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Association Analysis

• First algorithms developed in the early 90s at IBM 
by Agrawal & Srikant

• Motivation

– Availability of barcode cash registers 
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Association Analysis

• initially used for Market Basket Analysis 

– to find how items purchased by customers are related

• later extended to more complex data structures

– sequential patterns (see Data Mining II)

– subgraph patterns

• and other application domains

– life science

– social science

– web usage mining
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Simple Approaches

• To find out if two items x and y are bought together, 
we can compute their correlation

• E.g., Pearson's correlation coefficient:

• Numerical coding:

– 1: item was bought

– 0: item was not bought

•    : average of x (i.e., how often x was bought)

∑ (x i−x)( y i− y)

√∑ (xi−x)
2 √∑ ( y i− y)

2

x
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Correlation Analysis in RapidMiner
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Correlation Analysis in Python

• e.g., using Pandas:

import seaborn as sns

corr = dataframe.corr()
sns.heatmap(corr)
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• Given a set of transactions, find rules that will predict the 
occurrence of an item based on the occurrences of other items in 
the transaction

Market-Basket transactions Examples of Association Rules

{Diaper}  {Beer},
{Milk, Bread} }  {Eggs,Coke},
{Beer, Bread} }  {Milk},

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 
→ denotes co-occurence,

not causality!

Association Analysis
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Correlation vs. Causality

http://xkcd.com/552/
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Definition: Frequent Itemset

• Itemset

– A collection of one or more items

• Example: {Milk, Bread, Diaper}

– k-itemset

• An itemset that contains k items

• Support (s)

– Frequency of occurrence of an itemset

• e.g. s({Milk, Bread, Diaper}) = 2/5

• Frequent Itemset

– An itemset w/ support ≥ a minimum support threshold (minsup)
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Definition: Association Rule

• Association Rule
– An implication expression of the form 

X → Y, where X and Y are itemsets

• Interpretation: when X occurs, 
Y occurs with a certain probability

• More formally, it’s a conditional probability
– P(Y|X) – given X, what is the probability of Y?

• Known as confidence (c)
– e.g., for {Bread, Milk} → {Diaper}, the probability is 2/3

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
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Definition: Evaluation Metrics

• Given the rule {Milk, Diaper} → {Beer}

• Support:
– Fraction of total transactions 

which contain both X and Y

• Confidence: 
– Fraction of transactions containing X which also contain Y

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 4.0

5
2

|T|
)BeerDiaper,,Milk(




s

67.0
3
2

)Diaper,Milk(
)BeerDiaper,Milk,( 




c
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Association Rule Mining Task

• Given a set of transactions T, the goal of association rule mining is to 
find all rules having 

– support ≥ minsup threshold

– confidence ≥ minconf threshold

• minsup and minconf are provided by the user

• Brute-force approach:

– List all possible association rules

– Compute the support and confidence for each rule

– Remove rules that fail the minsup and minconf thresholds

→ Computationally prohibitive due to large number of candidates!
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Mining Association Rules

Examples of Rules:

● {Milk, Diaper} → {Beer} (s=0.4, c=0.67
● {Milk, Beer} → {Diaper} (s=0.4, c=1.0)
● {Diaper, Beer} → {Milk} (s=0.4, c=0.67)
● {Beer} → {Milk, Diaper} (s=0.4, c=0.67) 
● {Diaper}→  {Milk, Beer} (s=0.4, c=0.5)  {Milk, Beer} (s=0.4, c=0.5) 
● {Milk} → {Diaper, Beer} (s=0.4, c=0.5)

s(X→Y ):=∣X∪Y∣
∣T∣

Observations

• All the above rules are partitions of the same itemset, i.e. {Milk, 
Diaper, Beer}

• Rules originating from the same itemset 
have identical support 

– but can have different confidence

→ we may decouple the support and confidence requirements
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Apriori Algorithm: Basic Idea

• Two-step approach

• First: Frequent Itemset Generation

– Generate all itemsets whose support ≥ minsup

• Second: Rule Generation

– Generate high confidence rules from each frequent itemset

– where each rule is a binary partitioning of a frequent itemset

• However: Frequent itemset generation is still computationally 
expensive....
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Frequent Itemset Generation

Given d items, there are 
2d candidate itemsets!

