UNIVERSITÄT MANNHEIM

Heiko Paulheim

Outline

- 1. What is Association Analysis?
- 2. Frequent Itemset Generation
- 3. Rule Generation
- 4. Interestingness Measures
- 5. Handling Continuous and Categorical Attributes

Association Analysis

- First algorithms developed in the early 90s at IBM by Agrawal & Srikant
- Motivation
 - Availability of barcode cash registers

11/25/20 Heiko Paulheim

Association Analysis

- initially used for Market Basket Analysis
 - to find how items purchased by customers are related
- later extended to more complex data structures
 - sequential patterns (see Data Mining II)
 - subgraph patterns
- and other application domains
 - life science
 - social science
 - web usage mining

Simple Approaches

- To find out if two items x and y are bought together, we can compute their correlation
- E.g., Pearson's correlation coefficient:

$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \sqrt{\sum (y_i - \overline{y})^2}}$$

- Numerical coding:
 - 1: item was bought
 - 0: item was not bought
- \overline{x} : average of x (i.e., how often x was bought)

Correlation Analysis in RapidMiner

Correlation Matrix (Correlation Matrix)										
Table View O Pairwise Table O Plot View Annotations										
Attributes ThinkPad X Asus EeePC HP Laserjet 2 GB DDR3 8 GB DDR3 Lenovo Tab Netbook-Sc HP CE50 T LT Laser M LT Minimaus						LT Minimaus				
ThinkPad X2	1	-1	0.356	-0.816	0.612	0.583	-0.667	0.356	0.167	-0.408
Asus EeePC	-1	1	-0.356	0.816	-0.612	-0.583	0.667	-0.356	-0.167	0.408
HP Laserjet	0.356	-0.356	1	-0.218	-0.327	0.356	-0.535	1	-0.089	-0.655
2 GB DDR3	-0.816	0.816	-0.218	1	-0.500	-0.816	0.816	-0.218	0	0.200
8 GB DDR3	0.612	-0.612	-0.327	-0.500	1	0.102	-0.408	-0.327	0.102	0
Lenovo Tabl	0.583	-0.583	0.356	-0.816	0.102	1	-0.667	0.356	-0.250	0
Netbook-Sch	-0.667	0.667	-0.535	0.816	-0.408	-0.667	1	-0.535	0.167	0.408
HP CE50 To	0.356	-0.356	1	-0.218	-0.327	0.356	-0.535	1	-0.089	-0.655
LT Laser Ma	0.167	-0.167	-0.089	0	0.102	-0.250	0.167	-0.089	1	-0.408
LT Minimaus	-0.408	0.408	-0.655	0.200	0	0	0.408	-0.655	-0.408	1

Correlation Analysis in Python

• e.g., using Pandas:

```
import seaborn as sns
corr = dataframe.corr()
sns.heatmap(corr)
```


11/25/20 Heiko Paulheim

Association Analysis

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Examples of Association Rules

{Diaper} \rightarrow {Beer}, {Milk, Bread} \rightarrow {Eggs,Coke}, {Beer, Bread} \rightarrow {Milk},

> → denotes co-occurence, not causality!

Correlation vs. Causality

http://xkcd.com/552/

Definition: Frequent Itemset

- Itemset
 - A collection of one or more items
 - Example: {Milk, Bread, Diaper}
 - k-itemset
 - An itemset that contains k items
- Support (s)
 - Frequency of occurrence of an itemset
 - e.g. s({Milk, Bread, Diaper}) = 2/5
- Frequent Itemset
 - An itemset w/ support ≥ a minimum support threshold (minsup)

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

- Association Rule
 - An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Interpretation: when X occurs, Y occurs with a certain probability

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- More formally, it's a *conditional probability*
 - P(Y|X) given X, what is the probability of Y?
- Known as confidence (c)
 - e.g., for {Bread, Milk} \rightarrow {Diaper}, the probability is 2/3

