
Data Mining I
Classification, Part 2

Heiko Paulheim

Heiko Paulheim 2

Outline

1. What is Classification?

2. k Nearest Neighbors and Nearest Centroids

3. Naïve Bayes

4. Evaluating Classification

5. Decision Trees

6. The Overfitting Problem

7. Other Classification Approaches

8. Hyperparameter Tuning

Heiko Paulheim 3

Lazy vs. Eager Learning

• Both k-NN and Naïve Bayes are “lazy” methods

• They do not build an explicit model!

– “learning” is only performed on demand for unseen records

Heiko Paulheim 4

Today: Eager Learning

• Actually, we have two goals

– classify unseen instances

– learn a model

• Model

– explains how to classify unseen instances

– sometimes: interpretable by humans

Explainable AI

Heiko Paulheim 5

Decision Tree Classifiers

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model: Decision Tree

Terminal node
= decision

Heiko Paulheim 6

Another Example of a Possible Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

MarSt

Refund

TaxInc

YESNO

NO

NO

Yes No

Married
Single,

Divorced

< 80K > 80K

There can be more than one tree
that fits the same data!

Heiko Paulheim 7

Decision Boundary

y < 0.33?

 : 0
 : 3

 : 4
 : 0

y < 0.47?

 : 4
 : 0

 : 0
 : 4

x < 0.43?

Yes

Yes

No

No Yes No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
• Border line between two neighboring regions of different classes

is known as decision boundary

• Decision boundary is parallel to axes because test condition
involves a single attribute at-a-time

y<0.47

x<
0.43

y<0.33

Heiko Paulheim 8

Applying a Decision Tree to Test Data

Start from the root of
tree.

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Assign Cheat to
“No”

Heiko Paulheim 9

Decision Tree Induction

• How to learn a decision Tree from test data?

• Finding an optimal decision tree is NP-hard

• Tree building algorithms use a greedy, top-down, recursive
partitioning strategy to induce a reasonable solution

– also known as: divide and conquer

• Many different algorithms have been proposed:

– Hunt’s Algorithm

– ID3

– CHAID

– C4.5

Heiko Paulheim 10

General Structure of Hunt’s Algorithm

• Let Dt be the set of training records
that reach a node t

• General Procedure:

– If Dt contains only records that
belong to the same class yt,
then t is a leaf node labeled as yt

– If Dt contains records that belong
to more than one class, use an
attribute test to split the data into
smaller subsets

– Recursively apply the procedure
to each subset

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Dt

?

Heiko Paulheim 11

Hunt’s Algorithm

Data

Refund

Don’t
Cheat

??

Yes No

Refund

Don’t
Cheat

Yes No

Marital
Status

Don’t
Cheat

Cheat

Single,
Divorced

Married

Taxable
Income

Don’t
Cheat

< 80K >= 80K

Refund

Don’t
Cheat

Yes No

Marital
Status

Don’t
Cheat

??

Single,
Divorced

Married

Heiko Paulheim 12

Tree Induction Issues

• Determine how to split the records

– How to specify the attribute test condition?

– How to determine the best split?

• Determine when to stop splitting

Heiko Paulheim 13

How to Specify the Attribute Test Condition?

• Depends on attribute types

– Nominal

– Ordinal

– Continuous

• Depends on number of ways to split

– 2-way split

– Multi-way split

Heiko Paulheim 14

Splitting Based on Nominal Attributes

 Multi-way split: Use as many partitions as distinct values

 Binary split: Divides values into two subsets.
 Need to find optimal partitioning

CarType
Family

Sports
Luxury

CarType
{Family,
Luxury} {Sports}

CarType
{Sports,
Luxury} {Family} OR

Heiko Paulheim 15

 Multi-way split: Use as many partitions as distinct values.

 Binary split: Divides values into two subsets,
 while keeping the order.

 Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Size
Small

Medium

Large

Size
{Small} {Medium,

Large}

Size
{Small,

Medium} {Large} OR

Heiko Paulheim 16

Splitting Based on Continuous Attributes

Taxable
Income
> 80K?

