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A Couple of Questions

• What is this?

• Why do you know?

• How have you come to that knowledge?
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Introductory Example

• Learning a new concept, e.g., "Tree"

"tree" "tree" "tree"

"not a tree" "not a tree" "not a tree"
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Introductory Example

• Example: learning a new concept, e.g., "Tree"

– we look at (positive and negative) 
examples

– ...and derive a model

• e.g., "Trees are big, green plants"

• Goal: Classification of new instances

"tree?"

Warning:
Models are only 

approximating examples!
Not guaranteed to be
correct or complete!
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What is Classification?

• Classic programming:

– if more than 10 orders/year and more than $100k spent

set customer.isPremiumCustomer = true

• The prevalent style of programming computers

– works well as long as we know the rules

– e.g.: what makes a customer a premium customer?

give instructions

compute results
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What is Classification?

• Sometimes, it's not so easy

• E.g., due to missing knowledge

– if customer is likely to order a new phone

send advertisement for new phones

• E.g., due to difficult formalization as an algorithm

– if customer review is angry

send apology

give instructions

compute results
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What is Classification?

• A different paradigm:

– User provides computer with examples

– Computer finds model by itself

– Notion: the computer learns from examples (term: machine learning)

• Example

– labeled examples of angry and non-angry customer reviews

– computer finds model for telling if a customer is angry

provide examples

compute results

build
model
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Classification: Formal Definition

• Given:

– a set of labeled records, consisting of

• data fields (a.k.a. attributes or features)

• a class label (e.g., true/false)

• Generate

– a function f(r)

• input: a record

• output: a class label

– which can be used for classifying previously unseen records

• Variants:

– single class problems (e.g., only true/false)

– multi class problems

– multi label problems (more than one class per record, not covered in this lecture)

– hierarchical multi class/label problems (with class hierarchy, e.g., product categories)



10/13/20 Heiko Paulheim 10 

The Classification Workflow
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Classification Applications – Examples

• Attributes: a set of symptoms (cough, sore throat...)

– class: does the patient suffer from CoViD-19?

• Attributes: the values in your tax declaration

– class: are you trying to cheat?

• Attributes: your age, income, debts, …

– class: are you getting credit by your bank?

• Attributes: the countries you phoned with in the last 6 months

– class: are you a terrorist?
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Classification Applications – Examples

• Attributes: words in a product review

– Class: Is it a fake review?

• Attributes: words and header fields of an e-mail

– Class: Is it a spam e-mail?
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Classification Applications – Examples

• A controversial example

– Class: whether you are searched by the police

– Class: whether you are selected at the airport for an extra check

http://lubbockonline.com/stories/030609/loc_405504016.shtml
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Classification Algorithms

• Recap:

– we give the computer a set of labeled examples

– the computer learns to classify new (unlabeled) examples

• How does that work?
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k Nearest Neighbors

• Problem

– find out what the weather is in a certain 
place

– where there is no weather station

– how could you do that?

x
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k Nearest Neighbors

• Idea: use the average of the
nearest stations

• Example:

– 3x sunny

– 2x cloudy

– result: sunny

• Approach is called

– “k nearest neighbors”

– where k is the number of neighbors to consider

– in the example: k=5

– in the example: “near” denotes geographical proximity

x
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k Nearest Neighbors

• Further examples:

• Is a customer going to buy a product?

→ have similar customers bought that product?

• What party are you going to vote for?

→ what party do your (closest) friends/family members vote for?

• Is a film going to win an oscar?

→ have similar films won an oscar?

• and so on...
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Recap: Similarity and Distance

• k Nearest Neighbors

– requires a notion of similarity (i.e., what is “near”?)

• Review: similarity measures for clustering

– similarity of individual data values

– similarity of data points

• Think about scales and normalization!
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Nearest-Neighbor Classifiers

• Requires three things
– The set of stored records
– A distance metric to compute 

distance between records
– The value of k, the number 

of nearest neighbors to 
retrieve

Unknown record
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Nearest-Neighbor Classifiers

• To classify an unknown 
record:
– Compute distance to each 

training record
– Identify k nearest 

neighbors 
– Use class labels of nearest 

neighbors to determine the 
class label of unknown 
record

• by taking majority vote
• by weighing the vote 

according to distance

Unknown record
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Definition of the k Nearest Neighbors

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

    The k nearest neighbors of a record x are data 
points that have the k smallest distance to x.



