no sometimes ?
dogfish shark cold yes no yes ?

10/2/19 Heiko Paulheim 8

Characteristics of Rule-Based Classifiers

• Mutually exclusive rules

– Classifier contains mutually exclusive rules if the rules are independent
of each other

– Every example is covered by at most one rule

→ avoids conflicts

• Exhaustive rules

– Classifier has exhaustive coverage if it accounts for every possible
combination of attribute values

– Each record is covered by at least one rule

→ enforces each example to be classified

10/2/19 Heiko Paulheim 9

From Decision Trees To Rules

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive

Rule set contains as much information as the
tree

10/2/19 Heiko Paulheim 10

Rules Can Be Simplified

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Initial Rule: (Refund=No)  (Status=Married)  No

Simplified Rule: (Status=Married)  No

10/2/19 Heiko Paulheim 11

Possible Effects of Rule Simplification

• Rules are no longer mutually exclusive

– A record may trigger more than one rule

– Solution?

• Ordered rule set

• Unordered rule set – use voting schemes

• Rules are no longer exhaustive

– A record may not trigger any rules

– Solution?

• Use a default class

10/2/19 Heiko Paulheim 12

Ordered Rule Set

• Rules are ranked ordered according to their priority

– An ordered rule set is known as a decision list

• When a test record is presented to the classifier

– It is assigned to the class label of the highest ranked rule it has
triggered

– If none of the rules fired, it is assigned to the default class

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians

Name Blood Type Give Birth Can Fly Live in Water Class
turtle cold no no sometimes ?

10/2/19 Heiko Paulheim 13

Rule Ordering Schemes

• Rule-based ordering

– Individual rules are ranked based on their quality (e.g., accuracy)

• Class-based ordering

– Rules that belong to the same class appear together

Rule-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Class-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Married}) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

10/2/19 Heiko Paulheim 14

Indirect Method: C4.5rules

• Extract rules from an unpruned decision tree

• For each rule, r: A  y,
– consider an alternative rule r’: A’  y where A’ is obtained by removing

one of the conjuncts in A

– Compare the pessimistic generalization error for r against all r’

– Prune if one of the r’s has a lower pessimistic generalization error

– Repeat until we can no longer improve generalization error

10/2/19 Heiko Paulheim 15

Indirect Method in RapidMiner

No straight forward solution in Python :-(

10/2/19 Heiko Paulheim 16

Direct vs. Indirect Rule Learning Methods

• Direct Method:

• Extract rules directly from data

• e.g.: RIPPER, CN2, Holte’s 1R

• Indirect Method:

• Extract rules from other classification models
(e.g. decision trees, neural networks, etc).

• Example: C4.5rules

10/2/19 Heiko Paulheim 17

Direct methods

• Do not derive rules from another type of model

– but learn the rules directly

• practical algorithms use different approaches

– covering or separate-and-conquer algorithms

– based on heuristic search

The following slides are based on
the machine learning course by
Johannes Fürnkranz,
Technische Universität Darmstadt

10/2/19 Heiko Paulheim 18

A sample task

Temperature Outlook Humidity Windy Play Golf?

hot sunny high false no

hot sunny high true no

hot overcast high false yes

cool rain normal false yes

cool overcast normal true yes

mild sunny high false no

cool sunny normal false yes

mild rain normal false yes

mild sunny normal true yes

mild overcast high true yes

hot overcast normal false yes

mild rain high true no

cool rain normal true no

mild rain high false yes

• Task:

– Find a rule set that correctly predicts the dependent variable from the
observed variables

10/2/19 Heiko Paulheim 19

A Simple Solution

IF T=hot AND H=high AND O=overcast AND W=false THEN yes
IF T=cool AND H=normal AND O=rain AND W=false THEN yes
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes
IF T=mild AND H=normal AND O=rain AND W=false THEN yes
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes
IF T=mild AND H=high AND O=overcast AND W=true THEN yes
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes
IF T=mild AND H=high AND O=rain AND W=false THEN yes

IF T=hot AND H=high AND O=overcast AND W=false THEN yes
IF T=cool AND H=normal AND O=rain AND W=false THEN yes
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes
IF T=mild AND H=normal AND O=rain AND W=false THEN yes
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes
IF T=mild AND H=high AND O=overcast AND W=true THEN yes
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes
IF T=mild AND H=high AND O=rain AND W=false THEN yes

