Data Mining I

3.1. Should we play golf?

The Golf data set is one of the examples that are delivered together with RapidMiner. The data set models different aspects of the weather (outlook, temperature, humidity, forecast) that are relevant for deciding whether one should play golf or not.

1. Learn a naïve bayes model from the Golf data set (Operator: Naïve Bayes). Use this model to classify the examples in the Golf-Testset, which is also delivered together with RapidMiner (Operator: Apply Model). Think about ways how you can evaluate the performance of your model. What measures can be calculated from the resulting dataset?
2. Evaluate the performance of your model by adding a Performance (Classification) operator to your process. Examine the confusion matrix. What is the accuracy of your classifier?
3. Does a k-nearest-neighbor classifier work better for this task? Replace the Naïve Bayes operator with a K-NN operator and check how the accuracy of your classifier changes to find out. Do different values of k improve the performance?

3.2. Learning a classifier for the Iris Data Set

You want to learn and evaluate a classifier for recognizing different types of Iris flowers.

1. Let’s try the Naïve Bayes algorithm first. Build a process that uses the Split Validation operator (split ratio=0.7, stratified sampling) to generate a training and test data set. As inner operator of the split validation, the process should use the Naïve Bayes operator to learn a model and the Apply Model and Performance (Classification) operators to evaluate the accuracy of the learned model.
2. Try a k-nearest-neighbor classifier on the problem. Does it perform better?

3.3 More Classification

In the lecture, you learned about the Nearest Centroid Classifier. For this classifier, RapidMiner does not provide you with an operator. So, you have to install the “Mannheim RapidMinerToolbox” in order to use this classifier.

1. Install the “Mannheim RapidMinerToolbox” from the Marketplace (“Extensions” -> “Marketplace”)
2. Compare kNN and Nearest Centroid Classification using the “Weighting” dataset from the RapidMiner Samples Repository.