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Regression

• Classification

– covered in the previous lectures

– predict a label from a finite collection

– e.g., true/false, low/medium/high, ...

• Regression

– predict a numerical value

– from a possibly infinite set of possible values

• Examples

– temperature

– sales figures

– stock market prices

– ...
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Contents

• A closer look at the problem
– e.g., interpolation vs. extrapolation

– measuring regression performance

• Revisiting classifiers we already know
– which can also be used for regression

• Adoption of classifiers for regression
– model trees

– support vector machines

– artificial neural networks

• Other methods of regression
– linear regression and its regularized variants

– isotonic regression

– local regression
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The Regression Problem

• Classification

– algorithm “knows” all possible labels, e.g. yes/no, low/medium/high

– all labels appear in the training data

– the prediction is always one of those labels

• Regression

– algorithm “knows” some possible values, e.g., 18°C and 21°C

– prediction may also be a value not in the training data, e.g., 20°C
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Interpolation vs. Extrapolation

• Training data: 

– weather observations for current day

– e.g., temperature, wind speed, humidity, …

– target: temperature on the next day

– training values between -15°C and 32°C

• Interpolating regression

– only predicts values from the interval [-15°C,32°C]

• Extrapolating regression

– may also predict values outside of this interval
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Interpolation vs. Extrapolation

• Interpolating regression is regarded as “safe”

– i.e., only reasonable/realistic values are predicted

http://xkcd.com/605/
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Interpolation vs. Extrapolation

• Sometimes, however, only extrapolation is interesting

– how far will the sea level have risen by 2050?

– will there be a nuclear meltdown in my power plant?

http://i1.ytimg.com/vi/FVfiujbGLfM/hqdefault.jpg
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Baseline Prediction

• For classification: predict most frequent label

• For regression: 

– predict average value

– or median

– or mode

– in any case: only interpolating regression

• often a strong baseline

http://xkcd.com/937/
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k Nearest Neighbors Revisited

• Problem

– find out what the weather is in a certain 
place

– where there is no weather station

– how could you do that?

x
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k Nearest Neighbors Revisited

• Idea: use the average of the
nearest stations

• Example:

– 3x sunny

– 2x cloudy

– result: sunny

• Approach is called

– “k nearest neighbors”

– where k is the number of neighbors to consider

– in the example: k=5

– in the example: “near” denotes geographical proximity

x
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k Nearest Neighbors for Regression

• Idea: use the numeric 
average of the nearest stations

• Example:

– 18°C, 20°C, 21°C, 22°C, 21°C

• Compute the average

– again: k=5

– (18+20+21+22+21)/5

– prediction: 20.4°C

• Only interpolating regression!

x20°C

21°C
22°C22°C

18°C

21°C
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k Nearest Neighbor Regression in RapidMiner
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k Nearest Neighbor Regression in Python

model = KNeighborsRegressor(k=number,   
          weights=‘uniform’/’distance’)

model.fit(X,Y)
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Performance Measures

• Recap: measuring performance for classification: 

• If we use the numbers 0 and 1 for class labels, we can reformulate 
this as

Why?

– the nominator is the sum of all correctly classified examples

• i.e., the difference of the prediction and the actual label is 0

– the denominator is the total number of examples

Accuracy = TP+TN
TP+TN +FP+FN

Accuracy =1−
∑

all examples
∣predicted−actual∣

N
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Mean Absolute Error

• We have

• For an arbitrary numerical target, we can define

• Mean Absolute Error

– intuition: how much does the prediction differ from the actual value 
on average?

Accuracy =1−
∑

all examples
∣predicted−actual∣

N

MAE =
∑

all examples
∣predicted−actual∣

N
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(Root) Mean Squared Error

• Mean Squared Error:

• Root Mean Squared Error:

• More severe errors are weighted higher by MSE and RMSE

MSE =
∑

all examples

∣predicted−actual∣2

N

RMSE =√ ∑
all examples

∣predicted−actual∣2

N
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Correlation

• Pearson's correlation coefficient

• Scores well if

– high actual values get high predictions

– low actual values get low predictions

• Caution: PCC is scale-invariant!

