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Rule-Based Classifiers

• Classify records by using a collection of “if…then…” rules

• Rule:    (Condition)  y

– where 
•  Condition is a conjunctions of attributes 

•  y is the class label

– LHS: rule antecedent or condition

– RHS: rule consequent

– Examples of classification rules:
•  (Blood Type=Warm)  (Lay Eggs=Yes)  Birds

•  (Taxable Income < 50K)  (Refund=Yes)  Evade=No
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Rule-based Classifier (Example)

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians

Name Blood Type Give Birth Can Fly Live in Water Class
human warm yes no no mammals
python cold no no no reptiles
salmon cold no no yes fishes
whale warm yes no yes mammals
frog cold no no sometimes amphibians
komodo cold no no no reptiles
bat warm yes yes no mammals
pigeon warm no yes no birds
cat warm yes no no mammals
leopard shark cold yes no yes fishes
turtle cold no no sometimes reptiles
penguin warm no no sometimes birds
porcupine warm yes no no mammals
eel cold no no yes fishes
salamander cold no no sometimes amphibians
gila monster cold no no no reptiles
platypus warm no no no mammals
owl warm no yes no birds
dolphin warm yes no yes mammals
eagle warm no yes no birds
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Application of Rule-Based Classifiers

• A rule r covers an instance x if the attributes of the instance satisfy 
the condition of the rule

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians 

Rule R1 covers hawk => Bird

Rule R3 covers grizzly bear => Mammal

Name Blood Type Give Birth Can Fly Live in Water Class
hawk warm no yes no ?
grizzly bear warm yes no no ?
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Rule Coverage and Accuracy

• Coverage of a rule:

– Fraction of records that satisfy 
the antecedent of a rule

• Accuracy of a rule:

– Fraction of records that satisfy 
both the antecedent 
and consequent of a rule

Tid Refund Marital 
Status 

Taxable 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

(Status=Single)  No

    Coverage = 40%,  Accuracy = 
50%



10/2/19 Heiko Paulheim 7 

How does a Rule-based Classifier Work?

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians 

A lemur triggers rule R3, so it is classified as a mammal

A turtle triggers both R4 and R5

A dogfish shark triggers none of the rules

Name Blood Type Give Birth Can Fly Live in Water Class
lemur warm yes no no ?
turtle cold no no sometimes ?
dogfish shark cold yes no yes ?
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Characteristics of Rule-Based Classifiers

• Mutually exclusive rules

– Classifier contains mutually exclusive rules if the rules are independent 
of each other

– Every example is covered by at most one rule

→ avoids conflicts

• Exhaustive rules

– Classifier has exhaustive coverage if it accounts for every possible 
combination of attribute values

– Each record is covered by at least one rule

→ enforces each example to be classified
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From Decision Trees To Rules

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive

Rule set contains as much information as the 
tree
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Rules Can Be Simplified

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Initial Rule:           (Refund=No)  (Status=Married)  No

Simplified Rule:   (Status=Married)  No
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Possible Effects of Rule Simplification

• Rules are no longer mutually exclusive

– A record may trigger more than one rule 

– Solution?

•  Ordered rule set

•  Unordered rule set – use voting schemes

• Rules are no longer exhaustive

– A record may not trigger any rules

– Solution?

•  Use a default class
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Ordered Rule Set

• Rules are ranked ordered according to their priority

– An ordered rule set is known as a decision list

• When a test record is presented to the classifier 

– It is assigned to the class label of the highest ranked rule it has 
triggered

– If none of the rules fired, it is assigned to the default class

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians 

Name Blood Type Give Birth Can Fly Live in Water Class
turtle cold no no sometimes ?
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Rule Ordering Schemes

• Rule-based ordering

– Individual rules are ranked based on their quality (e.g., accuracy)

• Class-based ordering

– Rules that belong to the same class appear together

Rule-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Class-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Married}) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes
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Indirect Method: C4.5rules

• Extract rules from an unpruned decision tree

• For each rule, r: A  y, 
– consider an alternative rule r’: A’  y where A’ is obtained by removing 

one of the conjuncts in A

– Compare the pessimistic generalization error for r against all r’

– Prune if one of the r’s has a lower pessimistic generalization error 

– Repeat until we can no longer improve generalization error
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Indirect Method in RapidMiner

No straight forward solution in Python :-(
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Direct vs. Indirect Rule Learning Methods

• Direct Method: 

•  Extract rules directly from data

•  e.g.: RIPPER, CN2, Holte’s 1R

• Indirect Method:

• Extract rules from other classification models 
(e.g. decision trees, neural networks, etc).

