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Hello

• Prof. Dr. Heiko Paulheim

– Chair for Data Science

• Research Interests: 

– Knowledge Graphs on the Web and their Applications

– Data Quality and Data Cleaning on Knowledge Graphs

– Using Knowledge Graphs in Data Mining

– Societal Impact of Artificial Intelligence

• Room: B6 26, B0.22

• Consultation: Tuesdays 9-10

– Please make an appointment with Bianca Lermer upfront

• Heiko will teach the lectures
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Hello

• M.Sc. Nicolas Heist

• Graduate Research Associate

• Research Interests: 

– Semantic Web Technologies

– Knowledge Graphs and Linked Data

• eMail: nico@informatik.uni-mannheim.de

• Nico will teach the RapidMiner exercises
and co-supervise the team projects.
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Hello

• M.Sc. Sven Hertling

• Graduate Research Associate

• Research Interests: 

– Semantic Technologies / Semantic Web

– Linked Data

– Knowledge Graphs

• eMail: sven@informatik.uni-mannheim.de

• Sven will teach the Python exercises
and co-supervise the team projects.
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Hello

• M.Sc. Ralph Peeters

• Graduate Research Associate

• Research Interests: 

– Entity Matching using Deep Learning

– Product Data Integration

– eMail: ralph@uni-mannheim.de

• Ralph will teach the Python exercises
and co-supervise the team projects.
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Introduction and Course Outline

• Course Outline and Organization

• What is Data Mining?

• Methods and Applications

• The Data Mining Process
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Course Organization

• Lecture 
– introduces the principle methods of data mining

– discusses how to evaluate generated models

– presents practical examples of data mining applications 
from the corporate and Web context

• Exercise
– students experiment with data sets using RapidMiner or Python

• Project Work
– teams of five students realize a data mining project 

– teams may choose their own data sets and tasks 
(in addition, we will propose some suitable data sets and tasks)

– write summary about project, present project results

• Final grade

– 75 % written exam 

– 25 % project work (20% report, 5% presentation)

If you fail the exam, but do a good project,
you may still pass. 
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Exercises of Your Choice

• Exercises in RapidMiner

– Thursday, 12 – 13.30

– Requires no programming knowledge

• Exercise in Python

– Thursday, 13.45 – 15.15 and 15.30 – 17.00

– Requires programming knowledge

• Exercises start tomorrow!

Introduction to Python 
and Jupyter Notebooks 

today, 15.30, 
in this room!
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Course Outline

you are here
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Deadlines

• Submission of project work proposal

– Monday, Nov 2nd, 23:59

• Submission of final project work report

– Firday, Dec 23rd, 23:59

• Project presentations

– schedule to be announced

– everyone has to attend
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Course Organization

• Lecture Webpage: Slides, Announcements

– https://www.uni-mannheim.de/dws/teaching/course-details/
courses-for-master-candidates/ie-500-data-mining

– hint: look at version tags!

• Additional Material

– ILIAS eLearning System, https://ilias.uni-mannheim.de/

• Time and Location

– Lecture: Wednesday, 10.15 – 11.45, WIM-ZOOM-02

– Exercises: Thursdays: 
12.00 – 13.30 (RapidMiner w/ Nicolas), WIM-ZOOM-02
13.45 – 15.15 (Python w/ Sven), WIM-ZOOM-02
15.30 – 17.00 (Python w/ Ralph), WIM-ZOOM-02

• these are three parallel groups, you only have to attend one
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Course Organization

• Registration

– you have registered via Portal2

– and been added to ILIAS

• There is a waiting list

– if you decide not to continue, please email Ms. Czanderle

– we will reassign your place
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Course Organization – Corona Specials

• Lectures and Exercises 

– take place via ZOOM

• Lectures and Exercises 
are streamed live

– We will try to record lectures 
and provide the recordings

– We will not record exercises
for legal reasons

• Project coaching and presentations 

– will take part via ZOOM

• The written exam will taken place on campus

– At least as of today...
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Literature & Slide Sources

• Pang-Ning Tan, Michael Steinbach, Vipin Kumar: 
Introduction to Data Mining, 
Pearson / Addison Wesley.

– 10 copies in university library.

– we provide scans of important chapters via ILIAS

• Ian H. Witten, Eibe Frank, Mark A. Hall: 
Data Mining: Practical Machine Learning 
Tools and Techniques, 3rd Edition, Morgan Kaufmann.

– several copies in university library

– we provide scans of important chapters via ILIAS
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Literature & Slide Sources

• Bing Liu: Web Data Mining, 2nd Edition, Springer.

