
Data Mining I
Association Analysis

Heiko Paulheim

11/25/20 Heiko Paulheim 2

Outline

1. What is Association Analysis?

2. Frequent Itemset Generation

3. Rule Generation

4. Interestingness Measures

5. Handling Continuous and Categorical Attributes

11/25/20 Heiko Paulheim 3

Association Analysis

• First algorithms developed in the early 90s at IBM
by Agrawal & Srikant

• Motivation

– Availability of barcode cash registers

11/25/20 Heiko Paulheim 4

Association Analysis

• initially used for Market Basket Analysis

– to find how items purchased by customers are related

• later extended to more complex data structures

– sequential patterns (see Data Mining II)

– subgraph patterns

• and other application domains

– life science

– social science

– web usage mining

11/25/20 Heiko Paulheim 5

Simple Approaches

• To find out if two items x and y are bought together,
we can compute their correlation

• E.g., Pearson's correlation coefficient:

• Numerical coding:

– 1: item was bought

– 0: item was not bought

• : average of x (i.e., how often x was bought)

∑ (x i−x)(y i− y)

√∑ (xi−x)
2 √∑ (y i− y)

2

x

11/25/20 Heiko Paulheim 6

Correlation Analysis in RapidMiner

11/25/20 Heiko Paulheim 7

Correlation Analysis in Python

• e.g., using Pandas:

import seaborn as sns

corr = dataframe.corr()
sns.heatmap(corr)

11/25/20 Heiko Paulheim 8

• Given a set of transactions, find rules that will predict the
occurrence of an item based on the occurrences of other items in
the transaction

Market-Basket transactions Examples of Association Rules

{Diaper} {Beer},
{Milk, Bread} } {Eggs,Coke},
{Beer, Bread} } {Milk},

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

→ denotes co-occurence,

not causality!

Association Analysis

11/25/20 Heiko Paulheim 9

Correlation vs. Causality

http://xkcd.com/552/

11/25/20 Heiko Paulheim 10

Definition: Frequent Itemset

• Itemset

– A collection of one or more items

• Example: {Milk, Bread, Diaper}

– k-itemset

• An itemset that contains k items

• Support (s)

– Frequency of occurrence of an itemset

• e.g. s({Milk, Bread, Diaper}) = 2/5

• Frequent Itemset

– An itemset w/ support ≥ a minimum support threshold (minsup)

11/25/20 Heiko Paulheim 11

Definition: Association Rule

• Association Rule
– An implication expression of the form

X → Y, where X and Y are itemsets

• Interpretation: when X occurs,
Y occurs with a certain probability

• More formally, it’s a conditional probability
– P(Y|X) – given X, what is the probability of Y?

• Known as confidence (c)
– e.g., for {Bread, Milk} → {Diaper}, the probability is 2/3

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

11/25/20 Heiko Paulheim 12

Definition: Evaluation Metrics

• Given the rule {Milk, Diaper} → {Beer}

• Support:
– Fraction of total transactions

which contain both X and Y

• Confidence:
– Fraction of transactions containing X which also contain Y

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke
 4.0

5
2

|T|
)BeerDiaper,,Milk(

s

67.0
3
2

)Diaper,Milk(
)BeerDiaper,Milk,(

c

11/25/20 Heiko Paulheim 13

Association Rule Mining Task

• Given a set of transactions T, the goal of association rule mining is to
find all rules having

– support ≥ minsup threshold

– confidence ≥ minconf threshold

• minsup and minconf are provided by the user

• Brute-force approach:

– List all possible association rules

– Compute the support and confidence for each rule

– Remove rules that fail the minsup and minconf thresholds

→ Computationally prohibitive due to large number of candidates!