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
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https://www.scrapehero.com/number-of-products-on-amazon-april-2019/

Brute-force Approach

• Example:
– Amazon sells 120 million products (Amazon.com, as of April 2019)

• That is 2120000000 possible itemsets

• As a number:
– 3.017... × 1036,123,599

– That is: a number with 36 million digits!

– Comparison: the largest supercomputer has a capacity of 40 Petabytes 
(=3.2x1017 bits)

• However:
– most itemsets will not be important at all

– e.g., a book on Chinese calligraphy 
and an iPhone cover bought together

– thus, smarter algorithms should be possible
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Brute-force Approach

• Each itemset in the lattice is a candidate frequent itemset

• Count the support of each candidate by scanning the database

• Match each transaction against every candidate

• Complexity ~ O(NMw) → Expensive since M = 2d

• A smarter algorithm is required
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Anti-Monotonicity of Support

• What happens when an itemset
gets larger?

• s({Bread}) = 0.8

– s({Bread,Milk}) = 0.6

– s({Bread,Milk,Diaper}) = 0.4

• s({Milk}) = 0.8

– s({Milk,Diaper}) = 0.6

– s({Milk,Diaper,Beer}) = 0.4

• There is a pattern here!

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
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Anti-Monotonicity of Support

• There is a pattern here!

– It is called anti-monitonicity
of support

• If X is a subset of Y

– s(Y) is at most as large as s(X)

• Consequence for frequent itemset search (aka Apriori principle):

– If Y is frequent, X also has to be frequent

– i.e.: all subsets of frequent itemsets are frequent

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 

)()()(:, YsXsYXYX 
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Found}  to 
be 
Infrequent

Illustrating the Apriori Principle

Pruned}  
supersets

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
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The Apriori Algorithm

1. Start at k=1

2. Generate frequent itemsets of length k=1

3. Repeat until no new frequent itemsets are identified

1. Generate length (k+1) candidate itemsets from 
length k frequent itemsets; increase k

2. Prune candidate itemsets that cannot be 
frequent because they contain subsets of length 
k that are infrequent  (Apriori Principle)

3. Count the support of each remaining candidate 
by scanning the DB

4. Eliminate candidates that are infrequent, leaving 
only those that are frequent
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Items (1-itemsets)

Pairs 
(2-itemsets)

Triplets 
(3-itemsets)

Minimum Support = 3

No need to generate
candidates involving 
Coke or Eggs.

No need to generate
candidate {Milk, Diaper, Beer}

Item Count
Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count
{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Illustrating the Apriori Principle

Itemset Count 
{Bread,Milk,Diaper} 3 
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From Frequent Itemsets to Rules

• Given a frequent itemset F, find all non-empty subsets f  F 
such that f → F \ f satisfies the minimum confidence requirement

• Example Frequent Itemset:

– F= {Milk,Diaper,Beer}

• Example Rule:

– f = {Milk,Diaper}

– {Milk,Diaper} → {Beer}

67.0
3
2

)Diaper,Milk(
)BeerDiaper,Milk,(





c
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Challenge: Combinatorial Explosion

• Given a 4-itemset {A,B,C,D}, we can generate

{A} → {B,C,D}, {B} → {A,C,D}, {C} → {A,B,D}, {D} → {A,B,C},

{A,B} → {C,D}, {A,C} → {B,D}, {A,D} → {B,C},

{B,C} → {A,D}, {B,D} → {A,C}, {C,D} → {A,B},

{A,B,C} → {D}, {A,B,D} → {C}, {A,C,D} → {B}, {B,C,D} → {A}

• i.e., a total of 14 rules for just one itemset!