– several copies in university library

– electronic edition available via the library

• Gregory Piatetsky-Shapiro, Gary Parker: 
KDNuggets Data Mining course: 
http://www.kdnuggets.com/data_mining_course/ 



Literature – Rapidminer

1. Markus Hofmann, Ralf Klinkenberg: 
RapidMiner: Data Mining Use Cases and 
Business Analytics Applications. 
Chapman & Hall, 2013.

• Explains along case studies how to use 
simple and advanced Rapidminer features.

• Website with data and processes: 
http://rapidminerbook.com

2. Matthew North: Data Mining for the Masses. 
Global Text Project, 2012.

• Free PDF version available online.

3.  Rapidminer – User Manual

• introduction to user interface and basic features

• http://rapidminer.com/learning/getting-started/
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Literature – Python

• McKinney: Python for Data Analysis

• Severance: Python for Everybody: 
Exploring Data in Python 3

• Coelho and Richert: Building Machine Learning Systems
with Python – Free Online Access via university library

• Online Sources:

– https://www.learnpython.org/

– https://docs.python.org/3/tutorial/

– http://scikit-learn.org/stable/tutorial/index.html
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Additional Material

• Video recordings from FSS 2015

– http://dws.informatik.uni-mannheim.de/en/teaching/lecture-videos/

http://dws.informatik.uni-mannheim.de/en/teaching/lecture-videos/
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Outlook: Data Mining II

• Taught every FSS

• Topics

– Sequential Pattern Mining, Time Series Prediction

– Neural Networks and Deep Learning

– Anomaly Detection

– Online Data Analysis

– Advanced Data Preprocessing

• Practical project

– The annual Data Mining Cup

– Worldwide competition of student teams

– Real-world data mining tasks
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Questions?
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A Bit of History

• We are drowning in data, but starving for knowledge.

(John Naisbitt, 1982)

• Computers have promised us a fountain of wisdom but delivered a 
flood of data.

• It has been estimated that the amount of information in the world 
doubles every 20 months.

(Frawley, Piatetsky-Shapiro, Matheus, 1992)
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“We are Drowning in Data...”

    More and more data 
    is generated:

– Transaction data 
from banking, 
telecommunication, 
e-commerce 

– Scientific data from 
astronomy, physics, biology

– All interactions with the Web

– Social network sites

– Application logs

– GPS tracking logs

– ...

http://www.cultindustries.com/new/html/frame.html
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Data, Information, Knowledge, and Wisdom

Gene Bellinger, Durval Castro and Anthony Mills. "Transforming Data to Wisdom."
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A Historical Example

• Cholera disease

• From beginning of 19th century

• ~100,000 deaths per year

– until today!

• For a long time, 
there was little knowledge

– on ways of infection

– on causes of the disease

http://fieldnotes.unicefusa.org/2008/09/newsnet_combating_cholera_1.html
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A Historical Example

• August Heinrich Petermann

• 1822-1878

• Geographer and Cartographer

• Geographic maps as a means

– to understand data

– to gather knowledge

http://commons.wikimedia.org/wiki/File:August_Heinrich_Petermann.jpg
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A Historical Example

• 1848 map of Cholera deaths in London

– finding: Cholera is more likely in densely populated areas

– where there is no functioning sewage system

– conclusion: Cholera is transmitted through contaminated water

http://www.dgfk.net/index.php?do=dbk&do2=1209
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A Recent Example: the NSA

• Communication data from all over the world

• Searching for 
suspects and
terrorists

http://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
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A Recent Example: the NSA

https://www.popularmechanics.com/military/a9465/nsa-data-mining-how-it-works-15910146/
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A Very Recent Example: CoViD-19

ￜ
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A Very Recent Example: CoViD-19

• Data Mining can help understanding

– pathways and chains of infection

– critical preconditions of patients

• previous diseases

• medications

• genetic preconditions

– effectiveness of prevention strategies

• e.g., famous hammer & dance paper

– vulnerable factors in health infrastructures
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Wikipedia (en, text only)
≈ 20 GB of data 

1 Wiki = 1 Wikipedia

“We are Drowning in Data...”

The following slides are
taken from Aidan Hogan's course
on “Massive Data Processing”



9/28/20 Heiko Paulheim 32 

Human Genome
≈ 4 GB/person
≈ 0.2 Wiki/person
≈ 1.6M Wiki/humankind

“We are Drowning in Data...”
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US Library of 
Congress
≈ 235 TB archived
≈ 11.7M Wiki

“We are Drowning in Data...”
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“We are Drowning in Data...”

Sloan Digital Sky 
Survey
≈ 200 GB/day
≈ 73 TB/year
≈ 3.7k Wiki/year
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“We are Drowning in Data...”