11/25/20 Heiko Paulheim 14

Mining Association Rules

Examples of Rules:

● {Milk, Diaper} → {Beer} (s=0.4, c=0.67
● {Milk, Beer} → {Diaper} (s=0.4, c=1.0)
● {Diaper, Beer} → {Milk} (s=0.4, c=0.67)
● {Beer} → {Milk, Diaper} (s=0.4, c=0.67)
● {Diaper}→ {Milk, Beer} (s=0.4, c=0.5)
● {Milk} → {Diaper, Beer} (s=0.4, c=0.5)

s(X→Y):=∣X∪Y∣
∣T∣

Observations

• All the above rules are partitions of the same itemset, i.e. {Milk,
Diaper, Beer}

• Rules originating from the same itemset
have identical support

– but can have different confidence

→ we may decouple the support and confidence requirements

11/25/20 Heiko Paulheim 15

Apriori Algorithm: Basic Idea

• Two-step approach

• First: Frequent Itemset Generation

– Generate all itemsets whose support ≥ minsup

• Second: Rule Generation

– Generate high confidence rules from each frequent itemset

– where each rule is a binary partitioning of a frequent itemset

• However: Frequent itemset generation is still computationally
expensive....

11/25/20 Heiko Paulheim 16

Frequent Itemset Generation

Given d items, there are
2d candidate itemsets!

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

11/25/20 Heiko Paulheim 17

Brute-force Approach

• Amazon sells 12M different products (as of 2020)

• 212000000=8.871×103612359

– That’s a 3.6M digit number

• Today’s fastest computer

– 200 Petaflops, i.e., 2x1017 floating point operations per second

• Even if an itemset could be checked
with one single floating point operation

– this would take 1.4×103612335 years

• Comparision: age of the universe
is 1.4×1010 years!

11/25/20 Heiko Paulheim 18

Brute-force Approach

• Each itemset in the lattice is a candidate frequent itemset

• Count the support of each candidate by scanning the database

• Match each transaction against every candidate

• Complexity ~ O(NMw) → Expensive since M = 2d

• A smarter algorithm is required

11/25/20 Heiko Paulheim 19

Anti-Monotonicity of Support

• What happens when an itemset
gets larger?

• s({Bread}) = 0.8

– s({Bread,Milk}) = 0.6

– s({Bread,Milk,Diaper}) = 0.4

• s({Milk}) = 0.8

– s({Milk,Diaper}) = 0.6

– s({Milk,Diaper,Beer}) = 0.4

• There is a pattern here!

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

11/25/20 Heiko Paulheim 20

Anti-Monotonicity of Support

• There is a pattern here!

– It is called anti-monitonicity
of support

• If X is a subset of Y

– s(Y) is at most as large as s(X)

• Consequence for frequent itemset search (aka Apriori principle):

– If Y is frequent, X also has to be frequent

– i.e.: all subsets of frequent itemsets are frequent

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

)()()(:, YsXsYXYX

11/25/20 Heiko Paulheim 21

Found} to
be
Infrequent

Illustrating the Apriori Principle

Pruned}
supersets

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

11/25/20 Heiko Paulheim 22

The Apriori Algorithm

1. Start at k=1

2. Generate frequent itemsets of length k=1

3. Repeat until no new frequent itemsets are identified

1. Generate length (k+1) candidate itemsets from
length k frequent itemsets; increase k

2. Prune candidate itemsets that cannot be
frequent because they contain subsets of length
k that are infrequent (Apriori Principle)

3. Count the support of each remaining candidate
by scanning the DB

4. Eliminate candidates that are infrequent, leaving
only those that are frequent

11/25/20 Heiko Paulheim 23

Items (1-itemsets)

Pairs
(2-itemsets)

Triplets
(3-itemsets)

Minimum Support = 3

No need to generate
candidates involving
Coke or Eggs.

No need to generate
candidate {Milk, Diaper, Beer}

Item Count
Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count
{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Illustrating the Apriori Principle

Itemset Count
{Bread,Milk,Diaper} 3

11/25/20 Heiko Paulheim 24

From Frequent Itemsets to Rules

• Given a frequent itemset F, find all non-empty subsets f F
such that f → F \ f satisfies the minimum confidence requirement

• Example Frequent Itemset:

– F= {Milk,Diaper,Beer}

• Example Rule:

– f = {Milk,Diaper}

– {Milk,Diaper} → {Beer}

67.0
3
2

)Diaper,Milk(
)BeerDiaper,Milk,(

c

11/25/20 Heiko Paulheim 25

Challenge: Combinatorial Explosion

• Given a 4-itemset {A,B,C,D}, we can generate

{A} → {B,C,D}, {B} → {A,C,D}, {C} → {A,B,D}, {D} → {A,B,C},

{A,B} → {C,D}, {A,C} → {B,D}, {A,D} → {B,C},

{B,C} → {A,D}, {B,D} → {A,C}, {C,D} → {A,B},

{A,B,C} → {D}, {A,B,D} → {C}, {A,C,D} → {B}, {B,C,D} → {A}

• i.e., a total of 14 rules for just one itemset!

• General number for a k-itemset: 2k-2

– it’s not 2k since we ignore Ø → {…} and {…} → Ø

11/25/20 Heiko Paulheim 26

Challenge: Combinatorial Explosion

• Wanted: another pruning trick
like Apriori principle

• However

{Milk,Diaper} → {Beer} c=0.67

{Milk} → {Beer} c=0.5

{Diaper} → {Beer} c=0.8

• It’s obviously not as straight forward

11/25/20 Heiko Paulheim 27

Challenge: Combinatorial Explosion

• Wanted: another pruning trick
like Apriori principle

• Let’s look at it another way

– {Milk,Diaper,Beer} → Ø c=1.0

• {Milk,Diaper} → {Beer} c=0.67
– {Milk} → {Diaper,Beer} c=0.5

– {Diaper} → {Milk,Beer} c=0.5

• {Milk,Beer} → {Diaper} c=1.0
– {Milk} → {Diaper,Beer} c=0.5

– {Beer} → {Milk,Diaper} c=0.67

• Observation: moving elements in the rule from left to right
never increases confidence!

11/25/20 Heiko Paulheim 28

Rule Generation

• Confidence is anti-monotone w.r.t. number of items on the RHS of
the rule

– i.e., “moving elements from left to right” cannot increase
confidence

– reason:

– Due to anti-monotone property of support, we know

• S(AB) ≤ S(A)

– Hence

• c(AB → C) ≥ C(A → BC)

c(AB→C):= s(ABC)
s (AB)

c(A→BC):= s (ABC)
s(A)

11/25/20 Heiko Paulheim 29

Rule Generation for Apriori Algorithm

Pruned}
Rules

Low
Confid} ence
Rule

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

11/25/20 Heiko Paulheim 30

Rule Generation for Apriori Algorithm

• Candidate rule is generated by merging two rules that share the same
prefix in the rule consequent

• join(CD=>AB, BD=>AC)

– would produce the
candidate rule D => ABC

• Prune rule D=>ABC

– if its subset AD=>BC
does not have high confidence

• All the required information for confidence computation has already
been recorded during itemset generation.
→ No need to see the data anymore!

BD=>ACCD=>AB

D=>ABC

c(X→Y):= s (X∪Y)
s(X)

11/25/20 Heiko Paulheim 31

Complexity of Apriori Algorithm

• Expensive part is scanning the database

– i.e., when counting the support of frequent itemsets

• The database is scanned once per pass
of frequent itemset generation

– one pass to count frequencies of 1-itemsets

– one pass to count frequencies of 2-itemsets

– etc.

• i.e., for frequent itemsets of size ≤ k,

– k passes over the database are required

11/25/20 Heiko Paulheim 32

FP-growth Algorithm

• An alternative method for finding frequent itemsets

– usually faster than Apriori

– requires at most two passes over the database

• Use a compressed representation of the database using an FP-tree

• Once an FP-tree has been constructed, it uses a recursive divide-
and-conquer approach to mine the frequent itemsets

11/25/20 Heiko Paulheim 33

FP-Tree Construction

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:1

B:1

null

A:1

B:1

B:1

C:1

D:1

After reading TID=1:

After reading TID=2:

11/25/20 Heiko Paulheim 34

FP-Tree Construction

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

After reading TID=3:

counter is
increased

null

A:2

B:1

B:1

C:1

D:1

C:1

E:1

D:1

11/25/20 Heiko Paulheim 35

FP-Tree Construction

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1
E:1

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

Pointers are used to assist
frequent itemset generation

D:1

E:1

Transaction
Database

Item Pointer
A
B
C
D
E

Header table

11/25/20 Heiko Paulheim 36

FP-Tree Construction

• Properties of the FP-Tree

– a very compact representation

– fits in memory

• even for larger transaction databases

• more transactions of the same kind do not increase the tree size

– can be optimized

• sorting most frequent items first

• good compression for many similar transactions

• up-front pruning of infrequent itemsets

11/25/20 Heiko Paulheim 37

From the FP Tree to Patterns

• Naively:

– Enumerate all paths
and subsets of paths

– Sum up counts

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1
E:1

D:1

E:1

Item Pointer
A
B
C
D
E

Header table

11/25/20 Heiko Paulheim 38

From the FP Tree to Paths

• Enumeration:

– A:7, AB:5, AC:3, AD:1, BC:3, CD:1, ABC:3, ABCD:1, …

• However, we can do better

– Single path tree: enumerate all subsets

– Multi path tree: Build FP-Tree of subtrees recursively

• For that recursion, we use the links

• e.g., build FP-Tree for all itemsets ending in E

• Details

– See literature

11/25/20 Heiko Paulheim 39

FP-Growth (Summary)

• Scans the database only twice:

– first scan counts all 1-itemsets

• for ordering by most frequent (more compact tree)

• and for removing itemsets below minsup

– second scan for constructing the FP-tree

• recursive constructions only work on compact representation,
not the actual database

• Finding patterns from the tree

– algorithm recursively decomposes the tree
into smaller subtrees

– details: see books

11/25/20 Heiko Paulheim 40

Frequent Itemset Generation in Rapidminer

11/25/20 Heiko Paulheim 41

Frequent Itemset Generation in Rapidminer

11/25/20 Heiko Paulheim 42

Creating Association Rules in Rapidminer

11/25/20 Heiko Paulheim 43

Exploring Association Rules in Rapidminer

11/25/20 Heiko Paulheim 44

Frequent Itemset Mining in Python

• Various packages exist

– In the exercise, we’ll use the Orange3 package

itemsets = dict(fp_growth.frequent_itemsets(X, .2))
rules = association_rules(itemsets, .8)

11/25/20 Heiko Paulheim 45

Interestingness Measures

• Association rule algorithms tend to produce too many rules

– many of them are uninteresting or redundant

– Redundant if {A,B,C} → {D} and {A,B} → {D}
have same support & confidence

• Interestingness measures can be used to prune or
rank the derived rules

• In the original formulation of association rules, support & confidence
are the only interest measures used

• Later, various other measures have been proposed

– See Tan/Steinbach/Kumar, Chapter 6.7

– We will have a look at two: Correlation & Lift

11/25/20 Heiko Paulheim 46

Drawback of Confidence

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

 Association Rule: Tea Coffee
• Confidence= s(Tea ∩ Coffee)/s(Tea) = 15/20 = 0.75

11/25/20 Heiko Paulheim 47

Correlation

• We discover a high confidence rule for tea → coffee

– 75% of all people who drink tea also drink coffee

– Hypothesis: people who drink tea are likely to drink coffee

• Implicitly: more likely than people not drinking tea

• Cross check:

– What is the confidence of not(tea) → coffee?

– Even higher: ~94% of people who don’t drink tea do drink coffee

• We have two rules here

– One is learned on all people who drink tea

– The other is learned on all people who don’t trink tea

– Only together, they cover the whole dataset

11/25/20 Heiko Paulheim 48

Correlation

• Correlation takes into account all data at once

• In our scenario: corr(tea,coffee) = -0.25

– i.e., the correlation is negative

– Interpretation: people who drink tea are less likely to drink coffee

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

11/25/20 Heiko Paulheim 49

Lift

• We discover a high confidence rule for tea → coffee

– 75% of all people who drink tea also drink coffee

– Hypothesis: people who drink tea are likely to drink coffee

• Implicitly: more likely than all people

• Test: Compare the confidence of the two rules

– Rule: Tea → coffee

– Default rule: all → coffee

• c(tea → coffee) = s(tea ∩ coffee)/s(tea)