• Example: C4.5rules
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Direct methods

• Do not derive rules from another type of model

– but learn the rules directly

• practical algorithms use different approaches

– covering or separate-and-conquer algorithms

– based on heuristic search

The following slides are based on 
the machine learning course by 
Johannes Fürnkranz, 
Technische Universität Darmstadt
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A sample task

Temperature  Outlook  Humidity  Windy Play Golf?

hot  sunny  high false  no 

hot  sunny  high true  no 

hot  overcast  high false  yes 

cool  rain  normal false  yes 

cool  overcast  normal true  yes 

mild  sunny  high false  no 

cool  sunny  normal false  yes 

mild  rain  normal false  yes 

mild  sunny  normal true  yes 

mild  overcast  high true  yes 

hot  overcast  normal false  yes 

mild  rain  high true  no 

cool  rain  normal true  no 

mild  rain  high false  yes 

• Task:

– Find a rule set that correctly predicts the dependent variable from the 
observed variables 
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A Simple Solution

IF T=hot AND H=high AND O=overcast AND W=false THEN yes 
IF T=cool AND H=normal AND O=rain AND W=false THEN yes 
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes 
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes 
IF T=mild AND H=normal AND O=rain AND W=false THEN yes 
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes 
IF T=mild AND H=high AND O=overcast AND W=true THEN yes 
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes 
IF T=mild AND H=high AND O=rain AND W=false THEN yes

IF T=hot AND H=high AND O=overcast AND W=false THEN yes 
IF T=cool AND H=normal AND O=rain AND W=false THEN yes 
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes 
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes 
IF T=mild AND H=normal AND O=rain AND W=false THEN yes 
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes 
IF T=mild AND H=high AND O=overcast AND W=true THEN yes 
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes 
IF T=mild AND H=high AND O=rain AND W=false THEN yes

• The solution is 

– a set of rules 

– that is complete and consistent on the training examples

• “Overfitting is like memorizing the answers to a test
instead of understanding the principles.” (Bob Horton, 2015)
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A Better Solution

IF   Outlook = overcast THEN yes

IF   Humidity = normal AND Outlook = sunny THEN  yes

IF   Outlook = rainy      AND Windy = false            THEN     yes

IF   Outlook = overcast THEN yes

IF   Humidity = normal AND Outlook = sunny THEN  yes

IF   Outlook = rainy      AND Windy = false            THEN     yes
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A Simple Algorithm: Batch-Find

• Abstract algorithm for learning a single rule:

1. Start with an empty theory T and training set E

2. Learn a single (consistent) rule R from E and add it to T  

3. return T

• Problem:

– the basic assumption is that the found rules are complete, i.e., they 
cover all positive examples

– What if they don't?

• Simple solution:

– If we have a rule that covers part of the positive examples,
add some more rules that cover the remaining examples
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Separate-and-Conquer Rule Learning

• Learn a set of rules, one by one

1. Start with an empty theory T and training set E
2. Learn a single (consistent) rule R from E and add it to T  
3. If T is satisfactory (complete), return T
4. Else:

» Separate: Remove examples explained by R from E
» Conquer:  goto 2.

