Classification

Exercise 4
Decision Tree Classifiers

Training Data

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Terminal node = decision

Splitting Attributes

Model: Decision Tree
Attribute Test Conditions

• Depend on attribute types
 • Nominal values: Each partition contains a set of values
 • Continuous values: Each partition contains a range of values
How to determine the best split?

• Measure the node impurity of the split
 • Gini Index
 • Information Gain
 • Gain Ratio
 • Classification Error

• The higher the measure, the less pure is the node
 • We want nodes to be as pure as possible

\[
\text{GINI}(t) = 1 - \sum_i [p(i|t)]^2
\]

\[
\text{GINI}_{\text{split}} = \sum_i \frac{n_i}{n} \text{GINI}(i)
\]

\[
\text{GainRatio}_{\text{split}} = \text{Entropy}(p) - \left(\sum_i \frac{n_i}{n} \text{Entropy}(i) \right)
\]

\[
\text{Gain}_{\text{split}} = \text{Entropy}(p) - \left(\max_i \right)
\]

\[
\text{SplitINFO} = \sum_{j} p(j|t) \log_2 p(j|t)
\]
Gini Index

• Gini Index for a given node \(t \)
 • 0 – all records belong to the same class
 • Max. (depends on number of classes) – records are equally distributed among classes

• Gini Index of a given split
 • The Gini index of each node in the split is weighted according to it’s size

\[
\begin{array}{|c|c|}
\hline
C1 & 5 \\
\hline
C2 & 1 \\
\hline
\text{Gini}=0.278
\end{array} \quad \begin{array}{|c|c|}
\hline
C1 & 1 \\
\hline
C2 & 5 \\
\hline
\text{Gini}=0.278
\end{array} \quad \begin{array}{|c|c|}
\hline
C1 & 5 \\
\hline
C2 & 2 \\
\hline
\text{Gini}=0.408
\end{array} \quad \begin{array}{|c|c|}
\hline
C1 & 1 \\
\hline
C2 & 4 \\
\hline
\text{Gini}=0.320
\end{array}
\]

\[
\frac{6}{12} \cdot 0.278 + \frac{6}{12} \cdot 0.278 = 0.278 \]

\[
\frac{7}{12} \cdot 0.408 + \frac{5}{12} \cdot 0.320 = 0.371
\]

This is the better split!
Operators: ID3

• Input Port
 • Training data (Example Set)

• Output Ports
 • Classification Model
 • Training data (Example Set)

• Parameters
 • Split criterion (measure)
 • Minimal size for split (examples)
 • Minimal leaf size (examples)
 • Minimal gain (for split)

• Can only handle nominal attributes!
Operators: Decision Tree

- **Input Port**
 - Training data (Example Set)

- **Output Ports**
 - Classification Model
 - Training data (Example Set)

- **Parameters**
 - Split criterion (measure)
 - Maximal depth (-1 = unlimited)
 - Minimal size for split (examples)
 - Minimal leaf size (examples)
 - Minimal gain (for split)
 - Pruning
Pre-processing for Classification

• After learning a classifier our results can be bad

• What can we do?
 • Change parameters
 • Change pre-processing

• We add some of our knowledge to the dataset by pre-processing
 • Change the range of values (normalisation)
 • Transform value types
 • Manipulate how attributes are split for decision trees (discretisation)
Operators: Discretize

• Input Port
 • Example Set

• Output Ports
 • Changed Example Set
 • Original Example Set
 • Pre-processing Model

• Transforms numerical attributes into nominal attributes
Discretization Techniques

- Equally sized number of examples per bin
 - **Discretize by Size**: Specify the size of the bins
 - **Discretize by Frequency**: Specify the number of bins
Discretization Techniques

• Equally sized data range per bin
 • **Discretize by Binning**: Specify the data range of bins

```
| Bin Range | 1-10 | 11-20 | 21-30 | 31-40 |
```

4 bins
Discretization Techniques

• Varying data range per bin
 • Discretize by User Specification: Specify the range per bin
 • Discretize by Entropy: Don’t Specify anything, minimise entropy

1-2
2-13
14-180
181-200
Balancing

• The number of instances per class affects model learning and evaluation
 • Same as with normalisation, we don’t want to emphasize one specific class
 • So, we make sure all classes are evenly distributed (but only in the training set!)

• Example: 9,999 examples for class A, 1 for class B
 • Classify everything as class A has 99.99% accuracy
 • K-NN with $K \geq 3$ will always predict class A

• Counter-Example: 500 examples for class A and B
 • Classify everything as class A has 50% accuracy
Operators: Sample / Downsampling in Rapid Miner

• Input Port
 • Example Set

• Output Ports
 • Sampled data (Example Set)
 • Original Example Set

• Parameters
 • Sample (type)
 • Balance data (downsampling)
 • Sample size

Universität Mannheim - Paulheim: Data Mining I
Upsampling in Rapid Miner

• Goal: Duplicate the examples of the under-represented class
 • Create a filter that only keeps the smaller class
 • Append the result to the original example set

• What’s the effect?
 • Better relative distribution of the classes (more balanced)
 • But: no new information from duplicated examples
 • Better: find new examples for the small classes
Balancing is only done for training data!!!

- Otherwise, you would evaluate on duplicate examples!

Never balance your test data!
Additional Evaluation Methods

- Last exercise we looked at Accuracy, Precision & Recall

- We can also measure the cost of classification errors
 - Classifying a good part as broken costs the manufacturing cost
 - Classifying a broken part as good leading to an airplane crash may cost a little more!

- If we sum up the cost of the errors, we get an estimation of the total cost on the test data
Operators: Performance (Costs)

- **Input Port**
 - Labelled Example Set

- **Output Ports**
 - Original Input data
 - Performance Vector

- **Parameters**
 - Cost Matrix
 - Class Order
Comparing Classification Results

• Receiver-Operating Characteristic (ROC) curve
 • Predictions ordered by confidence
 • Correct predictions increase steepness, incorrect predictions reduce it
 • Random guessing results in diagonal
 • Interpretation: Curve A above B means algorithm A better than B
 • See also: Area Under the Curve (AUC)

• Definitions
 • Only for binominal classification!
 • X-axis: False positive rate (=Fall-out)
 • False positive / actual negative
 • Y-axis: True positive rate (=Recall)
 • True positive / actual positive
Operators: Compare ROC

• Input Port
 • Training data (Example Set)

• Output Port
 • Training data (Example Set)
 • ROC comparison

• Parameters
 • Number of folds (Cross-Validation)
 • Split ratio (Split-Validation)
 • Used if Number of folds = -1
 • ROC bias
 • Optimistic: correct predictions first
 • Pessimistic: wrong predictions first
 • Neutral: alternate
Operators: Compare ROC (nested process)

- Add learning operators for all models that should be compared