– actual income: $1, $2, $3

– predicted income: $1,000, $2,000, $3,000

→ PCC = 1

PCC=
∑

all examples

( pred− pred )×(act−act)

√ ∑
all examples

( pred− pred )2×√ ∑
all examples

(act−act )2
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Evaluation Protocols

• Just as for classification

– we are interested in performance 
on unseen data

– we want to avoid overfitting

• Recap

– split/cross validation

– hyperparameter tuning 
in nested cross validation

Test Setouter

Training

TrainingouterTrainingouter

Training

Validation TrainingTraining

Validation Training Training

Validation

Test Setouter TrainingouterTrainingouter

Test Setouter TrainingouterTrainingouter

……

Learn mbest

TrainingTraining

Validation TrainingTraining

Validation Training Training

Validation

Learn mbest
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Linear Regression

• Assumption: target variable y is (approximately) 
linearly dependent on attributes

– for visualization: one attribute x

– in reality: x1...xn

y

x
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Linear Regression

• Target: find a linear function f: f(x)=w0 + w1x1 + w2x2 + … + wnxn

– so that the error is minimized

– i.e., for all examples (x1,...xn,y), f(x) should be a correct prediction for y

– given a performance measure

y

x
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Linear Regression

• Typical performance measure used: Mean Squared Error

• Task: find w0....wn so that 

is minimized

• note: we omit the denominator N

y

x

∑
all examples

(w 0+w 1⋅x1+w2⋅x2+ ...+w n⋅xn− y)
2
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Linear Regression: Multi Dimensional Example
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Linear Regression vs. k-NN Regression

• Recap: Linear regression extrapolates, k-NN interpolates

x

we want a 
prediction for 
that x

prediction of
linear 
regression

prediction of
3-NN

three nearest
neighborsy

x
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Linear Regression Examples
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Linear Regression and Overfitting

• Given two regression models

– One using five variables to explain a phenomenon

– Another one using 100 variables

• Which one do you prefer?

• Recap: Occam’s Razor

– out of two theories explaining the same phenomenon,
prefer the smaller one
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Ridge Regression

• Linear regression only minimizes the errors on the training data

– i.e., 

• With many variables, we can have a large set of very small w i

– this might be a sign of overfitting!

• Ridge Regression:

– introduces regularization

– create a simpler model by favoring larger factors, minimize

∑
all examples

(w0 +w 1⋅x1+w2⋅x2+...+w n⋅xn−y)
2

∑
all examples

(w0 +w 1⋅x1+w2⋅x2+...+w n⋅xn−y)
2+λ ∑

all variables

w i
2
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Ridge & Lasso Regression

• Ridge Regression optimizes

• Lasso Regression optimizes

• Observations

– Ridge Regression yields small, but non-zero coefficients

– Lasso Regression tends to yield zero coefficients

– l=0: no normalization (i.e., ordinary linear regression) → overfitting

– l→: all weights will ultimately vanish → underfitting

∑
all examples

(w0 +w 1⋅x1+w2⋅x2+...+w n⋅xn−y)
2+λ ∑

all variables

w i
2

∑
all examples

(w0 +w 1⋅x1+w2⋅x2+...+wn⋅xn−y)
2+λ ∑

all variables

|w i|
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Lasso vs. Ridge Regression

• For wi<close to 0, the contribution to the squared error is often 
smaller than the contribution to the regularization

– Hence, minimization pushes small weights down to 0

∑
all examples

(w0 +w 1⋅x1+w2⋅x2+...+wn⋅xn−y)
2+λ ∑

all variables

|w i|
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…but what about Non-linear Problems?
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Isotonic Regression

• Special case:

– Target function is monotonous

• i.e., f(x1)≤f(x2) for x1<x2

– For that class of problem, efficient algorithms exist

• Simplest: Pool Adjacent Violators Algorithm (PAVA)
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Isotonic Regression

• Identify adjacent violators, i.e., f(xi)>(xi+1)

• Replace them with new values f'(xi)=f'(xi+1)
so that sum of squared errors is minimized

– ...and pool them, i.e., they are going to be handled as one point

• Repeat until no more adjacent violators are left
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Isotonic Regression

• Identify adjacent violators, i.e., f(xi)>(xi+1)