• One of the oldest family of learning algorithms
– goes back to AQ (Michalski, 60s)

– FRINGE, PRISM and CN2: relation to decision trees (80s)

– popularized in ILP (FOIL and PROGOL, 90s)

– RIPPER brought in good noise-handling

• Different learners differ in how they find a single rule 
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Separate-and-Conquer Rule Learning
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Relaxing Completeness and Consistency

• So far we have always required a learner to learn a complete and 
consistent theory

– e.g., one rule that covers all positive and no negative examples

• This is not always a good idea (→ overfitting)

• Example: Training set with 200 examples, 100 positive and 
100 negative
– Theory A consists of 100 complex rules, each covering a single positive 

example and no negatives

→ Theory A is complete and consistent on the training set

– Theory B consists of one simple rule, covering 99 positive and 1 
negative example

→ Theory B is incomplete and incosistent on the training set

• Which one will generalize better to unseen examples?
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Top-Down Hill-Climbing

• Top-Down Strategy: A rule is successively specialized

1. Start with the universal rule R that covers all examples

2. Evaluate all possible ways to add a condition to R

3. Choose the best one (according to some heuristic)

4. If R is satisfactory, return it

5. Else goto 2.

• Almost all greedy s&c rule learning systems use this strategy
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Recap: Terminology

predicted + predicted -
class + p (true positives) P-p (false negatives) P

class - n (false positives) N-n (true negatives) N

p + n P+N – (p+n)  P+N

• training examples
• P: total number of positive examples

• N: total number of negative examples

• examples covered by the rule (predicted positive)
• true positives p: positive examples covered by the rule

• false positives n: negative examples covered by the rule

• examples not covered the rule (predicted negative)
• false negatives P-p: positive examples not covered by the rule

• true negatives N-n: negative examples not covered by the rule
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Rule Learning Heuristics

• Adding a rule should

– increase the number of covered negative examples as little as 
possible (do not decrease consistency)

– increase the number of covered positive examples as much as 
possible (increase completeness)

• An evaluation heuristic should therefore trade off these two 
extremes

– Example: Laplace heuristic 

• grows with 

• grows with 

hLap=
p1
pn2

p∞
n0
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Recap: Overfitting 

• Overfitting

– Given 

• a fairly general model class 

• enough degrees of freedom

– you can always find a model that explains the data

• even if the data contains errors (noise in the data)

• in rule learning: each example is a rule

• Such concepts do not generalize well!

→ Solution: Rule and rule set pruning
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Overfitting Avoidance

– learning concepts so that 

• not all positive examples have to be covered by the theory

• some negative examples may be covered by the theory
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Pre-Pruning 

• keep a theory simple while it is learned
• decide when to stop adding conditions to a rule 

(relax consistency constraint)
• decide when to stop adding rules to a theory

(relax completeness constraint)
– efficient but not accurate Rule set with three rules 

á 3, 2, and 2 conditions

Pre-pruning decisions
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Post Pruning
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Post-Pruning: Example

IF T=hot AND H=high AND O=sunny AND W=false THEN no
IF T=hot AND H=high AND O=sunny AND W=true THEN no 
IF T=hot AND H=high AND O=overcast AND W=false THEN yes 
IF T=cool AND H=normal AND O=rain AND W=false THEN yes 
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes 
IF T=mild AND H=high AND O=sunny AND W=false THEN no 
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes 
IF T=mild AND H=normal AND O=rain AND W=false THEN yes 
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes 
IF T=mild AND H=high AND O=overcast AND W=true THEN yes 
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes 
IF T=mild AND H=high AND O=rain AND W=true THEN no 
IF T=cool AND H=normal AND O=rain AND W=true THEN no 
IF T=mild AND H=high AND O=rain AND W=false THEN yes

IF T=hot AND H=high AND O=sunny AND W=false THEN no
IF T=hot AND H=high AND O=sunny AND W=true THEN no 
IF T=hot AND H=high AND O=overcast AND W=false THEN yes 
IF T=cool AND H=normal AND O=rain AND W=false THEN yes 
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes 
IF T=mild AND H=high AND O=sunny AND W=false THEN no 
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes 
IF T=mild AND H=normal AND O=rain AND W=false THEN yes 
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes 
IF T=mild AND H=high AND O=overcast AND W=true THEN yes 
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes 
IF T=mild AND H=high AND O=rain AND W=true THEN no 
IF T=cool AND H=normal AND O=rain AND W=true THEN no 
IF T=mild AND H=high AND O=rain AND W=false THEN yes
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IF H=high AND O=sunny THEN no

