Data Mining 1 Introduction to the Student Projects

Outline

- 1. Requirements for Student Projects
- 2. Requirements for Project Reports
- 3. Final Exam

Student Projects

• Goals

- Gain practical experience with the complete data mining process
- Get to know additional problem-specific
 - preprocessing methods
 - data mining methods

Expectation

- Select an interesting data mining problem of your choice
- Solve the problem using
 - the data mining methods that we have learned so far plus some advanced problem-specific data pre-processing
 - other data mining methods which might be helpful for solving the problem and build on what we learned in class

Procedure

• Teams of five students

- realize a data mining project
- write a 12 page summary of the project and the methods employed in the project
- present the project results to the other students (10 minutes presentation + 5 minutes discussion)
- Final mark for the course
 - 20 % written summary about the project
 - 5 % project presentation
 - 75 % written exam

Week	Wednesday	Thursday
26.10.2020	Introduction to Student Projects	Exercise: Classification 2
Monday, November 2nd, 2020, 23:59: Submission of Project Proposals		
02.11.2020	Lecture: Regression	Project feedback
09.11.2020	Project feedback	Exercise: Regression
16.11.2020	Lecture: Text Mining	Project feedback
23.11.2020	Project feedback	Exercise: Text Mining
30.11.2020	Lecture: Association Analysis	Presentation of project results
Wednesday, December 23th, 2020, 23:59: Submission of Project Report		

Where to find interesting Data Sets?

- Public sector data
 - US government: <u>https://www.data.gov</u>
 - UK government: <u>https://data.gov.uk</u>
 - EU: https://www.europeandataportal.eu
 - CIA World Fact Book: <u>https://www.cia.gov/library/publications/the-world-factbook/</u>
 - Health data (over 125 years): <u>https://www.healthdata.gov/</u>

• Data registries

- Datasets hosted on Amazon AWS <u>https://registry.opendata.aws</u>
- Million Song Dataset, 1000 Genome Project, database of satellite imagery of Earth from NASA, Web Crawl
- Google's Dataset Search: <u>https://datasetsearch.research.google.com/</u>
- Microsoft Datasets: <u>https://msropendata.com/</u>
- Dataset collection on Github: <u>https://github.com/awesomedata/awesome-public-datasets</u>
- Data Hub: <u>http://datahub.io</u>
- Linked Open Data Cloud: <u>http://lod-cloud.net/</u>

Where to find interesting Data Sets?

- Knowledge graphs
 - Wikidata: <u>https://www.wikidata.org</u>
 - BabelNet: <u>https://babelnet.org</u>
 - DBpedia: <u>http://wiki.dbpedia.org</u>
- Language resources
 - WordNet: <u>https://wordnet.princeton.edu</u>
 - EuroWordNet: <u>http://projects.illc.uva.nl/EuroWordNet/</u>
 - Project Gutenberg (36.000 ebooks): <u>http://www.gutenberg.org/</u>
 - New York Times (starts 1851): <u>http://developer.nytimes.com/docs</u>
 - Wikitionary: <u>https://www.wiktionary.org</u> as KG: <u>http://kaiko.getalp.org/about-dbnary/</u>

Competitions

- Kaggle: <u>https://www.kaggle.com/</u>
- Data Mining Cup: <u>http://www.data-mining-cup.de</u>
- KDD Cup: <u>https://www.kdd.org/kdd-cup</u>
- DrivenData: <u>https://www.drivendata.org</u>
- CrowdAnalytix: <u>https://www.crowdanalytix.com</u>

Where to find interesting Data Sets?

- Covid19
 - Johns Hopkins University <u>https://github.com/CSSEGISandData/COVID-19</u>
 - Our world in data: <u>https://github.com/owid/covid-19-data</u>
 - ECDC <u>https://www.ecdc.europa.eu/en/covid-19/data</u>
 - Harvard: <u>https://dataverse.harvard.edu/dataverse/covid19</u>

Where to find Information about additional Methods?

- Pang-Ning Tan, Michael Steinback, Vipin Kumar: Introduction to Data Mining, Pearson / Addison Wesley.
- Ian H. Witten, Eibe Frank, Mark A. Hall: Data Mining: Practical Machine Learning Tools and Techniques, 3rd Edition, Morgan Kaufmann.
- Bing Liu: Web Data Mining, 2nd Edition, Springer.

