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Outline
e

1. What is Classification?

k Nearest Neighbors and Nearest Centroids
Naive Bayes

Evaluating Classification

Decision Trees

The Overfitting Problem

Other Classification Approaches

© N & o bk~ LD

Hyperparameter Tuning
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Lazy vs. Eager Learning

* Both k-NN and Naive Bayes are “lazy” methods

* They do not build an explicit model!
— “learning” is only performed on demand for unseen records

Tid Attib1  Attrib2  Attrib3  Class Learnin g

1 Yes Large 125K No algorlthm

2 |Ne Medium | 100K No

3 |Ne Small 70K No

4 Yes Medium 120K No |nducti0n

5 No Large 95K Yes

& |No Medium | 60K No \

7 | vYes Large 220K No Learn

8 Na Small BoK Yes MOd e |

3 |Ne Medium | 75K No \ - ~

10 No Small Q0K Yes ‘
Training Set /[ Model | |)

J
Apply

Tid Attrib1  Attrib2  Aftrib3  Class Model

1 | nNo Small 55K ?

12 | ves Medium | 80K 2

13 | ves Large 110K ? Deduction

14 | nNo Small 95K 2

15 | No Large 67K 2

Unseen Records

Heiko Paulheim 3



Today: Eager Learning
S

* Actually, we have two goals
— classify unseen instances
— learn a model

<
* Model -

— explains how to classify unseen instances
— sometimes: interpretable by humans

Heiko Paulheim 4



Decision Tree Classifiers

Tid Refund Martal  Taxable NSNS Sp//tt/rjg ‘Attr/butes
_ = decision S
1 |Yes Single 125K No \ ’ \
2 |No Married |100K  |No \ Refund '||
3 |No Single | 70K No \ ny O v
4 |Yes Married |120K No NO MarSt
5 |No Divorced | 95K Yes ‘ Single, Diyérced \k@rried
6 [No Married |60K No
7 |Yes Divorced |220K No TaxInc NO
8 |[No Single 85K Yes < 80|’§/ \i 80K
9 [No Married |75K No NO YES
10 [No Single 90K Yes
Training Data Model: Decision Tree

Heiko Paulheim 5



Another Example of a Possible Decision Tree

MarSt Single,

Tid Refund Marital Taxable Marri?y \DQAOI’CGd
Status Income Cheat
1 |Yes |Single |125K |No NO Refund N
2 |No  |Married [100K  |No Yes./ \c‘)
3 |No Single 70K No NO Taxinc
4 |Yes Married | 120K No < 80}5/ \i 80K
5 |No Divorced |95K Yes
6 |[No Married |60K No NO YES
7 |Yes Divorced | 220K No
8 No Single 85K Yes
9 |No Married 75K |No There can be more than one tree
10 |[No  [Single |90K  [Yes that fits the same datal

Heiko Paulheim §)



Decision Boundary

1

|
09 | © | v . -
08k i>/<\ o | \ \x < 0.439
: |
1
07t o N T Yes No
&
06 | b a5 B
° | v N N
|
o5 v<0.47 ° | . | y<0.47? | | y<0.33?7
A 5= | N
| -
. — y<0.33___ Ye‘s/\v’o Yeﬂo
! o
o2 v | : v:4| v.0| v:0|] v:4
o1l VY o - ©:0 | o:4/| ©:3 | 0:0
|
00 O.I'I O.IZ 0.I3 0.I4 | O.IS O.IG 0.I7 O.IS O.IQ 1
X

* Border line between two neighboring regions of different classes
IS known as decision boundary

* Decision boundary is parallel to axes because test condition
involves a single attribute at-a-time
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Applying a Decision Tree to Test Data
-

Test Data
Start from the root of Refund Marital Taxable
tree. | Status Income Cheat
|
v
Refund T > >
Yes No «~~ e e
NO MarSt ,// //’/
Single, Divorced Married /,// _
/ Assign Cheat to
TaxlInc NO «~ No