• The solution is

– a set of rules

– that is complete and consistent on the training examples

• “Overfitting is like memorizing the answers to a test
instead of understanding the principles.” (Bob Horton, 2015)

10/2/19 Heiko Paulheim 20

A Better Solution

IF Outlook = overcast THEN yes

IF Humidity = normal AND Outlook = sunny THEN yes

IF Outlook = rainy AND Windy = false THEN yes

IF Outlook = overcast THEN yes

IF Humidity = normal AND Outlook = sunny THEN yes

IF Outlook = rainy AND Windy = false THEN yes

10/2/19 Heiko Paulheim 21

A Simple Algorithm: Batch-Find

• Abstract algorithm for learning a single rule:

1. Start with an empty theory T and training set E

2. Learn a single (consistent) rule R from E and add it to T

3. return T

• Problem:

– the basic assumption is that the found rules are complete, i.e., they
cover all positive examples

– What if they don't?

• Simple solution:

– If we have a rule that covers part of the positive examples,
add some more rules that cover the remaining examples

10/2/19 Heiko Paulheim 22

Separate-and-Conquer Rule Learning

• Learn a set of rules, one by one

1. Start with an empty theory T and training set E
2. Learn a single (consistent) rule R from E and add it to T
3. If T is satisfactory (complete), return T
4. Else:

» Separate: Remove examples explained by R from E
» Conquer: goto 2.

• One of the oldest family of learning algorithms
– goes back to AQ (Michalski, 60s)

– FRINGE, PRISM and CN2: relation to decision trees (80s)

– popularized in ILP (FOIL and PROGOL, 90s)

– RIPPER brought in good noise-handling

• Different learners differ in how they find a single rule

10/2/19 Heiko Paulheim 23

Separate-and-Conquer Rule Learning

10/2/19 Heiko Paulheim 24

Relaxing Completeness and Consistency

• So far we have always required a learner to learn a complete and
consistent theory

– e.g., one rule that covers all positive and no negative examples

• This is not always a good idea (→ overfitting)

• Example: Training set with 200 examples, 100 positive and
100 negative
– Theory A consists of 100 complex rules, each covering a single positive

example and no negatives

→ Theory A is complete and consistent on the training set

– Theory B consists of one simple rule, covering 99 positive and 1
negative example

→ Theory B is incomplete and incosistent on the training set

• Which one will generalize better to unseen examples?

10/2/19 Heiko Paulheim 25

Top-Down Hill-Climbing

• Top-Down Strategy: A rule is successively specialized

1. Start with the universal rule R that covers all examples

2. Evaluate all possible ways to add a condition to R

3. Choose the best one (according to some heuristic)

4. If R is satisfactory, return it

5. Else goto 2.

• Almost all greedy s&c rule learning systems use this strategy

10/2/19 Heiko Paulheim 26

Recap: Terminology

predicted + predicted -
class + p (true positives) P-p (false negatives) P

class - n (false positives) N-n (true negatives) N

p + n P+N – (p+n) P+N

• training examples
• P: total number of positive examples

• N: total number of negative examples

• examples covered by the rule (predicted positive)
• true positives p: positive examples covered by the rule

• false positives n: negative examples covered by the rule

• examples not covered the rule (predicted negative)
• false negatives P-p: positive examples not covered by the rule

• true negatives N-n: negative examples not covered by the rule

10/2/19 Heiko Paulheim 27

Rule Learning Heuristics

• Adding a rule should

– increase the number of covered negative examples as little as
possible (do not decrease consistency)

– increase the number of covered positive examples as much as
possible (increase completeness)

• An evaluation heuristic should therefore trade off these two
extremes

– Example: Laplace heuristic

• grows with

• grows with

hLap=
p1
pn2

p∞
n0

10/2/19 Heiko Paulheim 28

Recap: Overfitting

• Overfitting

– Given

• a fairly general model class

• enough degrees of freedom

– you can always find a model that explains the data

• even if the data contains errors (noise in the data)

• in rule learning: each example is a rule

• Such concepts do not generalize well!