NASA Center for 
Climate Simulation
≈ 32 PB archived
≈ 1.6M Wiki
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Facebook
≈ 12 TB/day added
≈ 600 Wiki/day
≈ 219k Wiki/year

(as  of Mar. 2010)

“We are Drowning in Data...”
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Large Hadron Collider
≈ 15 PB/year
≈ 750k Wiki/year

“We are Drowning in Data...”
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Google
≈ 20 PB/day processed
≈ 1M Wiki/day
≈ 365M Wiki/year

(Jan. 2010)

“We are Drowning in Data...”
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Internet (2016)
≈ 1.3 ZB/year
≈ 65M Wiki/year
 (2016 IP traffic; Cisco es t.)

“We are Drowning in Data...”

≈  2 Wiki/second
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“We are Drowning in Data...”
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...but starving for knowledge!

← Rate at which data are produced

← Rate at which data can be understood
manual interpretation is hardly feasible!
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Data Mining: Definitions

• Idea: mountains of data

– where knowledge is mined
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Data Mining: Definitions

• Data Mining is a non-trivial process of identifying

– valid

– novel

– potentially useful

– ultimately understandable

patterns in data.

(Fayyad et al. 1996)

• Data mining is nothing else than torturing the data until it confesses

(Fred Menger, year unknown)

• ...and if you torture it enough, you can get it to confess to anything.
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• Draws ideas from machine learning, statistics, and database 
systems.

• Traditional techniques
may be unsuitable due to 

– large amount of data

– high dimensionality 
of data

– heterogeneous, 
distributed nature 
of data

Origins of Data Mining

Machine 
Learning

Statistics

Data Mining

Database 
Systems
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Data Mining Application Fields

• Business

– Customer relationship management, e-commerce,
fraud detection, manufacturing, telecom, targeted marketing, health 
care, …

• Science

– Data mining helps scientists to analyze data and to 
formulate hypotheses.

– Astronomy, physics, bioinformatics, drug discovery, …

• Web and Social Media

– advertising, search engine optimization, spam detection, 
web site optimization, personalization, sentiment analysis, …

• Government

– surveillance, crime detection, profiling tax cheaters, …
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Data Mining Methods

• Descriptive methods

– find patterns in data

– e.g., which products are often bought together?

• Predictive methods

– predict unknown or future values of a variable

• given observations (e.g., from the past)

– e.g., will a person click an ad?

• given his/her browsing history

• Machine learning terminology:

– descriptive = unsupervised

– predictive = supervised
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Data Mining Tasks

• Clustering (descriptive)

• Classification (predictive)

• Regression (predictive)

• Association Rule Mining (descriptive)

• Text Mining (both descriptive and predictive)

• Covered in Data Mining 2

– Anomaly Detection (descriptive)

– Sequential Pattern Mining (descriptive)

– Time Series Prediction (predictive)
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• Given a set of data points, and a similarity measure among them, 
find clusters such that

– Data points in one cluster are similar to one another

– Data points in separate clusters are different from each other

• Result

– a descriptive grouping of data points

Clustering
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Clustering: Applications

• Application area: Market segmentation

• Goal: Subdivide a market into distinct 
subsets of customers 

– where any subset may be conceived
as a marketing target to be reached 
with a distinct marketing mix

• Approach: 

– Collect information about customers

– Find clusters of similar customers

– Measure the clustering quality by observing buying patterns 
of customers in same cluster vs. those from different clusters 
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Clustering: Applications

• Application area: Document Clustering

• Goal: Find groups of documents that are similar to each other 
based on the important terms appearing in them

• Approach

– Identify frequently occurring terms in each document 

– Define a similarity measure based on the frequencies of 
different terms

• Application Example:
Grouping of stories
in Google News



9/28/20 Heiko Paulheim 51 

Classification

• Given a collection of records (training set)

– each record contains a set of attributes

– one of the attributes is the class (label) that should be predicted

• Find a model for class attribute as a function of the values of other 
attributes

• Goal: previously unseen records should be assigned a class as 
accurately as possible

– A test set is used to validate the accuracy of the model

– Training set may be split into training and validation data
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Classification Example

Refund Marital
Status

Taxable
Income Cheat

No Single 75K ?

Yes Married 50K ?

No Married 150K ?

Yes Divorced 90K ?

No Single 40K ?

No Married 80K ?
10

Unseen
Data

Training 
Set

Model
Learn 

Classifier

Class/Label 
Attribute

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10
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Classification: Applications

• Application area: Direct Marketing

• Goal: Reduce cost of mailing by targeting 
a set of consumers 
which are likely to buy a new cell phone

• Approach:

– Use the data for a similar product introduced before

– We know which customers decided to buy and which did not

– Collect various demographic, lifestyle, and company-interaction 
related information about all such customers

• Type of business, where they stay, how much they earn, etc.

– Use this information as input attributes to learn a classifier 
model
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Classification: Applications

• Application area: Fraud Detection

• Goal: Recognize fraudulent cases in 
credit card transactions

• Approach:

– Use credit card transactions and the information 
on its account-holder as attributes

• When and where does a customer buy? What does s/he buy? 