< 80?§/
NO

\> 80K

YES

Heiko Paulheim 8



Decision Tree Induction
S e

* How to learn a decision Tree from test data?
* Finding an optimal decision tree is NP-hard

* Tree building algorithms use a greedy, top-down, recursive
partitioning strategy to induce a reasonable solution

— also known as: divide and conquer

* Many different algorithms have been proposed:
— Hunt's Algorithm

— ID3
— CHAID
— C4.5

Heiko Paulheim 9



General Structure of Hunt’s Algorithm
S

Tid | Refund | Marital Taxable

* Let D, be the set of training records Status  Income Cheat

that reach a node t 1 |Yes |singe [125k |No

2 No Married |100K No

* General Procedure: 3 |No |Singe |70K  [No
. 4 |Yes Married |120K No

— If D, contains only records that . ...
belong to the same class vy;, 6 |No  |Maried [60K  [No

then tis a leaf node labeled as vy, N e .

8 |No Single 85K Yes

— If D, contains records that belong 9 |No  |Maried |75K |No

to more than one class, use an DO KA

attribute test to split the data into D
smaller subsets

t

— Recursively apply the procedure
to each subset

Heiko Paulheim




Tid Refund Marital Taxable

, ]
Hunt S A|gOl'Ithm Status Income
1 Yes Single 125K No
2 No Married |100K No
d
' 3 |No Single |70k |No
Data —> Yes No _
4 Yes Married |120K No
Don't 27 5 |No Divorced |95K Yes
Cheat 6 MNo Married |60K No
l—/ 7 |Yes Divorced |220K  |No
8 |No Single 85K Yes
Refund Refund 9 |No Married |[75K No
Yes No Yes No 10 [No Single  [90K Yes
Don’t -> Don't Marital
Cheat Chsgat I Status
: ingle, .
Slngle’ Married . 9 Married
Divorceg Divorced

0o Don't Taxable Don't
_ Cheat Income Cheat
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Tree Induction Issues
S e

* Determine how to split the records
— How to specify the attribute test condition?
— How to determine the best split?

* Determine when to stop splitting
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How to Specify the Attribute Test Condition?
e

* Depends on attribute types

— Nominal
— Ordinal

— Continuous

* Depends on number of ways to split
— 2-way split
— Multi-way split

Heiko Paulheim




Splitting Based on Nominal Attributes

B Multi-way split: Use as many partitions as distinct values

Family *ﬂ Luxury
Sports

B Binary split: Divides values into two subsets.
Need to find optimal partitioning

{Sports, @ _ OR {Family, @
Luxury} {Family} Luxur {Sports}

Heiko Paulheim 14




Splitting Based on Ordinal Attributes

B Multi-way split: Use as many partitions as distinct values.

Small ﬂ Large
Medium

B Binary split: Divides values into two subsets,
while keeping the order.
Need to find optimal partitioning.

{Small, @ OR Small {Medium,
Medium {Large} tSmall} Large}

Heiko Paulheim




Splitting Based on Continuous Attributes

Taxable
Income?

Taxable
Income
> 80K?

Yes No

[10K,25K) [25K,50K) [50K,80K)

(i) Binary split (ii) Multi-way split
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Splitting Based on Continuous Attributes
S

* Different ways of handling

— Discretization to form an ordinal categorical attribute
* equal-interval binning
* equal-frequency binning
* binning based on user-provided boundaries

— Binary Decision: (A <v)or (A >Vv)
 usually sufficient in practice
* consider all possible splits

* find the best cut (i.e., the best v) based on a
purity measure (see later)

* can be computationally expensive
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Discretization Example
e

* Attribute values (for one attribute e.g., age):
- 0,4, 12, 16, 16, 18, 24, 26, 28
* Equal-width binning — for bin width of e.g., 10:
- Bin1:0,4 -0.10) bin
— Bin 2: 12, 16, 16, 18 [10,20) bin
— Bin 3: 24, 26, 28 20,+) bin

* o denotes negative infinity, +« positive infinity
* Equal-frequency binning — for bin density of e.g., 3:
- Bin1:0, 4,12 -0, 14) bin
— Bin 2: 16, 16, 18 14, 21) bin
— Bin 3: 24, 26, 28 21,+0] bin
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How to determine the Best Split?
e

Before Splitting: 10 records of class 0,
10 records of class 1

~Student .
- ID?