Yes No

Taxable
Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K

Heiko Paulheim 17

Splitting Based on Continuous Attributes

• Different ways of handling

– Discretization to form an ordinal categorical attribute

• equal-interval binning
• equal-frequency binning
• binning based on user-provided boundaries

– Binary Decision: (A < v) or (A v)

• usually sufficient in practice
• consider all possible splits
• find the best cut (i.e., the best v) based on a

purity measure (see later)
• can be computationally expensive

Heiko Paulheim 18

Discretization Example

• Attribute values (for one attribute e.g., age):

– 0, 4, 12, 16, 16, 18, 24, 26, 28

• Equal-width binning – for bin width of e.g., 10:

– Bin 1: 0, 4 [-∞,10) bin

– Bin 2: 12, 16, 16, 18 [10,20) bin

– Bin 3: 24, 26, 28 [20,+∞) bin
• ∞ denotes negative infinity, +∞ positive infinity

• Equal-frequency binning – for bin density of e.g., 3:

– Bin 1: 0, 4, 12 [-∞, 14) bin

– Bin 2: 16, 16, 18 [14, 21) bin

– Bin 3: 24, 26, 28 [21,+∞] bin

Heiko Paulheim 19

How to determine the Best Split?

Own
Car?

C0: 6
C1: 4

C0: 4
C1: 6

C0: 1
C1: 3

C0: 8
C1: 0

C0: 1
C1: 7

Car
Type?

C0: 1
C1: 0

C0: 1
C1: 0

C0: 0
C1: 1

Student
ID?

...

Yes No Family

Sports

Luxury c1
c10

c20

C0: 0
C1: 1

...

c11

Before Splitting: 10 records of class 0,
 10 records of class 1

Which test condition is the best?

Heiko Paulheim 20

How to determine the Best Split?

• Nodes with homogeneous class distribution are preferred

• Need a measure of node impurity:

• Common measures of node impurity:

– Gini Index

– Entropy

– Misclassification error

C0: 5
C1: 5

C0: 9
C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

Heiko Paulheim 21

Gini Index

• Named after Corrado Gini (1885-1965)

• Used to measure the distribution of income

– 1: somebody gets everything

– 0: everybody gets an equal share

Heiko Paulheim 22

Measure of Impurity: GINI

• Gini-based purity measure for a given node t :

(NOTE: p(j | t) is the relative frequency of class j at
node t).

– Maximum (1 - 1/nc) when records are equally
distributed among all classes, implying least
interesting information

– Minimum (0.0) when all records belong to one class,
implying most interesting information

j

tjptGINI 2)]|([1)(

C1 0
C2 6

Gini=0.000

C1 2
C2 4

Gini=0.444

C1 3
C2 3

Gini=0.500

C1 1
C2 5

Gini=0.278

Heiko Paulheim 23

Splitting Based on GINI

• When a node p is split into k partitions (children), the quality of split
is computed as

– where ni = number of records at child i,

– n = number of records at node p.

• Intuition:

– The GINI index of each partition is weighted

– according to the partition's size

k

i

i
split iGINI

n

n
GINI

1

)(

Heiko Paulheim 24

Binary Attributes: Computing GINI Index

• Splits into two partitions

B?

Yes No

Node N1 Node N2

 Parent

C1 6

C2 6

Gini = 0.500

Gini(N1)
= 1 – (5/7)2 – (2/7)2
= 0.408

Gini(N2)
= 1 – (1/5)2 – (4/5)2
= 0.320

Gini(Children)
= 7/12 * 0.408 +
 5/12 * 0.320
= 0.371

N1 N2
C1 5 1
C2 2 4
Gini=0.371

Heiko Paulheim 25

Continuous Attributes: Computing Gini Index

• Use Binary Decisions based on one value

• Several Choices for the splitting value

– Number of possible splitting values
= Number of distinct values

• Each splitting value has a count matrix
associated with it

– Class counts in each of the partitions,
A < v and A v

• Simple method to choose best v

– For each v, scan the database to gather
count matrix and compute its Gini index

– Computationally Inefficient!
Repetition of work

Taxable
Income
> 80K?

Yes No

Heiko Paulheim 26

Continuous Attributes: Computing Gini Index

 For efficient computation: for each attribute,

 Sort the attribute on values

 Linearly scan these values, each time updating the
count matrix and computing gini index

 Choose the split position that has the least gini index
Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions
Sorted Values

Heiko Paulheim 27

Continuous Attributes: Computing Gini Index

 Note: it is enough to compute the GINI for those positions
where the label changes!

Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions
Sorted Values

Heiko Paulheim 28

Alternative Splitting Criteria: Information Gain

• Entropy at a given node t:

(NOTE: p(j | t) is the relative frequency of class j at node t).

– Measures homogeneity of a node

• Maximum (log nc) when records are equally distributed
among all classes implying least information

• Minimum (0.0) when all records belong to one class,
implying most information

– Entropy based computations are similar to the GINI index
computations

j

tjptjptEntropy)|(log)|()(
2

Heiko Paulheim 29

Splitting Based on Information Gain

• Information Gain:

• Parent Node, p is split into k partitions;

• ni is number of records in partition i

– Measures reduction in entropy achieved because of the split
• Choose the split that achieves most reduction (maximizes GAIN)

– Disadvantage: Tends to prefer splits that result in large number
of partitions, each being small but pure

• e.g,. split by ID attribute

k

i

i

split
iEntropy

n
n

pEntropyGAIN
1

)()(

Heiko Paulheim 30

How to Find the Best Split

B?

Yes No

Node N3 Node N4

A?

Yes No

Node N1 Node N2

Before Splitting:

C0 N10
C1 N11

C0 N20
C1 N21

C0 N30
C1 N31

C0 N40
C1 N41

C0 N00
C1 N01

M0

M1 M2 M3 M4

M12 M34Gain = M0 – M12 vs M0 – M34

Heiko Paulheim 31

Discussion of Decision Trees

• Advantages:

– Inexpensive to construct

– Fast at classifying unknown records

– Easy to interpret by humans for small-sized trees

– Accuracy is comparable to other classification techniques
for many simple data sets

• Disadvantages:

– Decisions are based only one a single attribute at a time

– Can only represent decision boundaries that are parallel to the axes

Heiko Paulheim 32

Comparing Decision Trees and k-NN

• Decision boundaries

– k-NN: arbitrary

– Decision trees: rectangular

• Sensitivity to scales

– k-NN: needs normalization

– Decision tree: does not require normalization (recap: Gini splitting)

• Runtime & memory

– k-NN is cheap to train, but expensive for classification

– decision tree is expensive to train, but cheap for classification

Heiko Paulheim 33

Decision Trees in RapidMiner (ID3)

Learns an un-pruned decision tree from nominal attributes only.

Heiko Paulheim 34

Decision Trees in RapidMiner

More flexible algorithm that includes pruning and discretization

Heiko Paulheim 35

Tree Induction in Python

clf = DecisionTreeClassifier()

clf = clf.fit(X,X_labels)

Visualization

tree.plot_tree(clf)

Heiko Paulheim 36

Practical Issue: Overfitting

• Example: predict credit rating

– possible decision tree:

Name Net Income Job status Debts Rating

John 40000 employed 0 +

Mary 38000 employed 10000 -

Stephen 21000 self-employed 20000 -

Eric 2000 student 10000 -

Alice 35000 employed 4000 +

Debts
>5000

Yes No

- +

Heiko Paulheim 37

Name Net Income Job status Debts Rating

John 40000 employed 0 +

Mary 38000 employed 10000 -

Stephen 21000 self-employed 20000 -

Eric 2000 student 10000 -

Alice 35000 employed 4000 +

Practical Issue: Overfitting

• Example: predict credit rating

– alternative decision tree:

Name
=”John”

No Yes

+Name=
“Alice”

Yes No

+ -

Heiko Paulheim 38

Practical Issue: Overfitting

• Both trees seem equally good

– Classify all instances in the training set correctly

– Which one do you prefer?

Debts
>5000

Yes No

- +

Name
=”John”

No Yes

+Name=
“Alice”

Yes No

+ -

Heiko Paulheim 39

Occam's Razor

• Named after William of Ockham (1287-1347)

• A fundamental principle of science

– if you have two theories

– that explain a phenomenon equally well

– choose the simpler one

• Example:

– phenomenon: the street is wet

– theory 1: it has rained

– theory 2: a beer truck has had an accident, and beer has spilled.
The truck has been towed, and magpies picked the glass pieces,
so only the beer remains

Heiko Paulheim 40

Training and Testing Data

• Consider the decision tree again

• Our ultimate goal: classify unseen records

• Assume you measure the performance using the training data

• Conclusion:

– We need separate data for testing

Name
=”John”

No Yes

+Name=
“Alice”

Yes No

+ -

Heiko Paulheim 41

Learning Curve

• Learning curve shows
how accuracy changes
with varying sample size

• Conclusion: Use as
much data as possible
for training

• At the same time:
variation drops with
larger evaluation sets

• Conclusion: use as
much data as possible
for evaluation

Heiko Paulheim 42

Holdout Method

• The holdout method reserves a certain amount for testing and uses
the remainder for training

• Typical: one third for testing, the rest for training

• applied when lots of sample data is available

• For unbalanced datasets, samples might not be representative
 Few or none instances of some classes

• Stratified sample: balances the data
 Make sure that each class is represented with approximately equal

proportions in both subsets

Heiko Paulheim 43

Leave One Out

• Iterate over all examples

– train a model on all examples but the current one

– evaluate on the current one

• Yields a very accurate estimate

• Uses as much data for training as possible

– but is computationally infeasible in most cases

• Imagine: a dataset with a million instances

– one minute to train a single model

– Leave one out would take almost two years

Heiko Paulheim 44

Cross-Validation

• Compromise of Leave One Out and decent runtime

• Cross-validation avoids overlapping test sets

 First step: data is split into k subsets of equal size

 Second step: each subset in turn is used for testing
and the remainder for training

• This is called k-fold cross-validation

• The error estimates are averaged to yield an overall error estimate

• Frequently used value for k : 10
– Why ten? Extensive experiments have shown that this is the good choice

to get an accurate estimate

• Often the subsets are stratified before the cross-validation is
performed

Heiko Paulheim 45

Cross-Validation in RapidMiner

clf = KNeighborsClassifier(n_neighbors=3)
scores = cross_val_score(clf, data, target, cv=10)

Heiko Paulheim 46

Overfitting
• Overfitting: Good accuracy

on training data, but poor on
test data.

• Symptoms: Tree too deep
and too many branches

• Typical causes of overfitting

– too little training data

– noise

– poor learning algorithm

Back to Overfitting

Heiko Paulheim 47 47

Overfitting and Noise

Likely to overfit the data

Heiko Paulheim 48

How to Address Overfitting?

• Pre-Pruning (Early Stopping Rule)

– Stop the algorithm before it becomes a fully-grown
tree

– Typical stopping conditions for a node:
• Stop if all instances belong to the same class
• Stop if all the attribute values are the same

– Less restrictive conditions:
• Stop if number of instances within a node is less than

some user-specified threshold
• Stop if expanding the current node only slightly improves

the impurity measure (user-specified threshold)

Heiko Paulheim 49

How to Address Overfitting?

• Post-pruning

1. Grow decision tree to its entire size

2. Trim the nodes of the decision tree in a bottom-up fashion

• using a validation data set
• or an estimate of the generalization error

3. If generalization error improves after trimming

• replace sub-tree by a leaf node
• Class label of leaf node is determined from majority class of

instances in the sub-tree

Heiko Paulheim 50

Training vs. Generalization Errors

• Training error

– also: resubstitution error, apparent error

– errors made in training

– evidence: misclassified training instances

• Generalization error

– errors made on unseen data

– evidence: no apparent evidence

• Training error can be computed

• Generalization error must be estimated

Heiko Paulheim 51

Estimating the Generalization Error

• Training errors: error on training (e(t))

• Generalization errors: error on testing (e’(t))

• Methods for estimating generalization errors:
1. (Too) Optimistic approach: e’(t) = e(t)

2. Pessimistic approach:
• For each leaf node: e’(t) = (e(t)+0.5)

 (user-defined 0.5 penalty for large trees)
• Total errors: e’(T) = e(T) + N 0.5

 (N: number of leaf nodes)
• For a tree with 30 leaf nodes and 10 errors on training

 (out of 1000 instances):
 Training error = 10/1000 = 1%

 Generalization error = (10 + 300.5)/1000 = 2.5%

3. Reduced Error Pruning (REP):
• use validation data set to estimate generalization

error

Heiko Paulheim 52

Example of Post-Pruning

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10

Error = 10/30

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

= (9 + 4 0.5)/30 = 11/30

PRUNE!

