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Hello
e
* Prof. Dr. Heiko Paulheim ‘
— Chair for Data Science
* Research Interests:
— Knowledge Graphs on the Web and their Applications
— Data Quality and Data Cleaning on Knowledge Graphs

— Using Knowledge Graphs in Data Mining
— Societal Impact of Artificial Intelligence
* Room: B6 26, B0.22
* Consultation: Tuesdays 9-10
— Please make an appointment with Bianca Lermer upfront
* Heiko will teach the lectures
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Hello

* M.Sc. Nicolas Heist
* Graduate Research Associate
* Research Interests:
— Semantic Web Technologies

— Knowledge Graphs and Linked Data -

* eMail: nico@informatik.uni-mannheim.de

* Nico will teach the RapidMiner exercises
and co-supervise the team projects.
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Hello

* M.Sc. Sven Hertling

* Graduate Research Associate

* Research Interests:
— Semantic Technologies / Semantic Web
— Linked Data
— Knowledge Graphs

* eMail: sven@informatik.uni-mannheim.de

* Sven will teach the Python exercises
and co-supervise the team projects.
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Hello

* M.Sc. Ralph Peeters

* Graduate Research Associate

* Research Interests:
— Entity Matching using Deep Learning
— Product Data Integration
— eMail: ralph@uni-mannheim.de

* Ralph will teach the Python exercises
and co-supervise the team projects.
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Introduction and Course Outline
e

* Course Outline and Organization
* What is Data Mining?

* Methods and Applications

* The Data Mining Process

9/28/20 Heiko Paulheim




Course Organization
e

* Lecture
— introduces the principle methods of data mining

— discusses how to evaluate generated models

— presents practical examples of data mining applications
from the corporate and Web context

* Exercise
— students experiment with data sets using RapidMiner or Python

* Project Work
— teams of five students realize a data mining project

— teams may choose their own data sets and tasks
(in addition, we will propose some suitable data sets and tasks)

— write summary about project, present project results

* Final grade

— 75 % written exam

— 25 % project work (20% report, 5% presentation)
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Exercises of Your Choice

* Exercises in RapidMiner
— Thursday, 12 — 13.30
— Requires no programming knowledge

* Exercise in Python
— Thursday, 13.45 - 15.15and 15.30 - 17.00
— Requires programming knowledge

* Exercises start tomorrow!

e pgthon"‘ U)) rapiominer

9/28/20 Heiko Paulheim




Course Outline

9/28/20

Week

28.09.2020

05.10.2020

12.10.2020

19.10.2020

26.10.2020

02.11.2020

09.11.2020

16.11.2020

23.11.2020

30.11.2020

Wednesday

Lecture: Introduction to Data Mining

Lecture: Clustering

Lecture: Classification 1

Lecture: Classification 2

Kick off group projects

Lecture: Regression

Project feedback

Lecture: Text Mining

Project feedback

Lecture: Association Analysis

Heiko Paulheim

Thursday

Exercise: Introduction to Python / RapidMiner

Exercise: Introduction

Exercise: Clustering

Exercise: Classification 1

Exercise: Classification 2

Project feedback

Exercise: Regression

Project feedback

Exercise: Text Mining

Results Presentation



Deadlines

* Submission of project work proposal
— Monday, Nov 2n, 23:59

«  Submission of final project work report s
— Firday, Dec 234, 23:59 ]

* Project presentations
— schedule to be announced
— everyone has to attend
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Course Organization
e

* Lecture Webpage: Slides, Announcements

— https://www.uni-mannheim.de/dws/teaching/course-details/
courses-for-master-candidates/ie-500-data-mining

— hint: look at version tags!
* Additional Material

— ILIAS elLearning System, https://ilias.uni-mannheim.de/
* Time and Location

— Lecture: Wednesday, 10.15 - 11.45, WIM-ZOOM-02

— Exercises: Thursdays:
12.00 — 13.30 (RapidMiner w/ Nicolas), WIM-ZOOM-02
13.45 — 15.15 (Python w/ Sven), WIM-ZOOM-02
15.30 — 17.00 (Python w/ Ralph), WIM-ZOOM-02

* these are three parallel groups, you only have to attend one
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Course Organization
e