Which test condition is the best?
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How to determine the Best Split?
e

* Nodes with homogeneous class distribution are preferred

* Need a measure of node impurity:

CO: 5 C0: 9

C1:5 C1: 1
Non-homogeneous, Homogeneous,
High degree of impurity Low degree of impurity

*  Common measures of node impurity:
— Gini Index

— Entropy

— Misclassification error

Heiko Paulheim




Gini Index

* Named after Corrado Gini (1885-1965)

* Used to measure the distribution of income
— 1. somebody gets everything
— 0: everybody gets an equal share

<25 [ .a5-49
.25-29 Il .50-54
.30-.34 [ .55-.59
.35-.39 > .60

A0-44 [TNeo data

=
=]
B
B2

GINI Coefficient

- Source: CIA - The World Factbook 2009
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Measure of Impurity: GINI
S

Gini-based purity measure for a given node t :

GINI(t)=1- Z[ p(j DY

(NOTE: p(j | ¢) is the relative frequency of class j at
node t).

— Maximum (1 - 1/n.) when records are equally
distributed among all classes, implying least
interesting information

— Minimum (0.0) when all records belong to one class,
iImplying most interesting information

c1 0 Cc1 1 C1 2 Cc1 3
C2 6 C2 5 C2 4 C2 3
Gini=0.000 Gini=0.278 Gini=0.444 Gini=0.500
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Splitting Based on GINI

* When a node p is split into k partitions (children), the quality of split
Is computed as

k

GINI,,, =Y “- GINI (i)

split
i=1 1

— where n. = number of records at child i,

— n = number of records at node p.

* Intuition:
— The GINI index of each partition is weighted
— according to the partition's size
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Binary Attributes: Computing GINI Index

Splits into two partitions

Parent
(B? o e
Yes No C2 6
Gini = 0.500
Node N1 Node N2
Gini(N1) Ooe ode
= 1= (5/7p= 27y N1|N2| Gini(Children)
=0.408 a1 s |1 =7/12*0408+
Gini(N2) 2 21| a 5/12 * 0.320
=1-(15p- (45 | Gini=0.371 | 0]
- 0.320
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Continuous Attributes: Computing Gini Index
S

Tid Refund Marital Taxable

* Use Binary Decisions based on one value Status  Income Cheat
* Several Choices for the splitting value 1 |Yes [Single [125K [No
— Number of possible splitting values S R L S
= Number of distinct values @ Mo |Sngle ok INo
4 |Yes Married |120K No
* Each splitting value has a count matrix 5 |No Divorced (95K |Yes
associated with it 6 |No Married |60K  [No
— Class counts in each of the partitions, S B
A<vandA>v 8 [No Single 85K Yes
9 No Married |75K No
° Slmple method to choose best v 10 |No Single  |90K Yes
— For each v, scan the database to gather  abls
count matrix and compute its Gini index Income
— Computationally Inefficient! > 80K?
Repetition of work
Yes No
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Continuous Attributes: Computing Gini Index

B For efficient computation: for each attribute,
B Sort the attribute on values

B | inearly scan these values, each time updating the
count matrix and computing gini index

B Choose the split position that has the least gini index

Taxable Income

60 | 70 |75|85|90|95|100|120|125|

Sorted Values —» |
Split Positions —»

Yes

No

Gini
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Continuous Attributes: Computing Gini Index

B Note: it is enough to compute the GINI for those positions
where the label changes!

||

Taxable Income

60 | 70 |75|85|90|95|100‘120|125|

Sorted Values —
Split Positions —»

Yes O[30 |3ff0oj3ffo|[3f1|2)2(1}]|3|0f3]jO0f3 O3 |]O0¢(f3]0O0

No |0 | 7162|5343 (4|3 (43|44 ]3[S5]|2|6|1|7]|0O0

Gini 0.420 [ 0.400 0.37( 0.343 )).417 0.40(( 0.300 ).343 0.375 || 0.400 || 0.420

Heiko Paulheim




Alternative Splitting Criteria: Information Gain
e

* Entropy at a given node t:

Entropy(t) = -2 p(j|t)log, p(j[?)