Class = Yes 8

Class = No 4

Class = Yes 3

Class = No 4

Class = Yes 4

Class = No 1

Class = Yes 5

Class = No 1

10/21/20 Heiko Paulheim 53

Alternative Classification Methods

• So far, we have seen

– k-NN

– Naive Bayes

– Decision Trees

• There is a whole lot more in RapidMiner & scikit-learn

• Brief intro

– Artificial Neural Networks

– Support Vector Machines

10/21/20 Heiko Paulheim 54

Example: Credit Rating

• Consider the following example:

– and try to build a model

– which is as small as possible (recall: Occam's Razor)

Person Employed Owns House Balanced Account Get Credit

Peter Smith yes yes no yes

Julia Miller no yes no no

Stephen Baker yes no yes yes

Mary Fisher no no yes no

Kim Hanson no yes yes yes

John Page yes no no no

10/21/20 Heiko Paulheim 55

Example: Credit Rating

• Smallest model:

– if at least two of Employed, Owns House, and Balanced Account are
yes
→ Get Credit is yes

• Not nicely expressible in trees and rule sets

– as we know them (attribute-value conditions)
Person Employed Owns House Balanced Account Get Credit

Peter Smith yes yes no yes

Julia Miller no yes no no

Stephen Baker yes no yes yes

Mary Fisher no no yes no

Kim Hanson no yes yes yes

John Page yes no no no

10/21/20 Heiko Paulheim 56

Example: Credit Rating

• Smallest model:

– if at least two of Employed, Owns House, and Balance Account are yes
→ Get Credit is yes

• As rule set:

Employed=yes and OwnsHouse=yes => yes
Employed=yes and BalanceAccount=yes => yes
OwnsHouse=yes and BalanceAccount=yes => yes
=> no

• General case:

– at least m out of n attributes need to be yes => yes

– this requires rules, i.e.,

– e.g., “5 out of 10 attributes need to be yes”
requires more than 15,000 rules!

(n
m

)
n!

m!⋅(n−m)!

10/21/20 Heiko Paulheim 57

Artificial Neural Networks

• Inspiration

– one of the most powerful super computers in the world

10/21/20 Heiko Paulheim 58

Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0

X1

X2

X3

Y

Black box

Output

Input

Output Y is 1 if at least two of the three inputs are equal to 1.

10/21/20 Heiko Paulheim 59

Example: Credit Rating

• Smallest model:

– if at least two of Employed, Owns House, and Balance Account are yes
→ Get Credit is yes

• Given that we represent yes and no by 1 and 0, we want

– if(Employed + Owns House + Balance Acount)>1.5
→ Get Credit is yes

10/21/20 Heiko Paulheim 60

Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0

X1

X2

X3

Y

Black box

0.3

0.3

0.3 t=0.4

Output
node

Input
nodes

otherwise0

 trueis if1
)(where

)04.03.03.03.0(321

z
zI

XXXIY

10/21/20 Heiko Paulheim 61

Artificial Neural Networks (ANN)

• Model is an assembly of
inter-connected nodes
and weighted links

• Output node sums up
each of its input value
according to the weights
of its links

• Compare output node
against some threshold t

X1

X2

X3

Y

Black box

w1

t

Output
node

Input
nodes

w2

w3

)(tXwIY
i

ii
Perceptron Model

)(tXwsignY
i

ii

or

10/21/20 Heiko Paulheim 62

General Structure of ANN

Activation
function

g(Si)
Si Oi

I1

I2

I3

wi1

wi2

wi3

Oi

Neuron iInput Output

threshold, t

Input
Layer

Hidden
Layer

Output
Layer

x1 x2 x3 x4 x5

y

Training ANN means learning
the weights of the neurons

10/21/20 Heiko Paulheim 63

Algorithm for learning ANN

• Initialize the weights (w0, w1, …, wk), e.g., all with 1

• Adjust the weights in such a way that the output of ANN is consistent
with class labels of training examples

– Objective function:

– Find the weights wi’s that minimize the above objective function

• e.g., back propagation algorithm (see books)

 2),(
i

iii XwfYE

10/21/20 Heiko Paulheim 64

ANN in RapidMiner & Python

clf = MLPClassifier(hidden_layer_sizes=(10))