→ Solution: Rule and rule set pruning

10/2/19 Heiko Paulheim 29

Overfitting Avoidance

– learning concepts so that

• not all positive examples have to be covered by the theory

• some negative examples may be covered by the theory

10/2/19 Heiko Paulheim 30

Pre-Pruning

• keep a theory simple while it is learned
• decide when to stop adding conditions to a rule

(relax consistency constraint)
• decide when to stop adding rules to a theory

(relax completeness constraint)
– efficient but not accurate Rule set with three rules

á 3, 2, and 2 conditions

Pre-pruning decisions

10/2/19 Heiko Paulheim 31

Post Pruning

10/2/19 Heiko Paulheim 32

Post-Pruning: Example

IF T=hot AND H=high AND O=sunny AND W=false THEN no
IF T=hot AND H=high AND O=sunny AND W=true THEN no
IF T=hot AND H=high AND O=overcast AND W=false THEN yes
IF T=cool AND H=normal AND O=rain AND W=false THEN yes
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes
IF T=mild AND H=high AND O=sunny AND W=false THEN no
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes
IF T=mild AND H=normal AND O=rain AND W=false THEN yes
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes
IF T=mild AND H=high AND O=overcast AND W=true THEN yes
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes
IF T=mild AND H=high AND O=rain AND W=true THEN no
IF T=cool AND H=normal AND O=rain AND W=true THEN no
IF T=mild AND H=high AND O=rain AND W=false THEN yes

IF T=hot AND H=high AND O=sunny AND W=false THEN no
IF T=hot AND H=high AND O=sunny AND W=true THEN no
IF T=hot AND H=high AND O=overcast AND W=false THEN yes
IF T=cool AND H=normal AND O=rain AND W=false THEN yes
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes
IF T=mild AND H=high AND O=sunny AND W=false THEN no
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes
IF T=mild AND H=normal AND O=rain AND W=false THEN yes
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes
IF T=mild AND H=high AND O=overcast AND W=true THEN yes
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes
IF T=mild AND H=high AND O=rain AND W=true THEN no
IF T=cool AND H=normal AND O=rain AND W=true THEN no
IF T=mild AND H=high AND O=rain AND W=false THEN yes

10/2/19 Heiko Paulheim 33

IF H=high AND O=sunny THEN no

IF O=rain AND W=true THEN no

ELSE yes

IF H=high AND O=sunny THEN no

IF O=rain AND W=true THEN no

ELSE yes

Post-Pruning: Example

10/2/19 Heiko Paulheim 34

Reduced Error Pruning

• basic idea
– optimize the accuracy of a rule set on a separate pruning set

1. split training data into a growing and a pruning set

2. learn a complete and consistent rule set covering all positive examples
and no negative examples

3. as long as the error on the pruning set does not increase

 delete condition or rule that results in the largest reduction of error on the
pruning set

4. return the remaining rules

• REP is accurate but not efficient

– O(n4)

10/2/19 Heiko Paulheim 35

Incremental Reduced Error Pruning

I-REP tries to combine the advantages
of pre- and post-pruning

10/2/19 Heiko Paulheim 36

Incremental Reduced Error Pruning

• Prune each rule right after it is learned:

1. split training data into a growing and a pruning set

2. learn a consistent rule covering only positive examples

3. delete conditions as long as the error on the pruning set does not increase

4. if the rule is better than the default rule

 add the rule to the rule set

 goto 1.

• More accurate, much more efficient
– because it does not learn overly complex intermediate concepts
– REP: O(n4) I-REP: O(n log2n)

• Subsequently used in RIPPER rule learner (Cohen, 1995)

10/2/19 Heiko Paulheim 37

RIPPER in RapidMiner

Proper rule learning in Python still tbd :-(

10/2/19 Heiko Paulheim 38

Advantages of Rule-Based Classifiers

• As highly expressive as decision trees

• Easy to interpret

• Easy to generate

• Can classify new instances rapidly

• Performance comparable to decision trees

10/2/19 Heiko Paulheim 39

Decision Boundaries: Theory and Practice

• We have seen decision boundaries of rule-based classifiers
and decision trees

– both are parallel to the axes

– i.e., both can learn models that are a collection of rectangles

• What does that mean for comparing their performance

– if they learn the same sort of models

– are they equivalent?

10/2/19 Heiko Paulheim 40

Decision Boundaries: Theory and Practice

• Example 1: a checkerboard dataset

– positive and negative points come in four quadrants

– can be perfectly described with rectangles

10/2/19 Heiko Paulheim 41

Decision Boundaries: Theory and Practice

• Example 1: a checkerboard dataset

– positive and negative points come in quadrants

– can be perfectly described with rectangles

• Model learned by a decision tree:

– only the default tree (one node)

10/2/19 Heiko Paulheim 42

Decision Boundaries: Theory and Practice

• What is going on here?