* Registration
— you have registered via Portal2
— and been added to ILIAS
* There is a waiting list
— if you decide not to continue, please email Ms. Czanderle
— we will reassign your place
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Course Organization — Corona Specials

* Lectures and Exercises
— take place via ZOOM

* Lectures and Exercises
are streamed live

— We will try to record lectures
and provide the recordings

— We will not record exercises
for legal reasons

* Project coaching and presentations
— will take part via ZOOM

* The written exam will taken place on campus
— At least as of today...
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Literature & Slide Sources

* Pang-Ning Tan, Michael Steinbach, Vipin Kumar:
Introduction to Data Mining,
Pearson / Addison Wesley.

— 10 copies in university library.

— we provide scans of important chapters via ILIAS

* lan H. Witten, Eibe Frank, Mark A. Hall:
Data Mining: Practical Machine Learning
Tools and Techniques, 3rd Edition, Morgan Kaufmann.

— several copies in university library

— we provide scans of important chapters via ILIAS
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Literature & Slide Sources

* Bing Liu: Web Data Mining, 2nd Edition, Springer.
— several copies in university library

— electronic edition available via the library

* Gregory Piatetsky-Shapiro, Gary Parker:
KDNuggets Data Mining course:
http://www.kdnuggets.com/data_mining_course/
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Literature — Rapidminer

1. Markus Hofmann, Ralf Klinkenberg: T
RapidMiner: Data Mining Use Cases and RAPIDMINER
Business Analytics Applications. e el
Chapman & Hall, 2013.

. - - data— T
Explains along case studies how to use Ras qleeer 1

simple and advanced Rapidminer features. usedE ] rimge

T &l

*  Website with data and processes:
http://rapidminerbook.com

2. Matthew North: Data Mining for the Masses.
Global Text Project, 2012.

*  Free PDF version available online.

3. Rapidminer — User Manual
. introduction to user interface and basic features

*  http://rapidminer.com/learning/getting-started/




Literature — Python

* McKinney: Python for Data Analysis

Python for

* Severance: Python for Everybody:
Exploring Data in Python 3

* Coelho and Richert: Building Machine Learning Systems
with Python — Free Online Access via university library

* Online Sources:
— https://www.learnpython.org/
— https://docs.python.org/3/tutorial/
— http://scikit-learn.org/stable/tutorial/index.html

Building Machine Learning
Systems with Python
Second Edition
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Additional Material

* Video recordings from FSS 2015
— http://dws.informatik.uni-mannheim.de/en/teaching/lecture-videos/
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http://dws.informatik.uni-mannheim.de/en/teaching/lecture-videos/

Outlook: Data Mining Il

* Taught every FSS

* Topics
— Sequential Pattern Mining, Time Series Prediction
— Neural Networks and Deep Learning

— Anomaly Detection
> DATA-MINING-CUP

§ prudsys Anweendertage und Data Mining Wettbewerb

— Online Data Analysis
— Advanced Data Preprocessing

* Practical project
— The annual Data Mining Cup _
— Worldwide competition of student teams 2 50"
— Real-world data mining tasks 7 ?

9/28/20 Heiko Paulheim




Questions?

o

&

9/28/20 Heiko Paulheim




A Bit of History
e

* We are drowning in data, but starving for knowledge.
(John Naisbitt, 1982)

* Computers have promised us a fountain of wisdom but delivered a
flood of data.

* [t has been estimated that the amount of information in the world
doubles every 20 months.
(Frawley, Piatetsky-Shapiro, Matheus, 1992)
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“We are Drowning in Data...”

More and more data
is generated:

— Transaction data
from banking,
telecommunication,
e-commerce

— Scientific data from
astronomy, physics, biology

— All interactions with the Web
— Social network sites

— Application logs

— GPS tracking logs
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http://www.cultindustries.com/new/html/frame.html

Data, Information, Knowledge, and Wisdom

Connectedness

Wisdom

Understand
Principles

Knowledge

Understand
Patterns

Information

Understand
Relations

Data P Understanding

Gene Bellinger, Durval Castro and Anthony Mills. "Transforming Data to Wisdom."
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A Historical Example

« Cholera disease Le Petit JOIII'llal

* From beginning of 19t century S B LIRS e
* ~100,000 deaths per year e
— until today!