IF O=rain AND W=true THEN no 

ELSE  yes

IF H=high AND O=sunny THEN no

IF O=rain AND W=true THEN no 

ELSE  yes

Post-Pruning: Example
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Reduced Error Pruning 

• basic idea
– optimize the accuracy of a rule set on a separate pruning set

1. split training data into a growing and a pruning set

2. learn a complete and consistent rule set covering all positive examples 
and no negative examples

3. as long as the error on the pruning set does not increase

 delete condition or rule that results in the largest reduction of error on the 
pruning set

4. return the remaining rules

• REP is accurate but not efficient 

– O(n4)
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Incremental Reduced Error Pruning

I-REP tries to combine the advantages
of pre- and post-pruning
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Incremental Reduced Error Pruning

• Prune each rule right after it is learned:

1. split training data into a growing and a pruning set

2. learn a consistent rule covering only positive examples

3. delete conditions as long as the error on the pruning set does not increase

4. if the rule is better than the default rule

 add the rule to the rule set

 goto 1.

• More accurate, much more efficient
– because it does not learn overly complex intermediate concepts
– REP: O(n4)         I-REP: O(n log2n)

• Subsequently used in RIPPER rule learner (Cohen, 1995)
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RIPPER in RapidMiner

Proper rule learning in Python still tbd :-(
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Advantages of Rule-Based Classifiers

• As highly expressive as decision trees

• Easy to interpret

• Easy to generate

• Can classify new instances rapidly

• Performance comparable to decision trees
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Decision Boundaries: Theory and Practice

• We have seen decision boundaries of rule-based classifiers
and decision trees

– both are parallel to the axes

– i.e., both can learn models that are a collection of rectangles

• What does that mean for comparing their performance

– if they learn the same sort of models

– are they equivalent?
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Decision Boundaries: Theory and Practice

• Example 1: a checkerboard dataset

– positive and negative points come in four quadrants

– can be perfectly described with rectangles
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Decision Boundaries: Theory and Practice

• Example 1: a checkerboard dataset

– positive and negative points come in quadrants

– can be perfectly described with rectangles

• Model learned by a decision tree:

– only the default tree (one node)
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Decision Boundaries: Theory and Practice

• What is going on here?

– No possible split improves the purity

– We always have 50% positive and negative examples

– i.e., Gini index is always 0.5

• same holds for other purity measures
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Decision Boundaries: Theory and Practice

• Example 1: a checkerboard dataset

– positive and negative points come in quadrants

– can be perfectly described with rectangles

• Model learned by a rule learner:
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Decision Boundaries: Theory and Practice

• Example 2:

– a small class inside a large one

– again: can be perfectly described with rectangles



10/2/19 Heiko Paulheim 45 

Decision Boundaries: Theory and Practice

• Example 2:

– a small class inside a large one

– again: can be perfectly described with rectangles

• Output of a rule-based classifier:

– no model learned (only a default rule)
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Decision Boundaries: Theory and Practice

• What is happening here?

– We try to learn the smallest class

– ...and pre-pruning requires a minimum heuristic

– no initial condition can be selected that exceeds that minimum

best one-condition rule: 
accuracy=0.17
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Decision Boundaries: Theory and Practice

• Example 2:

– a small class inside a large one

– again: can be perfectly described with rectangles

• Decision boundaries of a decision tree classifier:
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Decision Boundaries: Theory and Practice

• Decision boundaries are a useful tool

– they show us what model can be expressed by a learner

– e.g., circular shapes are not learned by a decision tree learner

– good for a pre-selection of learners for a problem

• What can be expressed and what is actually learned

– are two different stories

– answer depends heavily on the learning algorithm (and its parameters)

– requires (and provides) more insights into the learning algorithm
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Alternative Classification Methods

• There are various methods of classification

– e.g., >50 methods in basic RapidMiner edition

– plus many more using the Weka extension

• So far, we have seen

– k-NN

– Naive Bayes

– Decision Trees

– C4.5 and Ripper

• Brief intro

– Artificial Neural Networks

– Support Vector Machines
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Example: Credit Rating

• Consider the following example:

– and try to build a model

– which is as small as possible (recall: Occam's Razor)