10/13/20 Heiko Paulheim 22 

Choosing a Good Value for k

– If k is too small, sensitive to noise points

– If k is too large, neighborhood may include 
points from other classes

– Rule of thumb: Test k values between 1 and 10.

X
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Discussion of K-Nearest Neighbor

• Often very accurate

• … but slow as training data needs to be searched

• Can handle decision boundaries which are not 
parallel to the axes

• Assumes all attributes are equally important

– Remedy: Attribute selection or using attribute weights
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Decision Boundaries of a k-NN Classifier

• k=1

• Single noise points have influence on model
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Decision Boundaries of a k-NN Classifier

• k=3

• Boundaries become smoother

• Influence of noise points is reduced
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KNN in RapidMiner & Python

scaler = MinMaxScaler()
features_norm = scaler.fit_transform(features)
model = KNeighborsClassifier(n_neighbors=3)
model.fit(features_norm,label)
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Applying the Model

test_norm = scaler.transform(test)
model.predict(test_norm)
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Contrast: Nearest Centroids

• a.k.a. Rocchio classifier

• Training: compute centroid for each class

– center of all points of that class

– like: centroid for a cluster

• Classification:

– assign each data point to nearest centroid

• RapidMiner: 

– available in Mannheim RapidMiner Toolbox Extension

• Python:

– scikit_learn.neighbors.NearestCentroid

Sounds pretty 
much just like 

k-NN, huh?
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k-NN vs. Nearest Centroid

• Basic problem: two circles

– Both k-NN and Nearest Centroid are rather perfect
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k-NN vs. Nearest Centroid

• Some data points are mislabeled

– k-NN loses performance

– Nearest Centroid is stable
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k-NN vs. Nearest Centroid

• One class is significantly smaller than the other

– k-NN loses performance

– Nearest Centroid is stable
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k-NN vs. Nearest Centroid

• Outliers are contained in the dataset

– k-NN is stable

– Nearest Centroid loses performance
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k-NN vs. Nearest Centroid

• k-NN

– slow at classification time (linear in number of data points)

– requires much memory (storing all data points)

– robust to outliers

• Nearest Centroid

– fast at classification time (linear in number of classes)

– requires only little memory (storing only the centroids)

– robust to label noise

– robust to class imbalance

• Which classifier is better?

– that strongly depends on the problem at hand!
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Bayes Classifier

• Based on Bayes Theorem

• Thomas Bayes (1701-1761)

– British mathematician and priest

– tried to formally prove the existence of God

• Bayes Theorem

– important theorem in probability theory

– was only published after Bayes' death
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Conditional Probability and Bayes Theorem

• A probabilistic framework for solving classification problems

• Conditional Probability:

 

• Bayes theorem:

P (C∣A)=
P ( A∣C ) P(C )

P( A)

P (C∣A)=
P( A ,C )
P( A)

P ( A∣C )=
P( A ,C )
P(C )
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Conditional Probability and Bayes Theorem

• Bayes Theorem

– Computes one conditional probability P(C|A) out of another P(A|C)

– given that the base probabilities P(A) and P(C) are known

• Useful in situations where P(C|A) is unknown

– while P(A|C), P(A) and P(C) are known or easy to determine/estimate

• Example:

– Given a symptom, what's the probability that I have a certain disease?
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Example of Bayes Theorem

• PCR test for SaRS-CoV-2

– exact quality is unknown

• Optimistic estimates1

– If you're infected, PCR shows 
a positive result with p=95%
(called “sensitivity”)

– If you're not infected, PCR shows a negative result also with p=95%
(called “specificity”)

• Assume you have a positive test

– What's the probability that you're infected with SARS-CoV-2?

1see https://www.nejm.org/doi/full/10.1056/NEJMp2015897
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Example of Bayes Theorem

• We want to know P(Corona|pos)

– Bayes theorem:

• We still need P(pos)

– i.e., the probability that a test is positive

P (Cor|pos )=
P( pos|Cor ) P(Cor )

P ( pos )

~3% in Germany

P ( pos )=P ( pos|Cor∨¬Cor )
=P ( pos|Cor)⋅P (Cor)+ P ( pos|¬Cor )⋅P(¬Cor )
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Example of Bayes Theorem

• Now: numbers

• That means:

– at more than 65% probability, you are still healthy, given a positive test!