• How often s/he pays on time? etc.

– Label past transactions as fraud or fair transactions
This forms the class attribute

– Learn a model for the class of the transaction

– Use this model to detect fraud by observing credit card 
transactions on an account
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Association Rule Discovery: Definition

• Given a set of records each of which contain some number of items 
from a given collection

• produce dependency rules which will predict occurrence of an item 
based on occurrences of other items.

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Rules Discovered
 {Diaper, Milk} → {Beer}
 {Milk} → {Coke}

Rules Discovered
 {Diaper, Milk} → {Beer}
 {Milk} → {Coke}
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Association Rule Discovery: Applications

• Application area: Marketing and Sales Promotion

• Example rule discovered:

{Bagels, Coke} --> {Potato Chips}

• Insights:

– promote bagels to boost potato chips sales

– if selling bagels is discontinued, this will affect potato chips sales

– coke should be sold together with bagels to boost potato chips 
sales
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Association Rule Discovery: Applications

• Customers who bought this product also bought…

– ...do terrorists order bomb building parts on Amazon?

http://thenewdaily.com.au/news/world/2017/09/21/amazon-bomb-explosives-ingredients-algorithm-frequently-bought-together/
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Association Rule Discovery: Applications

• Content-based recommendation

– requirement: much data

– e.g., Amazon transactions,
Spotify logfiles
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Association Rule Discovery: Applications

• Real world example:

– Customer loyalty programs

http://de.statista.com/statistik/daten/studie/36618/umfrage/anzahl-herausgegebener-bonuskarten-mehrere-partnerunternehmen/
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• Real example:

– Target (American grocery store)

– Analyzes customer buying behavior

– Sends personalized advertisement

• Famous case in the USA:

– Teenage girl gets advertisement for baby products

– ...and her father is mad

http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/

Association Rule Discovery: Applications
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Association Rule Discovery: Applications

• Bottom line of the Target teenage girl story:

– Janet Vertesi, Princeton university

– Tried to hide her pregnancy from computers

• Measures taken:

– using Tor for online surfing

– no social media posts about her pregnancy

– paying all pregnancy/baby related products in cash

– a fresh Amazon account delivering to a local locker

• paying with cash-payed gift cards

• Outcome:

– massive buying of gift cards in a convenience store 
was reported to tax authorities

read the full story at
http://mashable.com/2014/04/26/big-data-pregnancy/
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The Data Mining Process

Source: Fayyad et al. (1996)
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The Data Mining Process

• Note that none of those steps actually requires a computer

• Recall Petermann's Cholera maps

– Data Selection: find data on cholera deaths

– Data Preprocessing: organize data by geographic area

– Transformation: draw data on a map

– Data Mining: look at the map and find patterns

• possibly step back: add more data (population, water system, ...)

– Interpretation: Cholera is transmitted via contaminated water

• However, computers make things easier

– mainly: scalability (size of datasets, number of patterns)

– avoiding human bias
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Selection and Exploration

• Selection

– What data is available?

– What do I know about the 
provenance of this data?

– What do I know about the quality 
of the data?

• Exploration

– Get an intitial understanding of the data

– Calculate basic summarization statistics

– Visualize the data

– Identify data problems such as 
outliers, missing values, 
duplicate records
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Selection and Exploration

• Visual Data Mining

– For example
as maps

– Example:
Map showing
migration streams
and net migration
of different 
countries

http://metrocosm.com/global-migration-map.html



9/28/20 Heiko Paulheim 66 

Preprocessing and Transformation

• Transform data into a representation that is suitable for the chosen 
data mining methods
– number of dimensions

– scales of attributes (nominal, ordinal, numeric)

– amount of data (determines hardware requirements)

• Methods

– Aggregation, sampling

– Dimensionality reduction / feature subset selection

– Attribute transformation / text to term vector

– Discretization and binarization

• Good data preparation is key to producing valid and reliable models

• Data preparation estimated to take 70-80% of the time and effort of a 
data mining project!
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Data Mining

• Input: Preprocessed Data

• Output: Model / Patterns

1. Apply data mining method

2. Evaluate resulting model / patterns

3. Iterate:

– Experiment with different parameter settings

– Experiment with different alternative methods

– Improve preprocessing and feature generation

– Combine different methods
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Interpretation / Evaluation

• Output of Data Mining

– Patterns

– Models

• In the end, we want to derive value from that, e.g.,

– gain knowledge

– make better decisions

– increase revenue
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What you will learn in this lecture

• Common data mining tasks

– How they work

– When and how to apply them

– How to interpret their output
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Data is the New...

• Oil (2006) • CO2 (2019)
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Questions?
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