– No possible split improves the purity

– We always have 50% positive and negative examples

– i.e., Gini index is always 0.5

• same holds for other purity measures

10/2/19 Heiko Paulheim 43

Decision Boundaries: Theory and Practice

• Example 1: a checkerboard dataset

– positive and negative points come in quadrants

– can be perfectly described with rectangles

• Model learned by a rule learner:

10/2/19 Heiko Paulheim 44

Decision Boundaries: Theory and Practice

• Example 2:

– a small class inside a large one

– again: can be perfectly described with rectangles

10/2/19 Heiko Paulheim 45

Decision Boundaries: Theory and Practice

• Example 2:

– a small class inside a large one

– again: can be perfectly described with rectangles

• Output of a rule-based classifier:

– no model learned (only a default rule)

10/2/19 Heiko Paulheim 46

Decision Boundaries: Theory and Practice

• What is happening here?

– We try to learn the smallest class

– ...and pre-pruning requires a minimum heuristic

– no initial condition can be selected that exceeds that minimum

best one-condition rule:
accuracy=0.17

10/2/19 Heiko Paulheim 47

Decision Boundaries: Theory and Practice

• Example 2:

– a small class inside a large one

– again: can be perfectly described with rectangles

• Decision boundaries of a decision tree classifier:

10/2/19 Heiko Paulheim 48

Decision Boundaries: Theory and Practice

• Decision boundaries are a useful tool

– they show us what model can be expressed by a learner

– e.g., circular shapes are not learned by a decision tree learner

– good for a pre-selection of learners for a problem

• What can be expressed and what is actually learned

– are two different stories

– answer depends heavily on the learning algorithm (and its parameters)

– requires (and provides) more insights into the learning algorithm

10/2/19 Heiko Paulheim 49

Alternative Classification Methods

• There are various methods of classification

– e.g., >50 methods in basic RapidMiner edition

– plus many more using the Weka extension

• So far, we have seen

– k-NN

– Naive Bayes

– Decision Trees

– C4.5 and Ripper

• Brief intro

– Artificial Neural Networks

– Support Vector Machines

10/2/19 Heiko Paulheim 50

Example: Credit Rating

• Consider the following example:

– and try to build a model

– which is as small as possible (recall: Occam's Razor)

Person Employed Owns House Balanced Account Get Credit

Peter Smith yes yes no yes

Julia Miller no yes no no

Stephen Baker yes no yes yes

Mary Fisher no no yes no

Kim Hanson no yes yes yes

John Page yes no no no

10/2/19 Heiko Paulheim 51

Example: Credit Rating

• Smallest model:

– if at least two of Employed, Owns House, and Balanced Account are
yes
→ Get Credit is yes

• Not nicely expressible in trees and rule sets

– as we know them (attribute-value conditions)
Person Employed Owns House Balanced Account Get Credit

Peter Smith yes yes no yes

Julia Miller no yes no no

Stephen Baker yes no yes yes

Mary Fisher no no yes no

Kim Hanson no yes yes yes

John Page yes no no no

10/2/19 Heiko Paulheim 52

Example: Credit Rating

• Smallest model:

– if at least two of Employed, Owns House, and Balance Account are yes
→ Get Credit is yes

• As rule set:

Employed=yes and OwnsHouse=yes => yes
Employed=yes and BalanceAccount=yes => yes
OwnsHouse=yes and BalanceAccount=yes => yes
=> no

• General case:

– at least m out of n attributes need to be yes => yes

– this requires rules, i.e.,

– e.g., “5 out of 10 attributes need to be yes”
requires more than 15,000 rules!

(n
m

)
n!

m!⋅(n−m)!

10/2/19 Heiko Paulheim 53

Artificial Neural Networks

• Inspiration

– one of the most powerful super computers in the world

10/2/19 Heiko Paulheim 54

Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0

X1

X2

X3

Y

Black box

Output

Input

Output Y is 1 if at least two of the three inputs are equal to 1.