* Foralong time,
there was little knowledge

— on ways of infection

— on causes of the disease

LE CHOLERA

http://fieldnotes.unicefusa.org/2008/09/newsnet_combating_cholera_1.html
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A Historical Example
e

* August Heinrich Petermann
 1822-1878
* Geographer and Cartographer

* Geographic maps as a means
— to understand data
— to gather knowledge

http://commons.wikimedia.org/wiki/File:August_Heinrich_Petermann.jpg
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A Historical Example
e

* 1848 map of Cholera deaths in London
— finding: Cholera is more likely in densely populated areas
— where there is no functioning sewage system
— conclusion: Cholera is transmitted through contaminated water
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http://www.dgfk.net/index.php?do=dbk&do2=1209

9/28/20 Heiko Paulheim




A Recent Example: the NSA
e

« Communication data from all over the world

* Searching for
suspects and
terrorists

Approximately 150 sites

Over 700 servers

_ TOP SECRET//COMINT//REL TO USA, AUS, CAN, GBR, NZL
http://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data

9/28/20 Heiko Paulheim




A Recent Example: the NSA
e

The NSA collect: tadata f h ds, enabli
CONNECTING THE DOTS: [ 5 otete metacet o s s, oo
PH"NE-METADATA tents. Amid millions of calls, patterns can emerge, as our
othetical scenario below demonstrates.
TRAEK'NE hypothetical io below d strat

1 2 2 4

The phone records of a A call from the known ter- The phone metadata from Phone records show ona of

known terrorist supperterin  rorist supporter is made to the person of interest in the associates in the Califor

Saudi Arabia form a cluster  a person of intarast in the the United States forms nia cluster called someona

of possible accomplices. United States, a U.S. citizen. a cluster of associates in in the Saudi Arabia cluster.
California. Tha NSA alerts the FBI to

the connection, enabling the
agency to obtain a wiretap.

https://www.popularmechanics.com/military/a9465/nsa-data-mining-how-it-works-15910146/
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A Very Recent Example: CoViD-19

@ COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)

Global Deaths

Global Cases H US State Level
9 9 7 . 7 9 9 Deaths, Recovered
204.758 deaths 33.131 deaths,
us New York US
Cases by Country/Region/Sovereignty 141.741 deaths 16.106 deaths,
us Brazil New Jersey US
. NORTH EUROFE 95.542 deaths 15.745 deaths,
India AMERICA India Texas US
Brazil 76.430 death 15.608 deaths,
N Mexico California US
Russia
. 42.077 deaths 14.032 deaths,
Colombia United Kingdom Florida US
Peru AF RILCA 35.835 deaths 9.404 deaths,
Italy Massachusetts US
Mexico
32.142 deaths 8.845 deaths,
Spain Sl Peru lllincis US
- AMERICA 4 Global Deaths b 4 US Desths, Recovered b
Argentina
) AUSTRALIA
South Africa
France
Chile 300k
+
Iran _
United Kingdom
Bang\adesh Active Cases Incidence Rate Testing Rate 00k
Admin0 Admin1 Admin2 . Data sources: . Downlcadable database: I
1 8 8 and . Financial Support: L - = o .
Last Updated at YYY) upport: . and . Click to donate to the CSSE dashboard team, B .
9/28/2020, 9:23 vorm. - Read more in this blog. : q Daily Cases 3
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A Very Recent Example: CoViD-19
e

* Data Mining can help understanding
— pathways and chains of infection
— critical preconditions of patients
* previous diseases
* medications
* genetic preconditions
— effectiveness of prevention strategies
* e.g., famous hammer & dance paper
— vulnerable factors in health infrastructures
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“We are Drowning in Data...”

The following slides are
taken from Aidan Hogan's course
on “Massive Data Processing”

Wikipedia (en, text only)
=~ 20 GB of data

1 Wiki = 1 Wikipedia

The Free Encyclopedza
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“We are Drowning in Data...”

Human Genome

=~ 4 GB/person

=~ 0.2 Wiki/person

=~ 1.6M Wiki/humankind
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“We are Drowning in Data...”