• Caveat:

– numbers P(Cor) and (P¬Cor) are different due to non-random testing!

P (Corona|pos )=
P ( pos|Corona )P (Corona )

P ( pos )

=
P ( pos|Corona )P (Corona )

P ( pos|Cor )⋅P (Cor )+P ( pos|¬Cor)⋅P (¬Cor )

= 0.95⋅0.03
0.95⋅0.03+0.05⋅0.97

=0.37



Estimating the Prior Probability P(C)

Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot  High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

Training Data The prior probability P(Cj) for each class is 
estimated by 

1. counting the records in the 
training 
set that are labeled with class Cj

2. dividing the count by the overall 
number of records

 Example:

• P(Play=no) = 5/14

• P(Play=yes) = 9/14



Estimating the Conditional Probability P(A | C) 

• Naïve Bayes assumes that all attributes are statistically independent

– knowing the value of one attribute says nothing about the value of another

– this independence assumption is almost never correct!

– but … this scheme works well in practice

• The independence assumption allows the joint probability P(A | C) to be 
reformulated as the product of the individual probabilities P(Ai| Cj):

P(A1, A2, …, An | Cj) = ∏ P(An| Cj) = P(A1| Cj)P(A2| Cj) … 
P(An| Cj) 

P(Outlook=rainy, Temperature=cool | Play=yes) 
= P(Outlook=rainy | Play=yes)  P(Temperature=cool | Play=yes) 

• Result: The probabilities P(Ai| Cj) for all Ai and Cj can be estimated 
directly from the training data



Estimating the Probabilities P(Ai | Cj) 

Outlook Temp Humidity Windy Pla
y

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot  High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5

1.1. count how often an attribute value co-occurs with class C j

2. divide by the overall number of instances in class C j

Example:
“Outlook=sunny” occurs on 2/9 examples in class “Yes”
 p(Outlook=sunny|Yes) = 2/9



Classifying a New Record

Outlook Temp. Humidity Windy Play

Sunny Cool High True ?

Probability of
class “yes” given
the evidence

)|()|( yesSunnyOutlookPEyesP 
)|( yesCooleTemperaturP 

)|( yesHighHumidityP 

)|( yesTrueWindyP 
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yesP
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Prior probability of class “yes”

Class-conditional 
probability of the
evidence

Prior probability of evidence

Unseen record



Classifying a New Record (ctd.)

Outlook Temp. Humidity Windy Play

Sunny Cool High True ?
 A new day:

Likelihood of the two classes

For “yes” = 2/9 x 3/9 x 3/9 x 3/9 x 9/14 = 0.0053

For “no” = 3/5 x 1/5 x 4/5 x 3/5 x 5/14 = 0.0206

Conversion into a probability by normalization:

P(“yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205

P(“no”) = 0.0206 / (0.0053 + 0.0206) = 0.795

Choose Maximum

Prior probability
Evidence

Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5



Handling Numerical Attributes

 Option 1: 
Discretize numerical attributes before learning classifier.

• Temp= 37°C  “Hot”

• Temp= 21°C  “Mild”

 Option 2: 
Make assumption that numerical attributes have 
a normal distribution given the class.

• use training data to estimate parameters 
of the distribution 
(e.g., mean and standard deviation)

• once the probability distribution is known, 
it can be used to estimate the conditional 
probability P(Ai|Cj)



Handling Numerical Attributes

 The probability density function for the normal distribution is

 It is defined by two parameters:

• Sample mean  

 

• Standard deviation 

 Both parameters can be estimated  from the training data 
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Statistics for the Weather Data

Example calculation:
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Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 64, 68,

69, 70,

72,  …

65, 71, 

72, 80,

85,  …

65, 70,

70, 75,

80,  …

70, 85,

90, 91,

95,  …

False 6 2 9 5

Overcast 4 0 True 3 3

Rainy 3 2

Sunny 2/9 3/5  =73  =75  =79  =86 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5  =6.2  =7.9  =10.2  =9.7 True 3/9 3/5

Rainy 3/9 2/5



Classifying a New Record

Caveat: Some numeric attributes are not normally distributed and 
you may thus need to choose a different probability density 
function or use discretization

Outlook Temp. Humidit
y

Wind
y

Play

Sunny 66 90 true ?