• c(all → coffee) = s(all ∩ coffee)/s(all) = s(coffee) / 1

11/25/20 Heiko Paulheim 50

Lift

• Test: Compare the confidence of the two rules

– Rule: tea → coffee

– Default rule: all → coffee

• We accept a rule iff its confidence is higher than the default rule

– c(tea → coffee) = s(tea ∩ coffee)/s(tea)

– c(all → coffee) = s(all ∩ coffee)/s(all) = s(coffee) / 1

c(tea → coffee) > c(all → coffee)

↔ c(tea → coffee) / c(all → coffee) > 1

↔ s(tea ∩ coffee)/ (s(tea) * s(coffee)) > 1

Lift (X →Y)=
s(X∩Y)
s(X)×S (Y)

11/25/20 Heiko Paulheim 51

Lift

• The lift of an association rule X → Y is defined as:

• Interpretation:

– if lift > 1, then X and Y are positively associated

– if lift < 1, then X are Y are negatively associated

– if lift = 1, then X and Y are independent.

Lift (X →Y)=
s(X∩Y)
s(X)×S (Y)

11/25/20 Heiko Paulheim 52

Example: Lift

 Association Rule: Tea Coffee
s(Tea ∩ Coffee) = 0.15

s(Tea) = 0.2, s(Coffee) = 0.9

 Lift = 0.15/(0.2*0.9)= 0.8333 (< 1, therefore is
negatively associated)

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

11/25/20 Heiko Paulheim 53

Combination of Confidence and Lift/Correlation

• So why not try to find rules with high lift/correlation directly?

• By design, lift and correlation are symmetric

– i.e., lift(tea → coffee) = lift(coffee → tea)

• Confidence is asymmetric

– c(coffee → tea) is only 15/90 = 0.167

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

11/25/20 Heiko Paulheim 54

• There are lots of
measures
proposed in the
literature

• Some measures
are good for
certain
applications, but
not for others

• Details: see
literature
(e.g., Tan et al.)

Interestingness Measures

11/25/20 Heiko Paulheim 55

Handling Continuous and Categorical Attributes

• How to apply association analysis formulation
to other types of variables?

• Example of Association Rule:

 {Number of Pages [5,10) (Browser=Mozilla)} → {Buy = No}

Session
Id

Country Session
Length
(sec)

Number of
Web Pages

viewed
Gender

Browser
Type

Buy

1 USA 982 8 Male IE No

2 China 811 10 Female Netscape No

3 USA 2125 45 Female Mozilla Yes

4 Germany 596 4 Male IE Yes

5 Australia 123 9 Male Mozilla No

… … … … … … …
10

11/25/20 Heiko Paulheim 56

Handling Categorical Attributes

• Transform categorical attribute into
asymmetric binary variables

• Introduce a new “item” for each distinct
attribute-value pair

– Example: replace Browser Type attribute with

• Browser Type = Internet Explorer

• Browser Type = Mozilla

11/25/20 Heiko Paulheim 57

Handling Categorical Attributes

• Introduce a new “item” for each distinct
attribute-value pair

– Example: replace Browser Type attribute with

• Browser Type = Internet Explorer

• Browser Type = Mozilla

• This method is also known as one-hot-encoding

– We create n new variables, only one of which is 1 (“hot”) at a time

from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder()
enc.fit_transform(data)

11/25/20 Heiko Paulheim 58

Handling Categorical Attributes

• Potential Issues

– Many attribute values

• Many of the attribute values may have very low support

• Potential solution: Aggregate the low-support attribute values

– bin for “other”

– Highly skewed attribute values

• Example: 95% of the visitors have Buy = No

• Most of the items will be associated with (Buy=No) item

• Potential solution: drop the highly frequent items

11/25/20 Heiko Paulheim 59

Handling Continuous Attributes

• Transform continuous attribute into
binary variables using discretization

– Equal-width binning

– Equal-frequency binning

• Issue: Size of the intervals affects support & confidence

– Too small intervals: not enough support

– Too large intervals: not enough confidence

{Refund} = No, (51,253 Income 51,254)})} {Cheat = No}

{Refund} = No, (60K Income 80K)} {Cheat = No}

{Refund} = No, (0K Income 1B)} {Cheat = No}

11/25/20 Heiko Paulheim 60

Effect of Support Distribution

• Many real data sets have a skewed support distribution

Support
distribution of
a retail data set

11/25/20 Heiko Paulheim 61

Effect of Support Distribution

• How to set the appropriate minsup threshold?