(NOTE: p(j | t) is the relative frequency of class j at node t).

— Measures homogeneity of a node

* Maximum (log nc) when records are equally distributed
among all classes implying least information

* Minimum (0.0) when all records belong to one class,
implying most information

— Entropy based computations are similar to the GINI index
computations
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Splitting Based on Information Gain
e

* |Information Gain:

GAIN , = Entropy(p) — (ﬁ n Entropy (i ))
i=1 n

* Parent Node, p is split into k partitions;
 n. is number of records in partition i

— Measures reduction in entropy achieved because of the split
* Choose the split that achieves most reduction (maximizes GAIN)

— Disadvantage: Tends to prefer splits that result in large number
of partitions, each being small but pure

* e.q,. split by ID attribute
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How to Find the Best Split

Before Spilitting: 0 No ' —5 MO
C1 Noi1
Yes No Yes No
Node N1 Node N2 Node N3 Node N4
Co Nio Co N2o Co N3o Co Naso
Cl N11 C1 N21 C1 N31 C1 N41
M1 M2 M3 M4
G J G J
h'd h'd
M12 Gain=M0 -M12 vs MO - M34 M34
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Discussion of Decision Trees
S e

* Advantages:
— Inexpensive to construct
— Fast at classifying unknown records
— Easy to interpret by humans for small-sized trees
— Accuracy is comparable to other classification techniques
for many simple data sets

* Disadvantages:
— Decisions are based only one a single attribute at a time

— Can only represent decision boundaries that are parallel to the axes
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Comparing Decision Trees and k-NN
e

* Decision boundaries
— k-NN: arbitrary
— Decision trees: rectangular

* Sensitivity to scales
— k-NN: needs normalization
— Decision tree: does not require normalization (recap: Gini splitting)

* Runtime & memory
— k-NN is cheap to train, but expensive for classification
— decision tree is expensive to train, but cheap for classification
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Decision Trees in RapidMiner (ID3)

e
Learns an un-pruned decision tree from nominal attributes only.

' ID3
Retrieve Discretize criterion [ gain_ratio b l
inp [ @ out [} {] ==a exa [ { tra oy mee [
a % ari [ g  e=a) minimal size for split [4 l
‘ pre [ )
o minimal leaf size [2 l
minimal gain [IZI.1 l
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Decision Trees Iin RapidMiner

e
More flexible algorithm that includes pruning and discretization

~ Process =] L =: Parameters
@~ - 4 Broto» F~PIEH S-|8 oy xi-~
¢, DecisionTree {Decision Tree)
Retrieve criterion [ gain_ratio hd l
inp [ ot [} {tra mad [} { res
o ﬁ] ':' exa [) (] res rninirmal size for split [4 l
]
minimal leaf size [2 l
minimal gain [EI.1 l
maximal depth [EIII l
confidence [0.25 l

humber of prepruning ... [3

[ | no pre pruning

[ | no pruning
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Tree Induction in Python

clft
clf = clf.fit(X,X labels)

DecisionTreeClassifier ()

# Visualization

tree.plot tree(clf)

Heiko Paulheim
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Practical Issue: Overfitting

* Example: predict credit rating Debts
— possible decision tree: >5000

Yes No
- +
Name Net Income Job status Debts Rating
John 40000 employed 0 +
Mary 38000 employed 10000 -
Stephen 21000 self-employed 20000 -
Eric 2000 student 10000 -
Alice 35000 employed 4000 +

Heiko Paulheim




Practical Issue: Overfitting Name
ﬁ ="John” L

« Example: predict credit rating No Yes
— alternative decision tree:
Name= +
“Alice”
Yes No
+ -

Name Net Income Job status Debts Rating
John 40000 employed 0 +
Mary 38000 employed 10000 -
Stephen 21000 self-employed 20000 -
Eric 2000 student 10000 -
Alice 35000 employed 4000 +
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Practical Issue: Overfitting

* Both trees seem equally good
— Classify all instances in the training set correctly
— Which one do you prefer?