Likelihood of “yes” = 2/9  0.0340  0.0221  3/9  9/14 = 
0.000036

Likelihood of “no”  = 3/5  0.0291  0.0380  3/5  5/14 = 
0.000136

P(“yes”) = 0.000036 / (0.000036 + 0. 000136) = 20.9%

P(“no”)  = 0.000136 / (0.000036 + 0. 000136) = 79.1%

Unseen record



Handling Missing Values

 Missing values may occur in training and in unseen classification 
records

 Training: Record is not included into frequency count for attribute 
value-class combination

 Classification: Attribute will be omitted from calculation

• Example:

Outlook Temp. Humidity Windy Play

? Cool High True ?

Likelihood of “yes” = 3/9  3/9   3/9  9/14 = 0.0238

Likelihood of “no” = 1/5  4/5  3/5  5/14 = 0.0343

P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%

Unseen record
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Zero Frequency Problem

• If one of the conditional probabilities is zero, 
then the entire expression becomes zero

• And it is not unlikely that an exactly same data point 
has not yet been observed

• Probability estimation:

Original: P( Ai∣C )=
N ic

N c

Laplace: P( Ai∣C )=
N ic+1

N c+c

c: number of attribute 
values of A
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Naïve Bayes in RapidMiner & Python

model = GaussianNB()
model.fit(features,label)
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Anatomy of a Naïve Bayes Model
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Using Conditional Probabilities for Naïve Bayes

classifier is quite sure

classifier is not sure
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Decision Boundary of Naive Bayes Classifier

• Usually larger coherent areas

• Soft margins with uncertain regions

• Arbitrary (often curved) shapes
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Naïve Bayes (Summary)

• Robust to isolated noise points

– they have a small impact on the probabilities

• Handle missing values by ignoring the instance during probability 
estimate calculations

• Robust to irrelevant attributes

• Independence assumption may not hold for some attributes
– Use other techniques such as Bayesian Belief Networks (BBN)
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Why Naïve Bayes?

• Recap:

– we assume that all the attributes are independent

• This does not hold for many real world datasets

– e.g., persons: sex, weight, height

– e.g., cars: weight, fuel consumption

– e.g., countries: population, area, GDP

– e.g., food: ingredients

– e.g., text: word occurrences (“Donald”, “Trump”, “Duck”)

– ...
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Naïve Bayes Discussion

• Naïve Bayes works surprisingly well

– even if independence assumption is clearly violated

– Classification doesn’t require accurate probability estimates as 
long as maximum probability is assigned to correct class

• Too many redundant attributes will cause problems

– Solution: Select attribute subset as Naïve Bayes often works as 
well or better with just a fraction of all attributes

• Technical advantages:

– Learning Naïve Bayes classifiers is computationally cheap 
(probabilities are estimated in one pass over the training data)

– Storing the probabilities does not require a lot of memory
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Redundant Variables

• Consider two variables which are perfectly correlated

– i.e., one is redundant

– e.g.: a measurement in different units

• Violate independence assumption in Naive Bayes

– Can, at large scale, skew the result

– Consider, e.g., a price attribute in 20 currencies

→ price variable gets 20 times more influence

• May also skew the distance measures in k-NN

– But the effect is not as drastic

– Depends on the distance measure used
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Irrelevant Variables

• Consider a random variable x, and two classes A and B

– For Naive Bayes: p(x=v|A) = p(x=v|B) for any value v

– Since it is random, it does not depend on the class variable

– The overall result does not change

• For kNN:
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Comparison kNN and Naïve Bayes

• Computation

– Naïve Bayes is often faster

• Naïve Bayes uses all data points

– Naive Bayes is less sensitive to label noise

– k-NN is less sensitive to outliers

• Redundant attributes

– are less problematic for kNN

• Irrelevant attributes

– are less problematic for Naïve Bayes

– attribute values equally distributed across classes 
→ same factor for each class

• In both cases

– attribute pre-selection makes sense (see Data Mining II)
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Lazy vs. Eager Learning

• k-NN, and Naïve Bayes are all “lazy” methods 

• They do not build an explicit model!