• General number for a k-itemset: 2k-2

– it’s not 2k since we ignore Ø → {…} and {…} → Ø
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Challenge: Combinatorial Explosion

• Wanted: another pruning trick 
like Apriori principle

• However

{Milk,Diaper} → {Beer} c=0.67

{Milk} → {Beer} c=0.5

{Diaper} → {Beer} c=0.8

• It’s obviously not as straight forward
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Challenge: Combinatorial Explosion

• Wanted: another pruning trick 
like Apriori principle

• Let’s look at it another way

– {Milk,Diaper,Beer} → Ø c=1.0

• {Milk,Diaper} → {Beer} c=0.67
– {Milk} → {Diaper,Beer} c=0.5

– {Diaper} → {Milk,Beer} c=0.5

• {Milk,Beer} → {Diaper} c=1.0
– {Milk} → {Diaper,Beer} c=0.5

– {Beer} → {Milk,Diaper} c=0.67

• Observation: moving elements in the rule from left to right
never increases confidence!
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Rule Generation

• Confidence is anti-monotone w.r.t. number of items on the RHS of 
the rule

– i.e., “moving elements from left to right” cannot increase 
confidence

– reason:

– Due to anti-monotone property of support, we know

• S(AB) ≤ S(A)

– Hence

• c(AB → C) ≥ C(A → BC) 

c(AB→C ):= s(ABC )
s (AB)

c(A→BC):= s (ABC )
s(A)



10/23/19 Heiko Paulheim 29 

Rule Generation for Apriori Algorithm

Pruned}  
Rules

Low 
Confid} ence 
Rule

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD
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Rule Generation for Apriori Algorithm

• Candidate rule is generated by merging two rules that share the same 
prefix in the rule consequent

• join(CD=>AB, BD=>AC)

– would produce the 
candidate rule D => ABC

• Prune rule D=>ABC 

– if its subset AD=>BC 
does not have high confidence

• All the required information for confidence computation has already 
been recorded during itemset generation. 
→ No need to see the data anymore!

BD=>ACCD=>AB

D=>ABC

c(X→Y ):= s (X∪Y )
s(X )
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Complexity of Apriori Algorithm

• Expensive part is scanning the database

– i.e., when counting the support of frequent itemsets

• The database is scanned once per pass 
of frequent itemset generation

– one pass to count frequencies of 1-itemsets

– one pass to count frequencies of 2-itemsets

– etc.

• i.e., for frequent itemsets of size ≤ k, 

– k passes over the database are required
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FP-growth Algorithm

• An alternative method for finding frequent itemsets

– usually faster than Apriori

– requires at most two passes over the database

• Use a compressed representation of the database using an FP-tree

• Once an FP-tree has been constructed, it uses a recursive divide-
and-conquer approach to mine the frequent itemsets
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FP-Tree Construction

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:1

B:1

null

A:1

B:1

B:1

C:1

D:1

After reading TID=1:

After reading TID=2:
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FP-Tree Construction

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

After reading TID=3:

counter is 
increased

null

A:2

B:1

B:1

C:1

D:1

C:1

E:1

D:1
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FP-Tree Construction

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1
E:1

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

Pointers are used to assist 
frequent itemset generation

D:1

E:1

Transaction 
Database

Item Pointer
A
B
C
D
E

Header table
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FP-Tree Construction

• Properties of the FP-Tree

– a very compact representation

– fits in memory

• even for larger transaction databases

• more transactions of the same kind do not increase the tree size

– can be optimized

• sorting most frequent items first

• good compression for many similar transactions

• up-front pruning of infrequent itemsets
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From the FP Tree to Patterns

• Naively: 

– Enumerate all paths 
and subsets of paths

– Sum up counts

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1
E:1

D:1

E:1

Item Pointer
A
B
C
D
E

Header table
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From the FP Tree to Paths

• Enumeration:

– A:7, AB:5, AC:3, AD:1, BC:3, CD:1, ABC:3, ABCD:1, …

• However, we can do better

– Single path tree: enumerate all subsets

– Multi path tree: Build FP-Tree of subtrees recursively

• For that recursion, we use the links

• e.g., build FP-Tree for all itemsets ending in E

• Details

– See literature
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FP-Growth (Summary)

• Scans the database only twice:

– first scan counts all 1-itemsets

• for ordering by most frequent (more compact tree)

• and for removing itemsets below minsup

– second scan for constructing the FP-tree

• recursive constructions only work on compact representation,
not the actual database

• Finding patterns from the tree

– algorithm recursively decomposes the tree 
into smaller subtrees

– details: see books
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Frequent Itemset Generation in Rapidminer
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Frequent Itemset Generation in Rapidminer
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Creating Association Rules in Rapidminer
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Exploring Association Rules in Rapidminer
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Frequent Itemset Mining in Python