10/2/19 Heiko Paulheim 55

Example: Credit Rating

• Smallest model:

– if at least two of Employed, Owns House, and Balance Account are yes
→ Get Credit is yes

• Given that we represent yes and no by 1 and 0, we want

– if(Employed + Owns House + Balance Acount)>1.5
→ Get Credit is yes

10/2/19 Heiko Paulheim 56

Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0



X1

X2

X3

Y

Black box

0.3

0.3

0.3 t=0.4

Output
node

Input
nodes









otherwise0

 trueis if1
)(where

)04.03.03.03.0(321

z
zI

XXXIY

10/2/19 Heiko Paulheim 57

Artificial Neural Networks (ANN)

• Model is an assembly of
inter-connected nodes
and weighted links

• Output node sums up
each of its input value
according to the weights
of its links

• Compare output node
against some threshold t



X1

X2

X3

Y

Black box

w1

t

Output
node

Input
nodes

w2

w3

)(tXwIY
i

ii  
Perceptron Model

)(tXwsignY
i

ii  

or

10/2/19 Heiko Paulheim 58

General Structure of ANN

Activation
function

g(Si)
Si Oi

I1

I2

I3

wi1

wi2

wi3

Oi

Neuron iInput Output

threshold, t

Input
Layer

Hidden
Layer

Output
Layer

x1 x2 x3 x4 x5

y

Training ANN means learning
the weights of the neurons

10/2/19 Heiko Paulheim 59

Algorithm for learning ANN

• Initialize the weights (w0, w1, …, wk), e.g., all with 1

• Adjust the weights in such a way that the output of ANN is consistent
with class labels of training examples

– Objective function:

– Find the weights wi’s that minimize the above objective function

• e.g., back propagation algorithm (see books)

 2),( 
i

iii XwfYE

10/2/19 Heiko Paulheim 60

ANN in RapidMiner & Python

clf = MLPClassifier(hidden_layer_sizes=(10))

10/2/19 Heiko Paulheim 61

Decision Boundaries of ANN

• Arbitrarily shaped objects

• Fuzzy boundaries

10/2/19 Heiko Paulheim 62

Support Vector Machines

• Find a linear hyperplane (decision boundary) that will separate the data

10/2/19 Heiko Paulheim 63

Support Vector Machines

• Which one is better? B1 or B2?
• How do you define “better”?

B1

B2

10/2/19 Heiko Paulheim 64

Support Vector Machines

• Find hyperplane maximizes the margin => B1 is better than B2

B1

B2

b11

b12

b21

b22

margin

10/2/19 Heiko Paulheim 65

Support Vector Machines

• What is computed

– a separating hyper plane

– defined by its support vectors (hence the name)

• Challenges

– Computing an optimal separation is expensive

– requires good approximations

• Dealing with noisy data

– introducing “slack variables” in margin computation

10/2/19 Heiko Paulheim 66

Nonlinear Support Vector Machines

• What if decision boundary is not linear?

10/2/19 Heiko Paulheim 67

Nonlinear Support Vector Machines

• Transform data into higher dimensional space

10/2/19 Heiko Paulheim 68

Nonlinear Support Vector Machines

• Transformation in higher dimensional space

– Uses so-called Kernel function

– Different variants: polynomial function, radial basis function, …

• Finding a hyperplane in higher dimensional space

– is computationally expensive

– Kernel trick: expensive parts of the calculation can be performed
in lower dimensional space

– Details: see books...

10/2/19 Heiko Paulheim 69

SVMs in RapidMiner & Python

clf = SVC(kernel=’rbf’)

10/2/19 Heiko Paulheim 70

Decision Boundaries of SVMs

• Small class in large one

– using radial basis function kernel

10/2/19 Heiko Paulheim 71

Decision Boundaries of SVMs

• Small class in large one

– using a Gaussian function kernel

10/2/19 Heiko Paulheim 72

More Exotic Problems

• Consider

– Four binary features A,B,C,D

– Goal: Classify true if the number of TRUE values is even (i.e., 0, 2, or 4)

• Very hard for classic machine learning problems

– Approximate solution can be learned with neural network

10/2/19 Heiko Paulheim 73

More Exotic Problems

• Consider

– Four binary features A,B,C,D

– Goal: Classify true if the number of TRUE values is even (i.e., 0, 2, or 4)