Name
="John”

No Yes

Name= + Debts
“Alice” >5000

Yes No Yes No

+ - - -
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Occam's Razor

* Named after William of Ockham (1287-1347)

* A fundamental principle of science
— if you have two theories
— that explain a phenomenon equally well
— choose the simpler one

* Example:
— phenomenon: the street is wet

— theory 1: it has rained

— theory 2: a beer truck has had an accident, and beer has spilled.
The truck has been towed, and magpies picked the glass pieces,
So only the beer remains
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Training and Testing Data

« Consider the decision tree again @
- Our ultimate goal: classify unseen records ="John’

No Yes
Name= +
“Alice”
Yes No

+ -

* Assume you measure the performance using the training data

* Conclusion:
— We need separate data for testing
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Accuracy

Learning Curve
e
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Learning curve shows
how accuracy changes
with varying sample size

Conclusion: Use as
much data as possible
for training

At the same time:
variation drops with
larger evaluation sets

Conclusion: use as
much data as possible
for evaluation

41




Holdout Method
e

The holdout method reserves a certain amount for testing and uses
the remainder for training

Typical: one third for testing, the rest for training
applied when lots of sample data is available

For unbalanced datasets, samples might not be representative
B Few or none instances of some classes

Stratified sample: balances the data

B Make sure that each class is represented with approximately equal
proportions in both subsets
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Leave One Out
e

* lterate over all examples
— train a model on all examples but the current one
— evaluate on the current one

* Yields a very accurate estimate

* Uses as much data for training as possible
— but is computationally infeasible in most cases

* Imagine: a dataset with a million instances
— one minute to train a single model
— Leave one out would take almost two years
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Cross-Validation
e

Compromise of Leave One Out and decent runtime BEEOE

Cross-validation avoids overlapping test sets DEENEN
B First step: data is split into k subsets of equal size

B Second step: each subset in turn is used for testing
and the remainder for training

This is called k-fold cross-validation
The error estimates are averaged to yield an overall error estimate

Frequently used value for k : 10
— Why ten? Extensive experiments have shown that this is the good choice
to get an accurate estimate

Often the subsets are stratified before the cross-validation is
performed
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Cross-Validation in RapidMiner

 Process =ML [E+ Parameters
@~ Froessr F-PEHOES- T pernB-

% Validation (X-Validation)
Retrieve [] leave one out
" ® g} P g - m:c,lg E:: number of validations l1D l
% ave ) qrs _ : :
ave ) res | Sampling type lstrahﬂed sampling 'l
o EE _
5-9 Process | HhL
@ ~ w ~ b Hrrocess » Y validation » g~ EE S
k-HH Apphy Model Performance
tra :I {: tra ™ rriod ::1 {t mod rmod ::I { rmod ~ lab :I ( lab @ |JEI'_‘:I {: ave
o oexal) (Jthr  tes [} { unl @ mod ) i per % exa ) (] ave
&) thr 1) 0 0
clf = KNeighborsClassifier (n neighbors=3)
scores = cross val score(clf, data, target, cv=10)
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Back to Overfitting
S

* Overfitting: Good accuracy

on training data, but poor on 4?Verflt’l[mg
test data. )
A0~

* Symptoms: Tree too deep
and too many branches

* Typical causes of overfitting

£
. . . = 20
— too little training data 2 I _
L 0 : — pammg set
_ : I —-- Testseat

noise :
. . 15 |
— poor learning algorithm .
10} I
|

5 I 1 | | | |

0 50 100 150 200 250 300

Mumber of nodes
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Overfitting and Noise