• Replace them with new values f'(xi)=f'(xi+1)
so that sum of squared errors is minimized

– ...and pool them, i.e., they are going to be handled as one point

• Repeat until no more adjacent violators are left
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Isotonic Regression

• After all points are reordered so that f'(xi)=f'(xi+1) holds for every i

– Connect the points with a piecewise linear function
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Isotonic Regression

• Comparison to the original points

– Plateaus exist where the points are not monotonous

– Overall, the mean squared error is minimized 

• Operator in RapidMiner: from the Weka Extension

• Python: IsotonicRegression (caution: only increasing case)
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…but what about non-linear, non-monotonous Problems?
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• The attributes X for linear regression can be:

– Original attributes X

– Transformation of original attributes, 
e.g. log, exp, square root, square, etc.

– Polynomial transformation
•  example:  y = 0 + 1x + 2x2 + 3x3

– Basis expansions

– Interactions between variables
•  example: x3 = x1  x2

• This allows use of linear regression techniques to fit much 
more complicated non-linear datasets

Possible Option: new Attributes
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Example with Polynomially Transformed Attributes

Xp = PolynomialFeatures(degree=M).fit_transform(X)
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Polynomial Regression & Overfitting

• Creating polynomial features of degree d for a dataset with f 
features: O(fd) features

• Consider: three features x,y,z, d=3

– 6 new features d=2: x2, y2, z2, xy, xz, yz

– 10 new features d=3: x3, y3, z3, x2y, x2z, y2x, y2z, z2x, z2y, xyz

• With higher values for f and d, 
we are likely to generate a very large number of additional features
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Polynomial Regression & Overfitting

• Creating polynomial features of degree d for a dataset with f 
features: O(fd) features

• Example: Sonar dataset (60 features)

https://machinelearningmastery.com/polynomial-features-transforms-for-machine-learning/

degree
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Polynomial Regression & Overfitting

• Larger feature sets lead to higher degrees of overfitting
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Polynomial Regression & Overfitting

• Why are larger feature sets dangerous?

– Think of overfitting as “memorizing”

• With 1k variables and 1k examples

– we can probably identify each example by a unique feature combination

– but with 2 variables for 1k examples, the model is forced to abstract

• Rule of thumb

– Datasets should never be wider than long!
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Local Regression

• Assumption: non-linear problems are approximately linear 
in local areas

– idea: use linear regression locally

– only for the data point at hand (lazy learning)
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Local Regression

• A combination of

– k nearest neighbors

– local regression

• Given a data point

– retrieve the k nearest neighbors

– compute a regression model using those neighbors

– locally weighted regression: 
uses distance as weight for error computation
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Local Regression

• Advantage: fits non-linear models well

– good local approximation

– often more exact than pure k-NN

• Disadvantage

– runtime

– for each test example:

• find k nearest neighbors

• compute a local model
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Combining Decision Trees and Regression

• Idea: split data first so that it becomes “more linear”

• example: fuel consumption by car weight

fuel

weight
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Combining Decision Trees and Regression

• Idea: split data first so that it becomes “more linear”

• example: fuel consumption by car weight

fuel

weight

benzine

diesel
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fuel type

Combining Decision Trees and Regression

• Observation:

– by cleverly splitting the data, we get more accurate linear models

• Regression trees:

– decision tree for splitting data

– constants as leaves

• Model trees:

– more advanced

– linear functions as leaves

y=0.005x+1 y=0.01x+2

=diesel =benzine
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Regression Trees

• Differences to classification decision trees:
– Splitting criterion: minimize intra-subset variation

– Termination criterion: standard deviation becomes small

– Pruning criterion: based on numeric error measure

– Prediction: Leaf predicts average class values of instances

• Easy to interpret

• Resulting model: piecewise constant function
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Model Trees

• Build a regression tree

– For each leaf  learn linear regression function

• Need linear regression function at each node

• Prediction: go down tree, then apply function

• Resulting model: piecewise linear function
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Local Regression and Regression/Model Trees

• Assumption: non-linear problems are approximately linear 
in local areas

– idea: use linear regression locally

– only for the data point at hand (lazy learning)

piecewise constant
(regression tree)

piecewise linear
(model tree)
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Building the Tree