US Library of
Congress

= 235 TB archived
= 11.7M Wiki
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“We are Drowning in Data...”

Sloan Digital Sky
Survey

=~ 200 GB/day

=~ 73 TB/year

= 3.7k Wiki/year

RN
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“We are Drowning in Data...”
-

NASA Center for
Climate Simulation
=~ 32 PB archived

=~ 1.6M Wiki

NASA Center for Climate Simulation
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“We are Drowning in Data...”

Facebook
=~ 12 TB/day added
= 600 Wiki/day
= 219k Wiki/year
(as of Mar. 2010)
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“We are Drowning in Data...”

Large Hadron Collider
=~ 15 PB/year
= 750k Wiki/year
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“We are Drowning in Data...”
-

Google] Google
=~ 20 PB/day processed

= 1M Wiki/day
= 365M Wiki/year
(Jan. 2010)
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“We are Drowning in Data...”
-

Internet (2016)
= 1.3 ZBl/year
=~ 65M Wiki/year
(2016 IP traffic; Cisco est.)

= 2 Wiki/second
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“We are Drowning in Data...”
-

2 0 2 0 This Is What Happens In An
Internet Minute

190 Million
. Emails Sent

~ 1.2Million.
N L

Created By:
wWa@loriLewis
W @OfficiallyChadd
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...but starving for knowledge!
S

11101110

10110110

10111111

«— Rate at which data are produced

10101010

01010101

00000001

10000001 11101110

10000001

11111011 11101110

— Rate at which data can be understood
manual interpretation is hardly feasible!
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Data Mining: Definitions
S

 |dea: mountains of data
— where knowledge is mined

\ fn FlrstlnternatlonalC3nference on
nowledge Discovery
\[r« y. and Data Mining|

N
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Data Mining: Definitions
-
* Data Mining is a non-trivial process of identifying
— valid
— novel

— potentially useful
— ultimately understandable

patterns in data.

(Fayyad et al. 1996)

* Data mining is nothing else than torturing the data until it confesses

(Fred Menger, year unknown)
* ...and if you torture it enough, you can get it to confess to anything.
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Origins of Data Mining

* Draws ideas from machine learning, statistics, and database
systems.

* Traditional techniques
may be unsuitable due to

— large amount of data

— high dimensionality
of data

— heterogeneous,
distributed nature
of data

Data Mining
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Data Mining Application Fields
e

Business

— Customer relationship management, e-commerce,
fraud detection, manufacturing, telecom, targeted marketing, health
care, ...

Science

— Data mining helps scientists to analyze data and to
formulate hypotheses.

— Astronomy, physics, bioinformatics, drug discovery, ...

Web and Social Media

— advertising, search engine optimization, spam detection,
web site optimization, personalization, sentiment analysis, ...

Government

— surveillance, crime detection, profiling tax cheaters, ...
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Data Mining Methods

* Descriptive methods
— find patterns in data
— e.g., which products are often bought together?

* Predictive methods
— predict unknown or future values of a variable
* given observations (e.g., from the past)
— e.g., will a person click an ad?
* given his/her browsing history

* Machine learning terminology:
— descriptive = unsupervised

— predictive = supervised
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Data Mining Tasks
-

* Clustering (descriptive)

* Classification (predictive)

* Regression (predictive)

* Association Rule Mining (descriptive)

* Text Mining (both descriptive and predictive)

* Covered in Data Mining 2
— Anomaly Detection (descriptive)
— Sequential Pattern Mining (descriptive)
— Time Series Prediction (predictive)
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Clustering
S

* Given a set of data points, and a similarity measure among them,
find clusters such that

— Data points in one cluster are similar to one another

— Data points in separate clusters are different from each other
* Result

— a descriptive grouping of data points
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Clustering: Applications

* Application area: Market segmentation

 Goal: Subdivide a market into distinct
subsets of customers

— where any subset may be conceived
as a marketing target to be reached
with a distinct marketing mix

* Approach:
— Collect information about customers
— Find clusters of similar customers

— Measure the clustering quality by observing buying patterns
of customers in same cluster vs. those from different clusters
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Clustering: Applications
e

* Application area: Document Clustering

* Goal: Find groups of documents that are similar to each other
based on the important terms appearing in them