-
Likely to overfit the data

X

]

26 3 "T 7 <2 1T 2
_-._.:l E_'.h' = L. - = =
. i
- = 2.0 206 =3
F o
0 2 3 4 X
(B The decision tree

X
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How to Address Overfitting?
-
* Pre-Pruning (Early Stopping Rule)
— Stop the algorithm before it becomes a fully-grown
tree

— Typical stopping conditions for a node:

« Stop if all instances belong to the same class
« Stop if all the attribute values are the same

— Less restrictive conditions:

* Stop if number of instances within a node is less than
some user-specified threshold

* Stop if expanding the current node only slightly improves
the impurity measure (user-specified threshold)
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How to Address Overfitting?
S

* Post-pruning
1. Grow decision tree to its entire size

2. Trim the nodes of the decision tree in a bottom-up fashion
* using a validation data set
* or an estimate of the generalization error

3. If generalization error improves after trimming

* replace sub-tree by a leaf node

* Class label of leaf node is determined from maijority class of
instances in the sub-tree
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Training vs. Generalization Errors
S

* Training error
— also: resubstitution error, apparent error
— errors made in training
— evidence: misclassified training instances
* Generalization error
— errors made on unseen data
— evidence: no apparent evidence

* Training error can be computed
 (Generalization error must be estimated
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Estimating the Generalization Error
e

* Training errors: error on training (X e(t) )
* Generalization errors: error on testing (X e'(t))

* Methods for estimating generalization errors:
1. (Too) Optimistic approach: e'(t) = e(t)

2. Pessimistic approach:
* For each leaf node: €'(t) = (e(t)+0.5)
(user-defined 0.5 penalty for large trees)

* Total errors: €’(T) =e(T) + N x 0.5
(N: number of leaf nodes)

* For a tree with 30 leaf nodes and 10 errors on training
(out of 1000 instances):
Training error = 10/1000 = 1%

Generalization error = (10 + 30x0.5)/1000 = 2.5%

3. Reduced Error Pruning (REP):

* use validation data set to estimate generalization
error
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Example of Post-Pruning

Class = Yes 20

Class=No 10

Error = 10/30

Training Error (Before splitting) = 10/30
Pessimistic error = (10 + 0.5)/30 = 10.5/30
Training Error (After splitting) = 9/30
Pessimistic error (After splitting)

=(9+4x0.5)/30 =11/30

PRUNE!
A1 A4
A2 A3
Class = Yes Class = Yes Class = Yes Class = Yes
Class = No Class = No 4 Class = No Class = No
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Alternative Classification Methods
e

 So far, we have seen
— Kk-NN
— Naive Bayes
— Decision Trees

* There is a whole lot more in RapidMiner & scikit-learn

* Briefintro
— Atrtificial Neural Networks
— Support Vector Machines
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Example: Credit Rating
S

* Consider the following example:
— and try to build a model
— which is as small as possible (recall: Occam's Razor)

Person Employed Owns House Balanced Account Get Credit
Peter Smith yes yes no yes

Julia Miller no yes no no
Stephen Baker yes no yes yes

Mary Fisher no no yes no

Kim Hanson no yes yes yes

John Page yes no no no
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Example: Credit Rating
S

* Smallest model:

— if at least two of Employed, Owns House, and Balanced Account are
yes
— Get Credit is yes

* Not nicely expressible in trees and rule sets
— as we know them (attribute-value conditions)

Person Employed Owns House Balanced Account Get Credit
Peter Smith yes yes no yes

Julia Miller no yes no no
Stephen Baker yes no yes yes

Mary Fisher no no yes no

Kim Hanson no yes yes yes

John Page yes no no no
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Example: Credit Rating
S

* Smallest model:

— if at least two of Employed, Owns House, and Balance Account are yes
— Get Credit is yes

* As rule set:

Employed=yes and OwnsHouse=yes => yes
Employed=yes and BalanceAccount=yes => yes
OwnsHouse=yes and BalanceAccount=yes => yes
=>no

* General case:
— at least m out of n attributes need to be yes => yes

n!