• Splitting: standard deviation reduction

• Termination:
– Standard deviation < 5% of its value on full training set
– Too few instances remain (e.g. < 4)

• Pruning:
– Proceed bottom up: 

• Compute LR model at internal node

• Compare LR model error to error of subtree

• Prune if the subtree's error is not significantly smaller

– Heavy pruning: single model may replace whole subtree

SDR=sd T−∑i∣
Ti

T∣×sdT iSDR=sd(T )−∑i∣
T i

T ∣×sd(T i)
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Model Tree Learning Illustrated

• Standard deviation of complete value set: 3.08

• Standard deviation of two subsets after split x>9: 1.22

– Standard deviation reduction: 1.86

– This is the best split
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Model Tree Learning Illustrated

• Assume that we have split further (min. 4 instances per leaf)

– Standard deviation reduction for the new splits is still 0.57

• Resulting model tree:

• The error of the inner nodes is the same as
for the root nodes → prune
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x<9

x<4.5 x<13.5

y=0.5x y=0.5x y=0.5x+1 y=0.5x+1

y=0.5x y=0.5x+1
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Model Tree Learning Illustrated

• Assume that we have split further (min. 4 instances per leaf)

– Standard deviation reduction for the new splits is still 0.57

• Resulting model tree:

• The error of the root node is larger than
that of the leaf nodes → keep leaf nodes
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x<9

y=0.5x y=0.5x+1

y=0.59x – 0.29 
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Model Tree Learning Illustrated

x<9

y=0.5x y=0.5x+1
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Comparison
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Comparison – Linear and Isotonic Regression
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Comparison – M5’ Regression and Model Tree
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k-NN and Local Polynomial Regression (k=7)
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Artificial Neural Networks Revisited

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0

X1

X2

X3

Y

Black box

Output

Input

Output Y is 1 if at least two of the three inputs are equal to 1.
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Artificial Neural Networks Revisited

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0



X1

X2

X3

Y

Black box

0.3

0.3

0.3 t=0.4

Output
node

Input
nodes

Y=I (0.3X1+0.3X2+0 .3X3−0 .4>0)

where I ( z )={1 if z  is true
0 otherwise
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Artificial Neural Networks Revisited

• This final function was used to separate two classes:

• However, we may simply use it to predict a numerical value 
(between 0 and 1) by changing it to:

Y=I (0.3X1+0.3X2+0 .3X3−0 .4>0)

where I ( z )={1 if z  is true
0 otherwise

Y=0 .3X1+0 .3X2+0 .3X3−0. 4
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Artificial Neural Networks for Regression

• What has changed:

– we do not use a cutoff for 0/1 predictions

– but leave the numbers as they are

• Training examples:

– attribute vectors – not with a class label, but numerical target

• Error measure:

– Not classification error, but mean squared error
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Artificial Neural Networks for Regression

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0



X1

X2

X3

Y

Black box

0.3

0.3

0.3 t=0.4

Output
node

Input
nodes

Y=0 .3X1+0 .3X2+0 .3X3−0. 4
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Artificial Neural Networks for Regression

• Given that our target formula is of the form

• we can learn only linear problems

– i.e., the target variable is a linear combination the input variables

• More complex regression problems can be approximated

– by combining several perceptrons

• in neural networks: hidden layers

• with non-linear activation functions!

– this allows for arbitrary functions

• Hear more about ANNs in Data Mining 2!

Y=0 .3X1+0 .3X2+0 .3X3−0. 4
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From Classification to Regression and Back

• We have got to known classification first

– and asked: how can we get from classification to regression?

• Turning the question upside down:

– can we use regression algorithms for classification?

• Transformation:

– for binary classification: encode true as 1.0 and false as 0.0

• learn regression model

• predict true for (-∞,0.5] and false for (0.5,∞)

– similarly for ordinal (e.g., good, medium, bad)

– non-ordinal multi-class problems are trickier
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Summary

• Regression

– predict numerical values instead of classes

• Performance measuring

– absolute or relative error, correlation, …

• Methods

– k nearest neighbors

– linear regression and regularized variants

– polynomial regression

– isotonic regression

– model trees

– artificial neural networks

– ...
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Questions?
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