Definition: Evaluation Metrics

- Given the rule {Milk, Diaper} \rightarrow {Beer}
- Support:
 - Fraction of total transactions which contain both X and Y

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|\mathsf{T}|} = \frac{2}{5} = 0.4$$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Confidence:
 - Fraction of transactions containing X which also contain Y

$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support \geq minsup threshold
 - confidence ≥ minconf threshold
- minsup and minconf are provided by the user
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Remove rules that fail the minsup and minconf thresholds
 - → Computationally prohibitive due to large number of candidates!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Examples of Rules:

- {Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)
- {Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)
- {Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)
- {Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
- {Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)
- {Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)

Observations

- All the above rules are partitions of the same itemset, i.e. {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support

$$s(X \rightarrow Y) := \frac{|X \cup Y|}{|T|}$$

- but can have different confidence
- \rightarrow we may decouple the support and confidence requirements

Apriori Algorithm: Basic Idea

- Two-step approach
- First: Frequent Itemset Generation
 - Generate all itemsets whose support \geq minsup
- Second: Rule Generation
 - Generate high confidence rules from each frequent itemset
 - where each rule is a binary partitioning of a frequent itemset
- However: Frequent itemset generation is still computationally expensive....

Frequent Itemset Generation

11/25/20 Heiko Paulheim

Brute-force Approach

- Amazon sells 12M different products (as of 2020)
- 21200000=8.871×103612359
 - That's a 3.6M digit number
- Today's fastest computer
 - 200 Petaflops, i.e., 2x1017 floating point operations per second
- Even if an itemset could be checked with one single floating point operation
 - this would take 1.4×10³⁶¹²³³⁵ years
- Comparision: age of the universe is 1.4×10¹⁰ years!

Brute-force Approach

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database
- Match each transaction against every candidate

- Complexity ~ $O(NMw) \rightarrow Expensive since M = 2^d$
- A smarter algorithm is required

Anti-Monotonicity of Support

- What happens when an itemset gets larger?
- s({Bread}) = 0.8
 - s({Bread,Milk}) = 0.6
 - s({Bread,Milk,Diaper}) = 0.4

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- s({Milk}) = 0.8
 - s({Milk,Diaper}) = 0.6
 - s({Milk,Diaper,Beer}) = 0.4
- There is a pattern here!

Anti-Monotonicity of Support

- There is a pattern here!
 - It is called *anti-monitonicity* of support
- If X is a subset of Y
 s(Y) is at most as large as s(X)

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

$$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$$

- Consequence for frequent itemset search (aka Apriori principle):
 - If Y is frequent, X also has to be frequent
 - i.e.: all subsets of frequent itemsets are frequent

Illustrating the Apriori Principle

The Apriori Algorithm

- 1. Start at k=1
- 2. Generate frequent itemsets of length k=1
- 3. Repeat until no new frequent itemsets are identified
 - 1. Generate length (k+1) candidate itemsets from length k frequent itemsets; increase k
 - 2. Prune candidate itemsets that cannot be frequent because they contain subsets of length k that are infrequent (Apriori Principle)
 - 3. Count the support of each remaining candidate by scanning the DB
 - 4. Eliminate candidates that are infrequent, leaving only those that are frequent

Illustrating the Apriori Principle

From Frequent Itemsets to Rules

- Given a frequent itemset F, find all non-empty subsets f ⊆ F such that f → F \ f satisfies the minimum confidence requirement
- Example Frequent Itemset:
 - F= {Milk,Diaper,Beer}
- Example Rule:
 - f = {Milk,Diaper}
 - {Milk,Diaper} \rightarrow {Beer}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Challenge: Combinatorial Explosion