* Approach
— ldentify frequently occurring terms in each document

— Define a similarity measure based on the frequencies of
different terms

« Application Example: |Govgle -
Grouping of stories  |news
in Google News Top Stories Top Stories 5

HMV = : : o~
~
Colden Globes 2012 Red Hilco shows interest in HMV stores
C t
arpe Hilco, the retail restructuring group, could be interested in rescuing HMV, providing some hope to the

X Factor chain that plunged into administration on Monday.
Supreme Court

) See realtime HMV stops accepting vouchers as administrators are called in Related
Agpril Jones coverage Entertainment giant HMV goes into administration HMV 5
Falklands o o ) . Retail »
Six Mations In-depth: Are your HMV gift vouchers worthless? HIVV Graup olc »
Barca L;f i,llp.dating HMV collapse live blog: Follow our coverage to find out how it will
Chicharito S

Wikipedia: HWV Group
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Classification
e

* Given a collection of records (training set)
— each record contains a set of attributes
— one of the attributes is the class (label) that should be predicted

* Find a model for class attribute as a function of the values of other
attributes

* Goal: previously unseen records should be assigned a class as
accurately as possible

— A test set is used to validate the accuracy of the model
— Training set may be split into training and validation data
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Classification Example

Class/Label
Attribute

Refund Marital Taxable

Status Income Cheat

Tid Refund Marital Taxable

Status Income Cheat No Single 75K ?
1 |Yes Single | 125K No Yes Married | 50K ?
2 No Married |100K No No Married |150K ?
3 |No Single | 70K No Yes Divorced |90K ?
4 Yes Married |120K No No Single 40K ?
i : P
5 No Divorced |95K Yes No Married 80K 2 Unseen
6 No Married |60K No
7 Yes Divorced |220K No Data
8 No Single 85K Yes 1
< No Married |75K No <. >
. - Learn
10 [No Single  |90K Yes Training | ey ) MOdel
Set Classifie
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Classification: Applications

* Application area: Direct Marketing

* Goal: Reduce cost of mailing by targeting
a set of consumers
which are likely to buy a new cell phone

* Approach:
— Use the data for a similar product introduced before
— We know which customers decided to buy and which did not

— Collect various demographic, lifestyle, and company-interaction
related information about all such customers

* Type of business, where they stay, how much they earn, etc.

— Use this information as input attributes to learn a classifier
model
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Classification: Applications
e

* Application area: Fraud Detection

* Goal: Recognize fraudulent cases in
credit card transactions

* Approach:

— Use credit card transactions and the information
on its account-holder as attributes

* When and where does a customer buy? What does s/he buy?
* How often s/he pays on time? etc.

— Label past transactions as fraud or fair transactions
This forms the class attribute

— Learn a model for the class of the transaction

— Use this model to detect fraud by observing credit card
transactions on an account
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Association Rule Discovery: Definition
-

* (Given a set of records each of which contain some number of items
from a given collection

* produce dependency rules which will predict occurrence of an item
based on occurrences of other items.

TID Items

1 Bread, Coke, Milk Rules Discovered

2 Beer, Bread {Diaper, Milk} — {Beer}
3 Beer, Coke, Diaper, Milk {Milk} — {Coke}

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk
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Association Rule Discovery: Applications
-

* Application area: Marketing and Sales Promotion
* Example rule discovered:
{Bagels, Coke} --> {Potato Chips}

* Insights:
— promote bagels to boost potato chips sales
— if selling bagels is discontinued, this will affect potato chips sales

— coke should be sold together with bagels to boost potato chips
sales

Frequently Bought Together

amazoncom JUREE. . Price For All Three: $87.41
(2. Add all three to Cart | | Add all three to Wish List |

Show availability and shipping details
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Association Rule Discovery: Applications

* Customers who bought this product also bought...

— ...do terrorists order bomb building parts on Amazon?

Frequently bought together

Total price: $35.19

| Add all three to Cart |

Add all three to List

i These items are shipped from and sold by different sellers. Show details

This item: & « b TR w e $18.99
$10.49
$5.71

http://thenewdaily.com.au/news/world/2017/09/21/amazon-bomb-explosives-ingredients-algorithm-frequently-bought-together/
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Association Rule Discovery: Applications
e

 (Content-based recommendation D song

— requirement; much data Du hast The Gathering und Tiamat gehort.
Diesen Song magst du vielleicht auch.