B

A

B

B

C

D

B

F

G

H

X

F = A + B + C – D < 3
G = A + B + C – D < 2
H = A + B + C – D < 1

X = F + G – H < 2

10/2/19 Heiko Paulheim 74

More Exotic Problems

B

A

B

B

C

D

B

F

G

H

X

F = A + B + C – D < 3
G = A + B + C – D < 2
H = A + B + C – D < 1

X = F + G – H < 2

A B C D F G H X C

0 0 0 0 1 1 1 TRUE TRUE

1 0 0 0 1 1 0 FALSE FALSE

0 1 0 0 1 1 0 FALSE FALSE

0 0 1 0 1 1 0 FALSE FALSE

0 0 0 1 1 1 1 TRUE FALSE

1 1 0 0 1 0 0 TRUE TRUE

0 1 1 0 1 0 0 TRUE TRUE

0 0 1 1 1 1 1 TRUE TRUE

1 0 0 1 1 1 1 TRUE TRUE

1 0 1 0 1 0 0 TRUE TRUE

0 1 0 1 1 1 1 TRUE TRUE

1 1 1 0 0 0 0 TRUE FALSE

1 1 0 1 1 1 0 FALSE FALSE

1 0 1 1 1 1 0 FALSE FALSE

0 1 1 1 1 1 0 FALSE FALSE

1 1 1 1 1 0 0 TRUE TRUE

10/2/19 Heiko Paulheim 75

Parameter Tuning

• Many learning methods require parameters

– k for k nearest neighbors

– pruning thresholds for trees and rules

– hidden layer configuration for ANN

– kernel function, epsilon and gamma for SVM

– …

• How to define optimal parameters?

– Trying out different configurations

– systematic approaches

10/2/19 Heiko Paulheim 76

Parameter Tuning

• Some approaches often work rather poorly with default parameters

– SVMs are a typical example here

• Systematic approaches (see Data Mining 2)

– GridSearch: search space for possible combinations

• Gamma=0, Eps=0; Gamma=0.1, Eps=0; Gamma=0.2, Eps=0...

– Local Hill Climbing, Beam Search

– Evolutionary algorithms, genetic programming

– …

• Attention

– use hold out set (or cross validation) for parameter tuning

– there may be an overfitting problem here as well!

10/2/19 Heiko Paulheim 77

Parameter Tuning in RapidMiner

10/2/19 Heiko Paulheim 78

Parameter Tuning in RapidMiner

10/2/19 Heiko Paulheim 79

Parameter Tuning in Python

GridSearchCV(cv=10,

 estimator=SVC(C=1.0, kernel=’rbf’,
 gamma=0.1),

 param_grid = [

 { 'C': [1, 10, 100, 1000],
 'kernel': ['linear',’rbf],
 ‘gamma: [0.1,0.01,0.001]})

10/2/19 Heiko Paulheim 80

Issues in Parameter Tuning

• Which parameters are sensitive and interesting?

• Which combinations to test?

– Computational explosion

• Avoiding overfitting

– Split or cross validation

– Never use the test set for parameter tuning!

10/2/19 Heiko Paulheim 81

Summary

• Classification approaches

– There are quite a few: Nearest Neighbors, Naive Bayes, Decision Trees,
Rules, SVMs, Neural Networks

• Distinctions

– Lazy vs. eager

– Performance (accuracy, training time, testing time, model size)

– Decision Boundaries (theory and practice)

• Issues

– Overfitting

– Parameter tuning

10/2/19 Heiko Paulheim 82

Questions?

	Folie 1
	Outline
	Rule-Based Classifier
	Rule-based Classifier (Example)
	Application of Rule-Based Classifier
	Rule Coverage and Accuracy
	How does Rule-based Classifier Work?
	Characteristics of Rule-Based Classifier
	From Decision Trees To Rules
	Rules Can Be Simplified
	Effect of Rule Simplification
	Ordered Rule Set
	Rule Ordering Schemes
	Indirect Method: C4.5rules
	Folie 15
	Building Classification Rules
	Learnig Rule Sets
	Folie 18
	Folie 19
	Folie 20
	S-C
	Folie 22
	Folie 23
	Folie 24
	Top-Down Hill-Climbing
	Terminology
	Rule Learning Heuristics
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Combining
	IREP
	Folie 37
	Advantages of Rule-Based Classifiers
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Artificial Neural Networks (ANN)
	Folie 55
	Folie 56
	Folie 57
	General Structure of ANN
	Algorithm for learning ANN
	Folie 60
	Folie 61
	Support Vector Machines
	Folie 63
	Folie 64
	Folie 65
	Nonlinear Support Vector Machines
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Questions?