— this requires (") rules, i.e.

,:lq » m!-(n—m)!
- e.g., “5 out of 10 attributes need to be yes”
requires more than 15,000 rules!
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Artificial Neural Networks

* Inspiration

— one of the most powerful super computers in the world
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Artificial Neural Networks (ANN)
-

X [ X5 | X5 | Y Input Black box
1 1lolo]lo
X, 4
1101 1] 1 1
1 1 0 1 Output
11111 1
o | o : 0 Xz——> —+» Y
0| 1] 0] 0
o 1] 1] 1 X. Ly
0ol o0o]| o] o0 3

Output Y is 1 if at least two of the three inputs are equal to 1.
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Example: Credit Rating
S

* Smallest model:

— if at least two of Employed, Owns House, and Balance Account are yes
— Get Credit is yes

* Given that we represent yes and no by 1 and 0, we want

— if(Employed + Owns House + Balance Acount)>1.5
— Get Credit is yes
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Artificial Neural Networks (ANN)

Input

X | X [ X3 ] Y nOdeSX‘\ Black box —_—
1ol o0]oO utpu
1 10| 1| 1 " node
1 1110 1

1 11111

olol| 1] o0 > Y
ol1 0] o0

ol 1] 1] 1

olo| 0] oO

Y =1(0.3X,+0.3X, +0.3X,—0.4 > 0)

1 1if z1s true
where [(2) = 0 otherwise
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Artificial Neural Networks (ANN)

* Model is an assembly of "V
inter-connected nodes X‘\ Black box

and weighted links X\ - ode.
X, > Y
* Output node sums up
each of its input value Xa
according to the weights ‘
of its links

Perceptron Model

Y=1Q) wX,~1) or

Y = Sign(z wX, —1)

* Compare output node
against some threshold t
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General Structure of ANN

Input
Layer Input Neuron i Output
Activation
function — 0
Hidden g(s;)
Layer % Y Y
Output ‘ Training ANN means learning
Layer the weights of the neurons
\
y
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Algorithm for learning ANN
S

* Initialize the weights (wg, w4, ..., Wy), €.g., all with 1

* Adjust the weights in such a way that the output of ANN is consistent
with class labels of training examples

— Objective function: FE = Z[Y’ — f(Wl-,Xl-)]z

— Find the weights w;’s that minimize the above objective function
* e.g., back propagation algorithm (see books)
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ANN in RapidMiner & Python

Input Hiddden 1 Output

Retrieve Golf Hominal to Hu... L
@ outt [ (] exa exa [ ] tra 0 mod [}
D
D

0 - m o U exa D

pre

=)

Weights:
2.002
I1-2.1 a7
-0.979
(-EI.STEI
0415
0.723
3.080

O (1.229 (Threshold)
@
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Decision Boundaries of ANN

S
* Arbitrarily shaped objects
* Fuzzy boundaries
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More Exotic Problems
e

* Consider
— Four binary features A,B,C,D
— Goal: Classify true if the number of TRUE values is even (i.e., 0, 2, or 4)

* Very hard for classic machine learning problems
— Approximate solution can be learned with neural network
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More Exotic Problems

* Consider
— Four binary features A,B,C,D
— Goal: Classify true if the number of TRUE values is even (i.e., 0, 2, or 4)

F=A+B+C-D<3
G=A+B+C-D<2
H=A+B+C-D<1

X=F+G-H<2
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More Exotic Problems

F=A+B+C-D<3 !
G=A+B+C-D<2 j
H=A+B+C-D<1 :
X=F+G-H<2
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Hyperparameter Selection
e

A hyperparameter is a parameter which influences the learning
process and whose value is set before the learning begins