10/21/20 Heiko Paulheim 65

Decision Boundaries of ANN

• Arbitrarily shaped objects

• Fuzzy boundaries

10/21/20 Heiko Paulheim 75

More Exotic Problems

• Consider

– Four binary features A,B,C,D

– Goal: Classify true if the number of TRUE values is even (i.e., 0, 2, or 4)

• Very hard for classic machine learning problems

– Approximate solution can be learned with neural network

10/21/20 Heiko Paulheim 76

More Exotic Problems

• Consider

– Four binary features A,B,C,D

– Goal: Classify true if the number of TRUE values is even (i.e., 0, 2, or 4)

B

A

B

B

C

D

B

F

G

H

X

F = A + B + C – D < 3
G = A + B + C – D < 2
H = A + B + C – D < 1

X = F + G – H < 2

10/21/20 Heiko Paulheim 77

More Exotic Problems

B

A

B

B

C

D

B

F

G

H

X

F = A + B + C – D < 3
G = A + B + C – D < 2
H = A + B + C – D < 1

X = F + G – H < 2

A B C D F G H X C

0 0 0 0 1 1 1 TRUE TRUE

1 0 0 0 1 1 0 FALSE FALSE

0 1 0 0 1 1 0 FALSE FALSE

0 0 1 0 1 1 0 FALSE FALSE

0 0 0 1 1 1 1 TRUE FALSE

1 1 0 0 1 0 0 TRUE TRUE

0 1 1 0 1 0 0 TRUE TRUE

0 0 1 1 1 1 1 TRUE TRUE

1 0 0 1 1 1 1 TRUE TRUE

1 0 1 0 1 0 0 TRUE TRUE

0 1 0 1 1 1 1 TRUE TRUE

1 1 1 0 0 0 0 TRUE FALSE

1 1 0 1 1 1 0 FALSE FALSE

1 0 1 1 1 1 0 FALSE FALSE

0 1 1 1 1 1 0 FALSE FALSE

1 1 1 1 1 0 0 TRUE TRUE

Hyperparameter Selection

– A hyperparameter is a parameter which influences the learning
process and whose value is set before the learning begins

• pruning thresholds for trees and rules

• gamma and C for SVMs

• learning rate, hidden layers for ANNs

– By contrast, parameters are learned from the training data
– weights in an ANN, probabilities in Naïve Bayes, splits in a tree

– Many methods work poorly with the default hyperparameters

– How to determine good hyperparameters?

• manually play around with different hyperparameter settings

• have your machine automatically test many different settings
(hyperparameter optimization)

Hyperparameter Optimization

• Goal: Find the combination of hyperparameter values that results
in learning the model with the lowest generalization error

• How to determine the parameter value combinations to be tested?

• Grid Search: Test all combinations in user-defined ranges

• Random Search: Test combinations of random parameter values

• Evolutionary Search: Keep specific parameter values that worked well

• Often hundreds of combinations are tested

– reason for cloud computing

 Model Selection: From all learned models M, select the model
mbest that is expected to generalize best to unseen records

Model Selection Using a Validation Set

• Keep data used for model selection
strictly separate from data used for
model evaluation, otherwise:

• selected model mbest will overfit to patterns in test set

– estimate of generalization error will be too optimistic

• Method to find the best model:

1) Split training set Dtrain into validation set
Dval and training set Dtr

2) Learn models M on Dtr using different
hyperparameter value combinations P

3) Select best parameter values pbest by testing
each model mi on the validation set Dval

4) Learn final model mbest on complete Dtrain
using the parameter values pbest

5) Evaluate mbest on test set in order to get an
unbiased estimate of its generalization performance

mbest

Validation
Set

Training Set Dtrain

M

Test Set

Estimate of
generalization
performance

Validation
Set

Training Set Dtr

Model
Selection

Model
Evaluation

Test
Set

Test
Set

Model Selection using Cross-Validation

• But wait, we want to

1. make sure that all examples are used for validation once

2. use as much labeled data as possible for training

• Both goals are met by using cross-validation for model selection

• 5 folds, 100 parameter value sets 501 models learned

Training Set Dtrain Test Set

Train D1 Train D2 Train D3 Train D4 Validation

Train D1 Train D2 Train D3 Validation Train D5

Train D1 Train D2 Validation Train D4 Train D5

Train D1 Validation Train D3 Train D4 Train D5

Validation Train D2 Train D3 Train D4 Train D5

Training Set Dtrain

Model Selection

│M│ = │folds│ * │P│

Learn mbest using pbest

Test SetModel Evaluation: Estimate generalization error of mbest

Model Evaluation using Nested Cross-
Validation

• Nest two cross-validation loops into each other in order to:

1. find the best hyperparameter setting (model selection)

2. get a reliable estimate of the generalization error (model evaluation)

 Outer Cross-Validation
• estimates generalization error of mbest

• training set is passed on to inner
cross-validation in each iteration

 Inner Cross-Validation

• searches for best parameter combination

• splits outer training set into
inner training and validation set

• learns model mbest using all outer
training data

• 5 foldsOuter*((5 foldsInner* 100 parameter sets)+1) 2505 models learned

Test Setouter

Training

TrainingouterTrainingouter

Training

Validation TrainingTraining

Validation Training Training

Validation

Test Setouter TrainingouterTrainingouter

Test Setouter TrainingouterTrainingouter

……

Learn mbest

TrainingTraining

Validation TrainingTraining

Validation Training Training

Validation

Learn mbest

Nested Cross-Validation in RapidMiner

Outer Cross-
Validation

Inner Cross-
Validation

Optimize
Parameters

https://rapidminer.com/resource/correct-model-validation/

Hyperparameter Optimization in RapidMiner

List of
operators

Parameters of selected
operator

Parameters to
optimize

Definition of parameter
values for testing

Final number of
combinations!

Steps linear/
logarithmic
(log good for
SVMs)

Nested Cross-Validation in Python

scikit-learn Documentation: Tuning the hyper-parameters of an estimator
https://scikit-learn.org/stable/modules/grid_search.html

scikit-learn Documentation: Nested versus non-nested cross-validation
https://scikit-learn.org/stable/auto_examples/model_selection/
plot_nested_cross_validation_iris.html

10/21/20 Heiko Paulheim 86

Summary

• Classification approaches

– There are quite a few: Nearest Neighbors, Naive Bayes, Decision Trees,
Rules, SVMs, Neural Networks

• Distinctions

– Lazy vs. eager

– Performance (accuracy, training time, testing time, model size)

– Decision Boundaries (theory and practice)

• Issues

– Overfitting

– Parameter tuning

Heiko Paulheim 87

Questions?

	Folie 1
	Outline
	Folie 3
	Folie 4
	3. Decision Tree Classifiers
	Another Example of a possible Decision Tree
	Decision Boundary
	Applying a Decision Tree to Test Data
	Decision Tree Induction
	General Structure of Hunt’s Algorithm
	Hunt’s Algorithm
	Tree Induction Issues
	How to Specify the Attribute Test Condition?
	Splitting Based on Nominal Attributes
	Splitting Based on Ordinal Attributes
	Splitting Based on Continuous Attributes
	Folie 17
	Discretization Example
	How to determine the Best Split?
	Folie 20
	Folie 21
	Measure of Impurity: GINI
	Splitting Based on GINI
	Binary Attributes: Computing GINI Index
	Continuous Attributes: Computing Gini Index
	Folie 26
	Folie 27
	Alternative Splitting Criteria: Information Gain
	Splitting Based on Information Gain
	How to Find the Best Split
	Discussion of Decision Trees
	Folie 32
	Decision Trees in RapidMiner (ID3)
	Decision Trees in RapidMiner
	3. Model Evaluation
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Learning Curve
	Holdout Method
	Folie 43
	Cross-Validation
	X-Validation in RapidMiner
	Folie 46
	Example of Overfitting
	How to Address Overfitting?
	Folie 49
	Folie 50
	Estimating the Generalization Error
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Artificial Neural Networks (ANN)
	Folie 59
	Folie 60
	Folie 61
	General Structure of ANN
	Algorithm for learning ANN
	Folie 64
	Folie 65
	Folie 75
	Folie 76
	Folie 77
	9. Hyperparameter Selection
	Hyperparameter Optimization
	Model Selection Using a Validation Set
	Model Selection using Cross-Validation
	Model Evaluation using Nested Cross-Validation
	Nested Cross-Validation in RapidMiner
	Hyperparameter Optimization in RapidMiner
	Nested Cross-Validation in Python
	Folie 86
	Questions?