- Given a 4-itemset {A,B,C,D}, we can generate ${A} \rightarrow {B,C,D}, {B} \rightarrow {A,C,D}, {C} \rightarrow {A,B,D}, {D} \rightarrow {A,B,C},$ ${A,B} \rightarrow {C,D}, {A,C} \rightarrow {B,D}, {A,D} \rightarrow {B,C},$ ${B,C} \rightarrow {A,D}, {B,D} \rightarrow {A,C}, {C,D} \rightarrow {A,B},$ ${A,B,C} \rightarrow {D}, {A,B,D} \rightarrow {C}, {A,C,D} \rightarrow {B}, {B,C,D} \rightarrow {A}$
- i.e., a total of 14 rules for just one itemset!
- General number for a k-itemset: 2^k-2
 - it's not 2^k since we ignore $\emptyset \to {\dots}$ and ${\dots} \to \emptyset$

Challenge: Combinatorial Explosion

- Wanted: another pruning trick like Apriori principle
- However

 $\{Milk, Diaper\} \rightarrow \{Beer\} c=0.67$ $\{Milk\} \rightarrow \{Beer\} c=0.5$ $\{Diaper\} \rightarrow \{Beer\} c=0.8$

• It's obviously not as straight forward

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Challenge: Combinatorial Explosion

- Wanted: another pruning trick like Apriori principle
- Let's look at it another way
 - {Milk,Diaper,Beer} $\rightarrow Ø$ c=1.0
 - {Milk,Diaper} \rightarrow {Beer} c=0.67
 - {Milk} \rightarrow {Diaper,Beer} c=0.5
 - {Diaper} \rightarrow {Milk,Beer} c=0.5
 - {Milk,Beer} \rightarrow {Diaper} c=1.0
 - {Milk} \rightarrow {Diaper,Beer} c=0.5
 - {Beer} \rightarrow {Milk,Diaper} c=0.67

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

• **Observation:** moving elements in the rule from left to right never increases confidence!

Rule Generation

- Confidence is anti-monotone w.r.t. number of items on the RHS of the rule
 - i.e., "moving elements from left to right" cannot increase confidence
 - reason:

$$c(AB \rightarrow C) := \frac{s(ABC)}{s(AB)} \quad c(A \rightarrow BC) := \frac{s(ABC)}{s(A)}$$

- Due to anti-monotone property of support, we know
 - $S(AB) \leq S(A)$
- Hence
 - $c(AB \rightarrow C) \ge C(A \rightarrow BC)$

Rule Generation for Apriori Algorithm

Rule Generation for Apriori Algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join(CD=>AB, BD=>AC)
 - would produce the candidate rule D => ABC
- Prune rule D=>ABC
 - if its subset AD=>BC does not have high confidence

• All the required information for confidence computation has already been recorded during itemset generation. \rightarrow No need to see the data anymore! $c(X \rightarrow Y) := \frac{s(X \cup Y)}{s(X)}$

Complexity of Apriori Algorithm

- Expensive part is scanning the database
 - i.e., when counting the support of frequent itemsets
- The database is scanned once per pass of frequent itemset generation
 - one pass to count frequencies of 1-itemsets
 - one pass to count frequencies of 2-itemsets
 - etc.
- i.e., for frequent itemsets of size $\leq k$,
 - k passes over the database are required

FP-growth Algorithm

- An alternative method for finding frequent itemsets
 - usually faster than Apriori
 - requires at most two passes over the database
- Use a compressed representation of the database using an FP-tree
- Once an FP-tree has been constructed, it uses a recursive divideand-conquer approach to mine the frequent itemsets

After reading TID=3:

11/25/20 Heiko Paulheim

- Properties of the FP-Tree
 - a very compact representation
 - fits in memory
 - even for larger transaction databases
 - more transactions of the same kind do not increase the tree size
 - can be optimized
 - sorting most frequent items first
 - good compression for many similar transactions
 - up-front pruning of infrequent itemsets

From the FP Tree to Patterns

• Naively:

From the FP Tree to Paths

- Enumeration:
 - A:7, AB:5, AC:3, AD:1, BC:3, CD:1, ABC:3, ABCD:1, ...
- However, we can do better
 - Single path tree: enumerate all subsets
 - Multi path tree: Build FP-Tree of subtrees recursively
 - For that recursion, we use the links
 - e.g., build FP-Tree for all itemsets ending in E
- Details
 - See literature