– “learning” is only performed on demand for unseen records

• Nearest Centroid is a simple “eager” method
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Lazy vs. Eager Learning

• We have seen three of the most common techniques for lazy 
learning

– k nearest neighbors

– Naïve Bayes

• ...and a very simple technique for eager learning

– Nearest Centroids

• We will see more eager learning in the next lectures

– where explicit models are built

– e.g., decision trees

– e.g., rule sets
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Model Evaluation

● This week: metrics
● how to measure performance?
● here: quality of predictions, not: training time

● Next week: evaluation methods
● how to obtain meaningful and reliable estimates?
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Metrics for Performance Evaluation

• Looking at correctly/incorrectly classified instances

• Two class problem (positive/negative class):

– true positives, false positives, true negatives, false negatives

• Confusion Matrix:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes TP FN

Class=No FP TN
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Metrics for Performance Evaluation

• Most frequently used metrics:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes TP FN

Class=No FP TN

FNFPTNTP

TNTP




Accuracy 

Accuracy1 RateError 



Heiko Paulheim 66 

What is a Good Accuracy?

• i.e., when are you done?
– at 75% accuracy?

– at 90% accuracy?

– at 95% accuracy?

• Depends on difficulty of the problem!

• Baseline: naive guessing
– always predict majority class

• Compare
– Predicting coin tosses with accuracy of 50%

– Predicting dice roll with accuracy of 50%

– Predicting lottery numbers (6 out of 49) with accuracy of 50%
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Limitation of Accuracy: Unbalanced Data

• Sometimes, classes have very unequal frequency
– Fraud detection: 98% transactions OK, 2% fraud

– eCommerce: 99% don’t buy, 1% buy

– Intruder detection: 99.99% of the users are no intruders

– Security: >99.99% of Americans are not terrorists

• Consider a 2-class problem:
– Number of Class 0 examples = 9990, Number of Class 1 examples = 10

– If model predicts everything to be class 0, 
accuracy is 9990/10000 = 99.9 %

– Accuracy is misleading because model does not detect 
any class 1 example



Precision and Recall

FNTP

TP
 r

FPTP

TP
p





        

All positives

Classified as positives

How many examples 
that are classified  positive
are actually positive?

Which fraction 
of all positive examples 
is classified correctly?

Ignored
 majority 
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Precision and Recall Example

• This confusion matrix gives us

 precision p = 100% and 

 recall r = 1% 

• because we only classified one positive example 
correctly and no negative examples wrongly

• We want a measure that combines precision and recall

Predicted 
positive

Predicted 
negative

Actual positive 1 99

Actual negative 0 1000
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F1-Measure

• It is hard to compare two classifiers using two measures

• F1-Score combines precision and recall into one measure

– by using the harmonic mean

• The harmonic mean of two numbers tends to be closer to 
the smaller of the two

• For F1-value to be large, both p and r must be large

F 1=
2

1
p
+

1
r

=
2 p r
p+r



F1-Measure Graph

Optimal Threshold

Low threshold: Low precision, high recall

Restrictive threshold: High precision, low recall
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Alternative for Unbalanced Data: Cost Matrix

      PREDICTED CLASS

ACTUAL
CLASS

C(i|j) Class=Yes Class=No

Class=Yes C(Yes|Yes) C(No|Yes)

Class=No C(Yes|No) C(No|No)

C(i|j): Cost of misclassifying class j example as class i
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Computing Cost of Classification

Cost 
Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(i|j) + -

+ 0 100

- 1 0

Model M1 PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 162 38

- 160 240

Model 
M2

PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 155 45

- 5 395

Accuracy = 67%

Cost = 3960

Accuracy = 92%

Cost = 4505
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ROC Curves

• Some classification algorithms provide confidence scores

– how sure the algorithms is with its prediction

– e.g., Naive Bayes: the probability

– e.g., Decision Trees: the purity of the respective leaf node

• Drawing a ROC Curve

– Sort classifications according to confidence scores 
(e.g.: predicted probabilities in Naive Bayes)

– Evaluate

• correct prediction: draw one step up

• incorrect prediction: draw one step to the right
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ROC Curves

• Drawing ROC Curves in RapidMiner & Python

fpr, tpr, thresholds = roc_curve(actual, predictions)
plt.plot(fpr, tpr)
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Example ROC Curve of Naive Bayes
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Interpreting ROC Curves

• Best possible result:

– all correct predictions have higher
confidence than all incorrect ones

• The steeper, the better

– random guessing results in the diagonal

– so a decent algorithm should result
in a curve significantly above the diagonal

• Comparing algorithms:

– Curve A above curve B means
algorithm A better than algorithm B

• Frequently used criterion

– area under curve (aka ROC AUC)

– normalized to 1
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Questions?
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