— e.g., Amazon transactions,
Spotify logfiles

MEMORIAI

MOONSPELL

In Memorian (Intro)
Moonspell

Als ndchstes abspielen
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Association Rule Discovery: Applications

* Real world example:
— Customer loyalty programs

Anzahl herausgegebener Bonuskarten mit mehreren Partnerunternehmen in
Deutschland in Millionen Stiick

40 37
33
30
20
20
15

w . -
0

Payback HappyDigits DeutschlandCard Miles and More

Bonuskarten in Milionen Stick

Deutschland; Stiftung Warentest, Finanztest

statista 5 Quelle: Welt.de

http://de.statista.com/statistik/daten/studie/36618/umfrage/anzahl-herausgegebener-bonuskarten-mehrere-partnerunternehmen/
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Association Rule Discovery: Applications

* Real example:
— Target (American grocery store)
— Analyzes customer buying behavior
— Sends personalized advertisement

« Famous case in the USA: TARGET

— Teenage girl gets advertisement for baby products
— ...and her father is mad

http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
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Association Rule Discovery: Applications
-

* Bottom line of the Target teenage girl story:
— Janet Vertesi, Princeton university
— Tried to hide her pregnancy from computers

* Measures taken:
— using Tor for online surfing
— no social media posts about her pregnancy
— paying all pregnancy/baby related products in cash
— a fresh Amazon account delivering to a local locker
* paying with cash-payed gift cards

e Outcome: http://mashable.com/2014/04/26/big-data-pregnancy/

read the full story at

— massive buying of gift cards in a convenience store
was reported to tax authorities
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The Data Mining Process

Itptt n/
Evaluation

"
N \@,»|||¥”

Patter

Source: Fayyad et al. (1996)
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The Data Mining Process
S

* Note that none of those steps actually requires a computer

* Recall Petermann's Cholera maps
— Data Selection: find data on cholera deaths
— Data Preprocessing: organize data by geographic area
— Transformation: draw data on a map
— Data Mining: look at the map and find patterns
* possibly step back: add more data (population, water system, ...)
— Interpretation: Cholera is transmitted via contaminated water

* However, computers make things easier
— mainly: scalability (size of datasets, number of patterns)
— avoiding human bias
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Selection and Exploration
e

 Selection
What data is available?

What do | know about the
provenance of this data?

What do | know about the quality
of the data?

Hoe|

* Exploration e
— Get an intitial understanding of the data
— Calculate basic summarization statistics

— Visualize the data

— ldentify data problems such as
outliers, missing values,
duplicate records
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Selection and Exploration

* Visual Data Mining

— For example
as maps

— Example:
Map showing
migration streams
and net migration
of different
countries

http://metrocosm.com/global-migration-map.html
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Preprocessing and Transformation
e

Transform data into a representation that is suitable for the chosen
data mining methods

— number of dimensions
— scales of attributes (nominal, ordinal, numeric)

— amount of data (determines hardware requirements)

Methods
— Aggregation, sampling

— Dimensionality reduction / feature subset selection
— Attribute transformation / text to term vector

— Discretization and binarization

Good data preparation is key to producing valid and reliable models

Data preparation estimated to take 70-80% of the time and effort of a
data mining project!
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Data Mining

* Input: Preprocessed Data

* Qutput: Model / Patterns

1. Apply data mining method
2. Evaluate resulting model / patterns

3. lterate:

— Experiment with different parameter settings
— Experiment with different alternative methods
— Improve preprocessing and feature generation

— Combine different methods
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Interpretation / Evaluation

* QOutput of Data Mining
— Patterns
— Models

* Inthe end, we want to derive value from that, e.g.,
— gain knowledge
— make better decisions
— increase revenue

9/28/20 Heiko Paulheim




What you will learn in this lecture

* Common data mining tasks ol
— How they work

)

'._
—

— When and how to apply them

— How to interpret their output

L &)
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Data is the New...

- Oil (2006) . CO, (2019)

l
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Questions?

o

&
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