* pruning thresholds for trees and rules
* gamma and C for SVMs

* learning rate, hidden layers for ANNs

By contrast, parameters are learned from the training data
— weights in an ANN, probabilities in Naive Bayes, splits in a tree

Many methods work poorly with the default hyperparameters

How to determine good hyperparameters?
* manually play around with different hyperparameter settings

* have your machine automatically test many different settings
(hyperparameter optimization)



Hyperparameter Optimization
e

* Goal: Find the combination of hyperparameter values that results
in learning the model with the lowest generalization error

* How to determine the parameter value combinations to be tested?
* Grid Search: Test all combinations in user-defined ranges

* Random Search: Test combinations of random parameter values

* Evolutionary Search: Keep specific parameter values that worked well

* Often hundreds of combinations are tested

— reason for cloud computing

— Model Selection: From all learned models M, select the model
Myest that is expected to generalize best to unseen records



Model Selection Using a Validation Set

Training Set

Training Set

* Keep data used for model selection
strictly separate from data used for
model evaluation, otherwise:

* selected model m,. Will overfit to patterns in test set

Validation
Set

— estimate of generalization error will be too optimisti

 Method to find the best model:

1) Split training set Dy, into validation set
D.. and training set Dy,

2) Learn models M on Dy, using different
hyperparameter value combinations P <

3) Select best parameter values pyes; by testing

. Validation
Selection Set

each model m; on the validation set D, Model
4) Learn final model mye;on complete Dy, Evaluation
using the parameter values ppes . l
. Estimate of
5) Evaluate my on test set in order to get an o
unbiased estimate of its generalization performance generalization
performance



Model Selection using Cross-Validation
e

* But wait, we want to
1.  make sure that all examples are used for validation once

2. use as much labeled data as possible for training

* Both goals are met by using cross-validation for model selection

Training Set

—_—

Train D, Train D, Train D, Train D, Validation

Train D, Train D, Train D, Validation Train D,

Train D, — Model Selection
Train D, |M| :|fo|ds| *|P|

Validation Train D, Train D, Train D, Train D,

_-Learn m,, using p,,,

Model Evaluation: Estimate generalization error of mbest{

Train D, Train D, Validation Train D,

Train D, Validation Train D, Train D,

* 5folds, 100 parameter value sets = 501 models learned



Model Evaluation using Nested Cross-

Validation
e

* Nest two cross-validation loops into each other in order to:
1. find the best hyperparameter setting (model selection)

2. get areliable estimate of the generalization error (model evaluation)

* training set is passed on to inner
cross-validation in each iteration

) . . ) Training VaIidation Training
* splits outer training set into

inner training and validation set i —

Learn m,

— OQOuter Cross-Validation
»  estimates generalization error of My

— Inner Cross-Validation

* searches for best parameter combination

. learns model m,; using all outer
training data

Training, .,

Training,,

* 5 foldsoue"((5 folds e 100 parameter sets )+1) = 2505 models learned



Nested Cross-Validation in RapidMiner
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Hyperparameter Optimization in RapidMiner
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Nested Cross-Validation in Python
-

from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC

# Specify hyperparameter combinations for search
parameter_grid = {"C": [1, 10, 100, 1leee], "gamma": [.@01, .01, .1, 1]}

# Create SVM
estimator_svm = SVC(kernel='rbf")

# Create the grid search for model selection
estimator_gs = GridSearchCV(estimator_svm, parameter_grid, scoring='accuracy', cv=5)

# Run nested cross-validation for model evaluation
accuracy_cv = cross_val score(estimator_gs, dataset, labels, cv=5, scoring="accuracy"')




Summary
-

* Classification approaches

— There are quite a few: Nearest Neighbors, Naive Bayes, Decision Trees,
Rules, SVMs, Neural Networks

* Distinctions
— Lazy vs. eager
— Performance (accuracy, training time, testing time, model size)
— Decision Boundaries (theory and practice)
* Issues
— Overfitting
— Parameter tuning
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Questions?
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