• Various packages exist

– In the exercise, we’ll use the Orange3 package

itemsets = dict(fp_growth.frequent_itemsets(X, .2))
rules = association_rules(itemsets, .8)
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Interestingness Measures 

• Association rule algorithms tend to produce too many rules 

– many of them are uninteresting or redundant

– Redundant if {A,B,C} → {D} and {A,B} → {D}   
have same support & confidence

• Interestingness measures can be used to prune or 
rank the derived rules

• In the original formulation of association rules, support & confidence 
are the only interest measures used

• Later, various other measures have been proposed

– See Tan/Steinbach/Kumar, Chapter 6.7

– We will have a look at two: Correlation & Lift
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Drawback of Confidence

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

           Association Rule: Tea  Coffee
• Confidence= s(Tea ∩ Coffee)/s(Tea) = 15/20 =  0.75
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Correlation

• We discover a high confidence rule for tea → coffee

– 75% of all people who drink tea also drink coffee

– Hypothesis: people who drink tea are likely to drink coffee

• Implicitly: more likely than people not drinking tea

• Cross check:

– What is the confidence of not(tea) → coffee?

– Even higher: ~94% of people who don’t drink tea do drink coffee

• We have two rules here

– One is learned on all people who drink tea

– The other is learned on all people who don’t trink tea

– Only together, they cover the whole dataset
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Correlation

• Correlation takes into account all data at once

• In our scenario: corr(tea,coffee) = -0.25

– i.e., the correlation is negative

– Interpretation: people who drink tea are less likely to drink coffee

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100
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Lift

• We discover a high confidence rule for tea → coffee

– 75% of all people who drink tea also drink coffee

– Hypothesis: people who drink tea are likely to drink coffee

• Implicitly: more likely than all people

• Test: Compare the confidence of the two rules

– Rule: Tea → coffee

– Default rule: all → coffee

• c(tea → coffee) = s(tea ∩ coffee)/s(tea)

• c(all → coffee) = s(all ∩ coffee)/s(all) = s(coffee) / 1
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Lift

• Test: Compare the confidence of the two rules

– Rule: tea → coffee

– Default rule: all → coffee

• We accept a rule iff its confidence is higher than the default rule

– c(tea → coffee) = s(tea ∩ coffee)/s(tea)

– c(all → coffee) = s(all ∩ coffee)/s(all) = s(coffee) / 1

c(tea → coffee) > c(all → coffee)

↔ c(tea → coffee) / c(all → coffee) > 1

↔ s(tea ∩ coffee)/ (s(tea) * s(coffee)) > 1

Lift (X →Y )=
s(X∩Y )
s(X )×S (Y )
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Lift

• The lift of an association rule X → Y is defined as:

•  Interpretation:

– if  lift > 1, then X and Y are positively associated

– if  lift < 1, then X are Y are negatively associated

– if lift = 1, then X and Y are independent.

Lift (X →Y )=
s(X∩Y )
s(X )×S (Y )
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Example: Lift

           Association Rule: Tea  Coffee
s(Tea ∩ Coffee) = 0.15

s(Tea) = 0.2, s(Coffee) = 0.9

 Lift = 0.15/(0.2*0.9)= 0.8333 (< 1, therefore is 
negatively associated)

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100
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Combination of Confidence and Lift/Correlation

• So why not try to find rules with high lift/correlation directly?

• By design, lift and correlation are symmetric

– i.e., lift(tea → coffee) = lift(coffee → tea)

• Confidence is asymmetric

– c(coffee → tea) is only 15/90 = 0.167

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100
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• There are lots of 
measures 
proposed in the 
literature

• Some measures 
are good for 
certain 
applications, but 
not for others

• Details: see 
literature
(e.g., Tan et al.)

Interestingness Measures
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Handling Continuous and Categorical Attributes

• How to apply association analysis formulation 
to other types of variables?