FP-Growth (Summary)

- Scans the database only twice:
 - first scan counts all 1-itemsets
 - for ordering by most frequent (more compact tree)
 - and for removing itemsets below minsup
 - second scan for constructing the FP-tree
 - recursive constructions only work on compact representation, not the actual database
- Finding patterns from the tree
 - algorithm recursively decomposes the tree into smaller subtrees
 - details: see books

Frequent Itemset Generation in Rapidminer

🌔 📴 Parameters 😹 🖨 🔟					
að 🗸 🛊? 🔟 🔯 🌛 🗸	🍒 😼 🖻 🦻 🕏 🗸				
	🎘 FP-	Growth			
FP-Growth	🔲 find min number of itemsets				
exa exa res fre res	positive value				
•	min support	0.3			
	max items	-1			
	must contain				

Frequent Itemset Generation in Rapidminer

No. of Sets: 22	Size	Support	Item 1	Item 2	Item 3	Item 4
Total Max. Size: 4	1	0.600	Asus EeePC			
	1	0.500	LT Minimaus			
	1	0.500	2 GB DDR3			
Min. Size: 1	1	0.400	ThinkPad X2			
Max. Size: 4	1	0.400	Netbook-Sch			
Contains Item:	1	0.400	Lenovo Tabl			
	1	0.400	LT Laser Ma			
	1	0.300	HP Laserjet			
Undate View	1	0.300	HP CE50 To			
	2	0.400	Asus EeePC	LT Minimaus		
	2	0.500	Asus EeePC	2 GB DDR3		
	2	0.400	Asus EeePC	Netbook-Sch		
	2	0.300	LT Minimaus	2 GB DDR3		
	2	0.300	LT Minimaus	Netbook-Sch		
	2	0.400	2 GB DDR3	Netbook-Sch		
	2	0.300	ThinkPad X2	Lenovo Tabl		
	2	0.300	HP Laserjet	HP CE50 To		
	3	0.300	Asus EeePC	LT Minimaus	2 GB DDR3	
	3	0.300	Asus EeePC	LT Minimaus	Netbook-Sch	
	3	0.400	Asus EeePC	2 GB DDR3	Netbook-Sch	
	3	0.300	LT Minimaus	2 GB DDR3	Netbook-Sch	
	4	0.300	Asus EeePC	LT Minimaus	2 GB DDR3	Netbook-Sch

Creating Association Rules in Rapidminer

	🖉 Parameters 💥 🖨 🖻		
að 🗕 🗊 🔟 🌛 🗕	🍒 😼 💀 🦻 🕵 🕶		
	Create Association Rules		
	criterion	confidence 💌	
	min confidence	0.1	
FP-Growth Create Association Rules exa exa fre ite rul ite	\Lambda 2 hidden expert parameters		

Exploring Association Rules in Rapidminer

🛒 Result Overview 🛛 🕅 🕅 AssociationRules (Create Association Rules) 🛛 🕅 💿 Table View 🔘 Graph View 🔘 Text View 🔘 Annotations Premises Conclusion Support Confidence Show rules matching No. marital-status = Never-married class = <=50K 0.310 0.957278 all of these conclusions: 266 age = range1 [-∞ - 31.500] class = <=50K 0.330 0.938 236 sex = Female class = <=50K 0.308 0.917 native-country = United-States workclass = Private race = White 157 class = <=50K 0.510 0.775 class = <=50K native-country = United-States, worl class = <=50K 0.751 154 0.440 sex = Male race = White, workclass = Private 0.749 153 class = <=50K 0.418 workclass = Private 0.736 native-country = United-States 150 class = <=50K 0.646 marital-status = Married-civ-spouse native-country = United-States, race class = <=50K 149 0.732 0.376 relationship = Husband 148 race = White class = <=50K 0.614 0.721 age = range1 [-∞ - 31.500] 0.715 147 native-country = United-States, race class = <=50K 0.556 sex = Female sex = Male, workclass = Private 0.699 146 class = <=50K 0.302 age = range3 [44.500 - ∞] marital-status = Never-married Min. Criterion: confidence Min. Criterion Value:

Frequent Itemset Mining in Python

- Various packages exist
 - In the exercise, we'll use the Orange3 package

itemsets = dict(fp_growth.frequent_itemsets(X, .2))
rules = association_rules(itemsets, .8)

11/25/20 Heiko Paulheim

Interestingness Measures

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if {A,B,C} → {D} and {A,B} → {D} have same support & confidence
- Interestingness measures can be used to prune or rank the derived rules
- In the original formulation of association rules, support & confidence are the only interest measures used
- Later, various other measures have been proposed
 - See Tan/Steinbach/Kumar, Chapter 6.7
 - We will have a look at two: Correlation & Lift

Drawback of Confidence

	Coffee	Coffee	
Теа	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

• Confidence= s(Tea \cap Coffee)/s(Tea) = 15/20 = 0.75

Correlation

- We discover a high confidence rule for tea \rightarrow coffee
 - 75% of all people who drink tea also drink coffee
 - Hypothesis: people who drink tea are likely to drink coffee
 - Implicitly: more likely than people not drinking tea
- Cross check:
 - What is the confidence of not(tea) \rightarrow coffee?
 - Even higher: ~94% of people who **don't** drink tea do drink coffee
- We have two rules here
 - One is learned on all people who drink tea
 - The other is learned on all people who don't trink tea
 - Only together, they cover the whole dataset

Correlation

- Correlation takes into account all data at once
- In our scenario: corr(tea,coffee) = -0.25
 - i.e., the correlation is negative
 - Interpretation: people who drink tea are **less** likely to drink coffee

	Coffee	Coffee	
Теа	15	5	20
Tea	75	5	80
	90	10	100

- We discover a high confidence rule for tea \rightarrow coffee
 - 75% of all people who drink tea also drink coffee
 - Hypothesis: people who drink tea are likely to drink coffee
 - Implicitly: more likely than **all** people
- Test: Compare the confidence of the two rules
 - Rule: Tea \rightarrow coffee
 - Default rule: all \rightarrow coffee
- $c(tea \rightarrow coffee) = s(tea \cap coffee)/s(tea)$
- c(all → coffee) = s(all ∩ coffee)/s(all) = s(coffee) / 1

- Test: Compare the confidence of the two rules
 - Rule: tea \rightarrow coffee
 - Default rule: all \rightarrow coffee
- We accept a rule iff its confidence is higher than the default rule
 - c(tea \rightarrow coffee) = s(tea \cap coffee)/s(tea)
 - $c(all \rightarrow coffee) = s(all \cap coffee)/s(all) = s(coffee) / 1$

 $\begin{array}{l} \mathsf{c}(\mathsf{tea} \to \mathsf{coffee}) > \mathsf{c}(\mathsf{all} \to \mathsf{coffee}) \\ \leftrightarrow \mathsf{c}(\mathsf{tea} \to \mathsf{coffee}) / \mathsf{c}(\mathsf{all} \to \mathsf{coffee}) > 1 & Lift(X \Rightarrow Y) = \frac{s(X \cap Y)}{s(X) \times S(Y)} \\ \leftrightarrow \mathsf{s}(\mathsf{tea} \cap \mathsf{coffee}) / (\mathsf{s}(\mathsf{tea}) * \mathsf{s}(\mathsf{coffee})) > 1 & \end{array}$

Lift

• The *lift* of an association rule $X \rightarrow Y$ is defined as:

$$Lift(X \rightarrow Y) = \frac{s(X \cap Y)}{s(X) \times S(Y)}$$

- Interpretation:
 - if lift > 1, then X and Y are positively associated
 - if lift < 1, then X are Y are negatively associated
 - if lift = 1, then X and Y are independent.

