

Recap: Regression

- Classification predicts a nominal value
 - A finite set of values
- Regression predicts a *numerical* value
 - A possibly infinite set of possible values
 - Can be interpolating and extrapolating

MY HOBBY: EXTRAPOLATING

http://xkcd.com/605/

K Nearest Neighbours Regression

- Find the k nearest neighbours
- And use the average of their label as prediction
- Only interpolating regression possible
- It's the same operator that you already know from classification!

Regression Trees / SVM / ANN

 Other operators that you already know and which can be used for regression:

Decision Tree

• Set criterion to "least square"

SVM

- Set svm type to "epsilon-SVR" or "nu-SVR"
- Neural Net
 - No changes required

one-class

nu-SVR

epsilon-SVR

gamma

Linear Regression

Finds a linear function

$$f(x)=W_0 + W_1X_1 + W_2X_2 + ... + W_nX_n$$

That minimises the error

$$\sum_{\text{all examples}} \left(w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \dots + w_n \cdot x_n - y \right)^2$$

Operators: Linear Regression

- A learning operator that learns a linear regression model
 - Selects the features automatically
- Parameters:
 - Feature selection:
 - none, M5 prime, greedy, T-Test, Iterative T-Test
 - Use bias:
 - determines if an intercept should be used in the regression
 - Ridge:
 - Controls the slope of the learned function, higher ridge results in smaller coefficients

Operators: Polynomial Regression

Original attributes are transformed before running a linear regression

- Parameters:
 - Replication factor:
 - How often can a feature be replicated in the transformation?
 - Max degree:
 - Maximal degree of the final polynomial
 - Min/Max coefficient:
 - Limit the values of the coefficients

Operators: Polynomial Regression

- Careful: the polynomial regression operator does not always produce the expected result!
- Alternative: Manually create a polynomial regression
 - Using the generate attributes operator
 - And a linear regression afterwards

Operators: Local Regression

- Lazy Learning!
- Retrieves the k nearest neighbours, calculates a regression model, then predicts the value
- Parameters:
 - Degree:
 - Degree of the locally fitted polynomial
 - Measure, neighbourhood type, k:
 - Used to select the nearest neighbours

Performance Measures for Regression

- Mean Absolute Error
 - How far are we off on average?

$$MAE = \frac{\sum_{all \ examples} | predicted - actual |}{N}$$

- Root Mean Squared Error
 - Re-scales the errors:
 - Large errors have more influence
 - Small errors have less influence

$$RMSE = \sqrt{\frac{\sum_{all \ examples} | predicted - actual|^2}{N}}$$

- Coefficient of Determination (R²)
 - Tells you how much of the variation of your target variable is explained by the model

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$