Person Employed Owns House Balanced Account Get Credit

Peter Smith yes yes no yes

Julia Miller no yes no no

Stephen Baker yes no yes yes

Mary Fisher no no yes no

Kim Hanson no yes yes yes

John Page yes no no no
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Example: Credit Rating

• Smallest model:

– if at least two of Employed, Owns House, and Balanced Account are 
yes
→ Get Credit is yes

• Not nicely expressible in trees and rule sets

– as we know them (attribute-value conditions)
Person Employed Owns House Balanced Account Get Credit

Peter Smith yes yes no yes

Julia Miller no yes no no

Stephen Baker yes no yes yes

Mary Fisher no no yes no

Kim Hanson no yes yes yes

John Page yes no no no
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Example: Credit Rating

• Smallest model:

– if at least two of Employed, Owns House, and Balance Account are yes
→ Get Credit is yes

• As rule set:

Employed=yes and OwnsHouse=yes => yes
Employed=yes and BalanceAccount=yes => yes
OwnsHouse=yes and BalanceAccount=yes => yes
=> no

• General case:

– at least m out of n attributes need to be yes => yes

– this requires      rules, i.e., 

– e.g., “5 out of 10 attributes need to be yes” 
requires more than 15,000 rules!

( n
m

)
n!

m!⋅(n−m)!
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Artificial Neural Networks

• Inspiration

– one of the most powerful super computers in the world
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Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0

X1

X2

X3

Y

Black box

Output

Input

Output Y is 1 if at least two of the three inputs are equal to 1.
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Example: Credit Rating

• Smallest model:

– if at least two of Employed, Owns House, and Balance Account are yes
→ Get Credit is yes

• Given that we represent yes and no by 1 and 0, we want

– if(Employed + Owns House + Balance Acount)>1.5
→ Get Credit is yes
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Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0



X1

X2

X3

Y

Black box

0.3

0.3

0.3 t=0.4

Output
node

Input
nodes









otherwise0

 trueis  if1
)( where

)04.03.03.03.0( 321

z
zI

XXXIY



10/2/19 Heiko Paulheim 57 

Artificial Neural Networks (ANN)

• Model is an assembly of 
inter-connected nodes 
and weighted links

• Output node sums up 
each of its input value 
according to the weights 
of its links

• Compare output node 
against some threshold t



X1

X2

X3

Y

Black box

w1

t

Output
node

Input
nodes

w2

w3

)( tXwIY
i

ii  
Perceptron Model

)( tXwsignY
i

ii  

or
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General Structure of ANN

Activation
function

g(Si )
Si Oi

I1

I2

I3

wi1

wi2

wi3

Oi

Neuron iInput Output

threshold, t

Input
Layer

Hidden
Layer

Output
Layer

x1 x2 x3 x4 x5

y

Training ANN means learning 
the weights of the neurons
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Algorithm for learning ANN

• Initialize the weights (w0, w1, …, wk), e.g., all with 1

• Adjust the weights in such a way that the output of ANN is consistent 
with class labels of training examples

– Objective function:

– Find the weights wi’s that minimize the above objective function

•  e.g., back propagation algorithm (see books)

 2),( 
i

iii XwfYE
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ANN in RapidMiner & Python

clf = MLPClassifier(hidden_layer_sizes=(10))
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Decision Boundaries of ANN

• Arbitrarily shaped objects

• Fuzzy boundaries



10/2/19 Heiko Paulheim 62 

Support Vector Machines

• Find a linear hyperplane (decision boundary) that will separate the data
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Support Vector Machines

• Which one is better? B1 or B2?
• How do you define “better”?