Example: Lift

	Coffee	Coffee	
Теа	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

s(Tea \cap Coffee) = 0.15

s(Tea) = 0.2, s(Coffee) = 0.9

 \Rightarrow Lift = 0.15/(0.2*0.9)= 0.8333 (< 1, therefore is negatively associated)

11/25/20 Heiko Paulheim

Combination of Confidence and Lift/Correlation

- So why not try to find rules with high lift/correlation directly?
- By design, lift and correlation are symmetric
 - i.e., lift(tea \rightarrow coffee) = lift(coffee \rightarrow tea)
- Confidence is *asymmetric*
 - c(coffee \rightarrow tea) is only 15/90 = 0.167

	Coffee	Coffee	
Теа	15	5	20
Tea	75	5	80
	90	10	100

Interestingness Measures

- There are lots of measures proposed in the literature
- Some measures are good for certain applications, but not for others
- Details: see literature (e.g., Tan et al.)

#	Measure	Formula
1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
2	Goodman-Kruskal's (λ)	$\frac{\sum_{j \max_{k} P(A_{j}, B_{k}) + \sum_{k \max_{j} P(A_{j}, B_{k}) - \max_{k} P(A_{j}, B_{k}) - \max_{k} P(A_{j}, B_{k}) - \max_{k} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
3	${\rm Odds\ ratio}\ (\alpha)$	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
4	Yule's Q	$\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{A},\overline{B}) + P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$
5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A},B)} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$
6	Kappa (κ)	$\frac{\sqrt{P(A,B)P(AB)} + \sqrt{P(A,B)P(A,B)}}{\frac{P(A,B) + \sqrt{P(A,B)P(A)P(B)}}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}}$
7	Mutual Information (M)	$\frac{\sum_{i}\sum_{j} P(A_{i},B_{j}) \log \frac{\nabla(A_{i},Y_{j})}{P(A_{i})P(B_{j})}}{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{j} P(B_{j}) \log P(B_{j}))}$
8	J-Measure (J)	$\max \Big(P(A,B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(B A)}{P(\overline{B})}),$
		$P(A,B)\log(rac{P(A B)}{P(A)}) + P(\overline{A}B)\log(rac{P(\overline{A} B)}{P(\overline{A})}))$
9	Gini index (G)	$\left \max \left(P(A) [P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A}) [P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right \right $
		$(-P(B)^2 - P(\overline{B})^2,$
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
		$-P(A)^2 - P(\overline{A})^2$
10	Support (s)	P(A,B)
11	Confidence (c)	$\max(P(B A), P(A B))$
12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})},\frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
15	$\cos (IS)$	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
16	$\operatorname{Piatetsky-Shapiro's}\left(PS ight)$	P(A,B) - P(A)P(B)
17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
18	Added Value (AV)	$\max(P(B A)-P(B),P(A B)-P(A))$
19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
20	Jaccard (ζ)	$\frac{P(A,B)}{P(A) \perp P(B) - P(A,B)}$
21	Klosgen (K)	$\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))$

Handling Continuous and Categorical Attributes

 How to apply association analysis formulation to other types of variables?

Session Id	Country	Session Length (sec)	Number of Web Pages viewed	Gender	Browser Type	Buy
1	USA	982	8	Male	IE	No
2	China	811	10	Female	Netscape	No
3	USA	2125	45	Female	Mozilla	Yes
4	Germany	596	4	Male	IE	Yes
5	Australia	123	9	Male	Mozilla	No

• Example of Association Rule:

{Number of Pages \in [5,10) \land (Browser=Mozilla)} \rightarrow {Buy = No}

Handling Categorical Attributes

- Transform categorical attribute into asymmetric binary variables
- Introduce a new "item" for each distinct attribute-value pair
 - Example: replace Browser Type attribute with
 - Browser Type = Internet Explorer
 - Browser Type = Mozilla

