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Data Mining I 
Exercise 4: Classification 
General notice: Please use “local seeds” with X-Validation and a value of “1992” to be comparable. 

4.1. Learning a classifier for the Iris Data Set – Part II 
Last exercise, you have learned lazy classification models for the Iris dataset. Now try a Decision Tree 
based approach with 10-fold cross-validation. 

1. Let’s try the ID3 tree building algorithm first. Build a process that (1) discretizes all attributes 
of the Iris data set by frequency into three bins. (2) Afterwards, the process should use the X-
Validation operator (10 folds, stratified sampling) to generate a training and test data set. (3) 
As inner operator of the x-validation, the process should use the ID3 operator to learn a 
decision tree and the Performance (Classification) operator to evaluate the accuracy of the 
learned model. 

2. Remove the discretization operator and change the ID3 operator into RapidMiner’s standard 
Decision Tree building operator. Run the process again. Does the accuracy change? Compare 
the complexity of the two models. Which model should be preferred according to Occam’s 
razor? 

4.2. Who should get a bank credit? 
The German credit data set from the UCI data set library (http://archive.ics.uci.edu/ ml/index.html) 
describes the customers of a bank in respect whether they should get a bank credit or not. The data 
set is provided as credit-g.arff file on the website. You need to use the RapidMiner ARFF reader 
operator to import the data set. Please also have a look at the data set documentation that is 
included in the file. 

1. Apply the Compare ROCs Operator to the dataset and include k-NN (different k values), 
Decision Tree and Naïve Bayes classification. Which classification approach looks most 
promising to you?  

2. Include the most promising classification approaches and try to optimize the results using a 
10-fold X-Validation approach. Which level of accuracy do you reach? 

3. What does the precision and recall values for the class “bad” customer tell you? Try to 
improve the situation by increasing the number of “bad” customers in the training set. For 
doing this, you first filter all bad customers from the data set and then append these 
customers to the original set. How does precision and recall change if you apply this 
procedure twice? Use the Filter Examples Operator and Append the output to the original 
dataset. 

4. To model a use case-specific evaluation, as observed in the previous example, replace the 
Performance (Classification) operator by the Performance (Costs) operator. Set up your cost 
matrix by assuming that you will lose 1 unit if you refuse a credit to a good customer, but 



 

that you lose 100 units if you give a bad customer a credit. Rerun the experiments from 4.2.2 
and evaluate the results. 

5. As the creation of training data is mostly a manual task and humans tend to be fallible, 
training data might include noise. Simulate this behavior by using the Add Noise operator and 
change the parameter “label noise” from 0% to 10% to 20%. Is your preferred classification 
approach still feasible for this situation? How does the performance of the other classifiers 
evolve? 

 