– If minsup is set too high, we could miss itemsets involving interesting
rare items (e.g., expensive products)

– If minsup is set too low, it is computationally expensive and the number
of itemsets is very large

• Using a single minimum support threshold may not be effective

11/25/20 Heiko Paulheim 62

Multiple Minimum Support

• How to apply multiple minimum supports?

– MS(i): minimum support for item i

– e.g.: MS(Milk)=5%, MS(Coke) = 3%,
 MS(Broccoli)=0.1%, MS(Salmon)=0.5%

– MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli))
 = 0.1%

• Challenge: Support is no longer anti-monotone

– Suppose: Support(Milk, Coke) = 1.5% and
 Support(Milk, Coke, Broccoli) = 0.5

→ {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent

– Requires variations of Apriori algorithm

– Details: see literature

11/25/20 Heiko Paulheim 63

Association Rules with Temporal Components

• Good example:

– Star Wars ep. 7, Star Wars ep. 8
→ Star wars ep. 9

• Bad example:

– mobile phone → charger vs. charger → mobile phone

– are indistinguishable by frequent pattern mining

• both will be used for recommendation

– customers will select a charger after a mobile phone

• but not the other way around!

• however, Amazon does not respect sequences…

• See: Data Mining 2 for sequential pattern mining

11/25/20 Heiko Paulheim 64

Wrap-up

• Association Analysis:

– discovering patterns in data

– patterns are described by rules

• Apriori & FP-Growth algorithm:

– Finds rules with minimum support (i.e., number of transactions)

– and minimum confidence (i.e., strength of the implication)

• You'll play around with it in the upcoming exercise...

11/25/20 Heiko Paulheim 65

What’s Next?

• Data Mining 2 (next FSS)

• Machine Learning / Hot Topics in Machine Learning (HWS / FSS),
Prof. Gemulla

• Relational Learning (HWS), Dr. Meilicke

• Information Retrieval and Web Search (FSS), Prof. Glavaš

• Text Analytics (HWS), Prof. Ponzetto & Prof. Glavaš

• Web Mining (FSS), Prof. Ponzetto

• Image Processing (HWS) and
Higher-Level Computer Vision (FSS), Prof. Keuper

• Network Analysis (HWS), Prof. Stuckenschmidt

• Process Mining & Analytics (HWS), Prof. van der Aa & Prof. Rehse

11/25/20 Heiko Paulheim 66

Questions?

	Folie 1
	Outline
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Association Analysis
	Folie 9
	Definition: Frequent Itemset
	Folie 11
	Folie 12
	Association Rule Mining Task
	Mining Association Rules
	Folie 15
	2. Frequent Itemset Generation
	Folie 17
	Brute-force Approach
	Folie 19
	Folie 20
	Illustrating the Apriori Principle
	The Apriori Algorithm
	Folie 23
	3. Rule Generation
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Rule Generation for Apriori Algorithm
	Folie 30
	Folie 31
	FP-growth Algorithm
	FP-tree construction
	Folie 34
	FP-Tree Construction
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Frequent Itemset Generation in Rapidminer
	Folie 41
	Creating Association Rules in Rapidminer
	Exploring Association Rules in Rapidminer
	Folie 44
	4. Interestingness Measures
	Drawback of Confidence
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Lift
	Example: Lift
	Folie 53
	Slide 64
	Folie 55
	Folie 56
	Handling Categorical Attributes
	Folie 58
	Handling Continuous Attributes
	Effect of Support Distribution
	Folie 61
	Multiple Minimum Support
	Folie 63
	Folie 64
	Folie 65
	Questions?