B1

B2
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Support Vector Machines

• Find hyperplane maximizes the margin => B1 is better than B2

B1

B2

b11

b12

b21

b22

margin
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Support Vector Machines

• What is computed

– a separating hyper plane

– defined by its support vectors (hence the name)

• Challenges

– Computing an optimal separation is expensive

– requires good approximations

• Dealing with noisy data

– introducing “slack variables” in margin computation
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Nonlinear Support Vector Machines

• What if decision boundary is not linear?
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Nonlinear Support Vector Machines

• Transform data into higher dimensional space
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Nonlinear Support Vector Machines

• Transformation in higher dimensional space

– Uses so-called Kernel function

– Different variants: polynomial function, radial basis function, …

• Finding a hyperplane in higher dimensional space

– is computationally expensive

– Kernel trick: expensive parts of the calculation can be performed 
in lower dimensional space

– Details: see books...
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SVMs in RapidMiner & Python

clf = SVC(kernel=’rbf’)
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Decision Boundaries of SVMs

• Small class in large one

– using radial basis function kernel
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Decision Boundaries of SVMs

• Small class in large one

– using a Gaussian function kernel
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More Exotic Problems

• Consider

– Four binary features A,B,C,D

– Goal: Classify true if the number of TRUE values is even (i.e., 0, 2, or 4)

• Very hard for classic machine learning problems

– Approximate solution can be learned with neural network
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More Exotic Problems

• Consider

– Four binary features A,B,C,D

– Goal: Classify true if the number of TRUE values is even (i.e., 0, 2, or 4)

B

A

B

B

C

D

B

F

G

H

X

F = A + B + C – D < 3
G = A + B + C – D < 2
H = A + B + C – D < 1

X = F + G – H < 2
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More Exotic Problems

B

A

B

B

C

D

B

F

G

H

X

F = A + B + C – D < 3
G = A + B + C – D < 2
H = A + B + C – D < 1

X = F + G – H < 2

A B C D F G H X C

0 0 0 0 1 1 1 TRUE TRUE

1 0 0 0 1 1 0 FALSE FALSE

0 1 0 0 1 1 0 FALSE FALSE

0 0 1 0 1 1 0 FALSE FALSE

0 0 0 1 1 1 1 TRUE FALSE

1 1 0 0 1 0 0 TRUE TRUE

0 1 1 0 1 0 0 TRUE TRUE

0 0 1 1 1 1 1 TRUE TRUE

1 0 0 1 1 1 1 TRUE TRUE

1 0 1 0 1 0 0 TRUE TRUE

0 1 0 1 1 1 1 TRUE TRUE

1 1 1 0 0 0 0 TRUE FALSE

1 1 0 1 1 1 0 FALSE FALSE

1 0 1 1 1 1 0 FALSE FALSE

0 1 1 1 1 1 0 FALSE FALSE

1 1 1 1 1 0 0 TRUE TRUE
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Parameter Tuning

• Many learning methods require parameters

– k for k nearest neighbors

– pruning thresholds for trees and rules

– hidden layer configuration for ANN

– kernel function, epsilon and gamma for SVM

– …

• How to define optimal parameters?

– Trying out different configurations

– systematic approaches
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Parameter Tuning

• Some approaches often work rather poorly with default parameters

– SVMs are a typical example here

• Systematic approaches (see Data Mining 2)

– GridSearch: search space for possible combinations

• Gamma=0, Eps=0; Gamma=0.1, Eps=0; Gamma=0.2, Eps=0...

– Local Hill Climbing, Beam Search

– Evolutionary algorithms, genetic programming

– …

• Attention

– use hold out set (or cross validation) for parameter tuning

– there may be an overfitting problem here as well!
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Parameter Tuning in RapidMiner
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Parameter Tuning in RapidMiner
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Parameter Tuning in Python

GridSearchCV(cv=10,

       estimator=SVC(C=1.0, kernel=’rbf’,  
                     gamma=0.1),

       param_grid = [

            { 'C': [1, 10, 100, 1000], 
              'kernel': ['linear',’rbf], 
              ‘gamma: [0.1,0.01,0.001]})
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Issues in Parameter Tuning

• Which parameters are sensitive and interesting?

• Which combinations to test?

– Computational explosion

• Avoiding overfitting

– Split or cross validation

– Never use the test set for parameter tuning!
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Summary

• Classification approaches

– There are quite a few: Nearest Neighbors, Naive Bayes, Decision Trees, 
Rules, SVMs, Neural Networks

• Distinctions

– Lazy vs. eager

– Performance (accuracy, training time, testing time, model size)

– Decision Boundaries (theory and practice)

• Issues

– Overfitting

– Parameter tuning
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Questions?
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