	Nominal to	Binominal	
-(exa	exa)	
	R	ori 🕽	
	~	pre D	
	•		

Handling Categorical Attributes

- Introduce a new "item" for each distinct attribute-value pair
 - Example: replace Browser Type attribute with
 - Browser Type = Internet Explorer
 - Browser Type = Mozilla
- This method is also known as one-hot-encoding
 - We create n new variables, only one of which is 1 ("hot") at a time

```
from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder()
enc.fit transform(data)
```

Handling Categorical Attributes

- Potential Issues
 - Many attribute values
 - Many of the attribute values may have very low support
 - Potential solution: Aggregate the low-support attribute values

 bin for "other"
 - Highly skewed attribute values
 - Example: 95% of the visitors have Buy = No
 - Most of the items will be associated with (Buy=No) item
 - Potential solution: drop the highly frequent items

Handling Continuous Attributes

- Transform continuous attribute into binary variables using discretization
 - Equal-width binning
 - Equal-frequency binning

- Issue: Size of the intervals affects support & confidence $\{\text{Refund} = \text{No}, (51,253 \leq \text{Income} \leq 51,254)\} \rightarrow \{\text{Cheat} = \text{No}\}$ $\{\text{Refund} = \text{No}, (60\text{K} \leq \text{Income} \leq 80\text{K})\} \rightarrow \{\text{Cheat} = \text{No}\}$ $\{\text{Refund} = \text{No}, (0\text{K} \leq \text{Income} \leq 1\text{B})\} \rightarrow \{\text{Cheat} = \text{No}\}$
 - Too small intervals: not enough support
 - Too large intervals: not enough confidence

Effect of Support Distribution

Many real data sets have a skewed support distribution

11/25/20 Heiko Paulheim

Effect of Support Distribution

- How to set the appropriate *minsup* threshold?
 - If *minsup* is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
 - If *minsup* is set too low, it is computationally expensive and the number of itemsets is very large
- Using a single minimum support threshold may not be effective

Multiple Minimum Support

- How to apply multiple minimum supports?
 - MS(i): minimum support for item i
 - e.g.: MS(Milk)=5%, MS(Coke) = 3%, MS(Broccoli)=0.1%, MS(Salmon)=0.5%
 - MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli))= 0.1%
- Challenge: Support is no longer anti-monotone
 - Suppose: Support(Milk, Coke) = 1.5% and Support(Milk, Coke, Broccoli) = 0.5
 - \rightarrow {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent
 - Requires variations of Apriori algorithm
 - Details: see literature

Association Rules with Temporal Components

- Good example:
 - Star Wars ep. 7, Star Wars ep. 8 → Star wars ep. 9

- Bad example:
 - mobile phone \rightarrow charger vs. charger \rightarrow mobile phone
 - are indistinguishable by frequent pattern mining
 - both will be used for recommendation
 - customers will select a charger after a mobile phone
 - but not the other way around!
 - however, Amazon does not respect sequences...
- See: Data Mining 2 for sequential pattern mining

Wrap-up

- Association Analysis:
 - discovering patterns in data
 - patterns are described by rules
- Apriori & FP-Growth algorithm:
 - Finds rules with minimum support (i.e., number of transactions)
 - and minimum confidence (i.e., strength of the implication)
- You'll play around with it in the upcoming exercise...

What's Next?

- Data Mining 2 (next FSS)
- Machine Learning / Hot Topics in Machine Learning (HWS / FSS), Prof. Gemulla
- Relational Learning (HWS), Dr. Meilicke
- Information Retrieval and Web Search (FSS), Prof. Glavaš
- Text Analytics (HWS), Prof. Ponzetto & Prof. Glavaš
- Web Mining (FSS), Prof. Ponzetto
- Image Processing (HWS) and Higher-Level Computer Vision (FSS), Prof. Keuper
- Network Analysis (HWS), Prof. Stuckenschmidt
- Process Mining & Analytics (HWS), Prof. van der Aa & Prof. Rehse

Questions?