• Example of Association Rule:

       {Number of Pages  [5,10)  (Browser=Mozilla)} → {Buy = No}

Session 
Id 

Country Session 
Length 
(sec) 

Number of 
Web Pages 

viewed 
Gender 

Browser 
Type 

Buy 

1 USA 982 8 Male IE No 

2 China 811 10 Female Netscape No 

3 USA 2125 45 Female Mozilla Yes 

4 Germany 596 4 Male IE Yes 

5 Australia 123 9 Male Mozilla No 

… … … … … … … 
10 
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Handling Categorical Attributes

• Transform categorical attribute into 
asymmetric binary variables

• Introduce a new “item” for each distinct 
attribute-value pair

– Example: replace Browser Type attribute with

•  Browser Type = Internet Explorer

•  Browser Type = Mozilla
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Handling Categorical Attributes

• Introduce a new “item” for each distinct 
attribute-value pair

– Example: replace Browser Type attribute with

•  Browser Type = Internet Explorer

•  Browser Type = Mozilla

• This method is also known as one-hot-encoding

– We create n new variables, only one of which is 1 (“hot”) at a time

from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder()
enc.fit_transform(data)
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Handling Categorical Attributes

• Potential Issues

– Many attribute values

• Many of the attribute values may have very low support

• Potential solution: Aggregate the low-support attribute values

– bin for “other”

– Highly skewed attribute values

• Example: 95% of the visitors have Buy = No

• Most of the items will be associated with (Buy=No) item

• Potential solution: drop the highly frequent items
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Handling Continuous Attributes

• Transform continuous attribute into 
binary variables using discretization

– Equal-width binning

– Equal-frequency binning

• Issue: Size of the intervals affects support & confidence

– Too small intervals: not enough support

– Too large intervals: not enough confidence

{Refund}  = No, (51,253   Income  51,254)} )}  {Cheat = No}

{Refund}  = No, (60K  Income  80K)}  {Cheat = No}

{Refund}  = No, (0K  Income  1B)}  {Cheat = No}



10/23/19 Heiko Paulheim 60 

Effect of Support Distribution

• Many real data sets have a skewed support distribution

Support 
distribution of 
a retail data set
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Effect of Support Distribution

• How to set the appropriate minsup threshold?

– If minsup is set too high, we could miss itemsets involving interesting 
rare items (e.g., expensive products)

– If minsup is set too low, it is computationally expensive and the number 
of itemsets is very large

• Using a single minimum support threshold may not be effective
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Multiple Minimum Support

• How to apply multiple minimum supports?

– MS(i): minimum support for item i 

– e.g.:     MS(Milk)=5%,       MS(Coke) = 3%,
            MS(Broccoli)=0.1%,     MS(Salmon)=0.5%

– MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli))
          = 0.1%

• Challenge: Support is no longer anti-monotone

–   Suppose: Support(Milk, Coke) = 1.5% and
 Support(Milk, Coke, Broccoli) = 0.5

→ {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent

– Requires variations of Apriori algorithm

– Details: see literature
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Association Rules with Temporal Components

• Good example:

– (Twilight) (New Moon) → (Eclipse)

• Bad example:

– mobile phone → charger vs. charger → mobile phone 

– are indistinguishable by frequent pattern mining

• both will be used for recommendation

– customers will select a charger after a mobile phone

• but not the other way around!

• however, Amazon does not respect sequences…

• See: Data Mining 2 for sequential pattern mining
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Wrap-up

• Association Analysis:

– discovering patterns in data

– patterns are described by rules

• Apriori & FP-Growth algorithm:

– Finds rules with minimum support (i.e., number of transactions)

– and minimum confidence (i.e., strength of the implication)

• You'll play around with it in the upcoming exercise...
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What’s Next?

• Data Mining 2 (next FSS)

• Machine Learning / Hot Topics in Machine Learning (HWS / FSS), 
Prof. Gemulla

• Relational Learning (HWS), Dr. Meilicke

• Information Retrieval and Web Search (next FSS), Prof. Glavaš

• Text Analytics (HWS), Prof. Ponzetto & Prof. Glavaš

• Web Mining (FSS), Prof. Ponzetto

• Image Processing (HWS) and
Higher-Level Computer Vision (FSS), Prof. Keuper

• Network Analysis (HWS), Dr. Karnstedt-Hulpus
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Questions?
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