Where to find Information about additional Methods?

- Check out the solutions to your problem that other people have tried.
 - for instance by looking at submissions of the KDD Cup or Data Mining Cup as well as Kaggle
 - or search for relevant scientific papers using

Some Project Ideas (not binding)

- Web Log Mining
 - Learn a classifier for the categorizing the visitors of your website.
 - Which features matter? Number of pages visited, time on site, ...
 (Bing Liu Chapter 12.x)
 - Preprocess some web log data outside RapidMiner
 - Learn and evaluate classifier within RapidMiner
- Wikipedia Contributors / Hoax Articles
 - Examine the edit history of Wikipedia contributors
 - Cluster users by different attributes (no of edits, edits/day, topic, ...)
 - Or learn a classifier for the categorizing Wikipedia contributors
- Sentiment Analysis for Discussion Forum / Rating Site / Tweets
 - Are people positive or negative about topic / product? (Bing Liu 11.x)
- SPAM Detection
 - eMail, blog or discussion forum (Bing Liu 6.10, 11.9)

DWS | Data Mining 1 | Intro to Student Project

Some Projects realized in previous Semesters

- Learn classifiers for police reports
- Identify type of incident, severity of incident, location of incident
- Bundesliga Betting Rules
 - Find rules that help you to predict the outcome of a Bundesliga game
- last.fm Playlist Analysis
 - Cluster last.fm users according to the style of the songs they are listening to
 - Find commons sets of songs for the different clusters
- Analysis of Training Data of a Fitness Center
 - Find different customer groups by clustering exercise data
 - Find frequent combinations of exercises
- Sentiment Analysis of Tweets about Movies
 - Learned classifier from IMDB movie reviews
 - Applied and tested with tweets afterwards
- Classifying a Document's Perspective
- using the example of Israeli Palestinian Essays
 DWS | Data Mining 1 | Intro to Student Project

Project Outlines

- maximum 4 pages including title page, using DWS master thesis layout
 - Include a project name and your team number on the first page!
- due Monday, November 2nd, 2020, 23:59
- send by eMail to Heiko, Nico, Ralph & Sven
- answer the following questions:
- 1. What is the problem you are solving?
- 2. What data will you use?
 - Where will you get it?
 - How will you gather it?
- 3. How will you solve the problem?
 - What preprocessing steps will be required?
 - Which algorithms do you plan to use?
 - Be as specific as you can!
- 4. How will you measure success? (Evaluation method)
- 5. What do you expect your results to look like? (Model/Clusters/Patterns)

DWS | Data Mining 1 | Intro to Student Project

Coaching Sessions

- We will give you tips and answer questions concerning your project.
- Registration via email is mandatory!
 - until Monday night!
 - including the questions that you like to discuss
- We will assign you a time slot afterwards and inform you about the slot via email
- Every team has to attend at least one coaching session!

Project Report

- 12 pages (exactly!) including title/toc page and reference page
 - max. 10 pages, no appendix
 - Each extra page and each day of late submission downgrades your mark by 0.3!
- due Wednesday, December 23th, 2020, 23:59
- send by email to Heiko, Nico, Ralph & Sven

Project Report

- Outline for project report:
- 1. Application area and goals (Business Understanding)
- 2. Structure and size of the data set (minimum 1 page) (Data Understanding)
- 3. Preprocessing
- 4. Data Mining
 - (External Knowledge)
 - ML approaches
 - Evaluation
- 5. Results

Project Report

- Requirements
- 1. You must use the DWS master thesis layout.
- Please cite sources properly. Preferred citation style [Author, year].
- 3. Also submit your RapidMiner processes/Python scripts and (a subset) of your data.
- 4. Include your project name and your team number on the first page!

- Business Understanding:
 - What is the actual problem (in the domain)?
 - What is the target variable?
 - Clustering/Classification/Regression?
- Data Understanding:
 - Are examples sorted (time series)?
 - What is the distribution of labels / target variable?
 - Are all attributes and their types listed?
 - Are attributes explained?
 - What is the quality of the data?

- Preprocessing
 - Are missing values replaced (in case needed)?
 - Checked for outliers (and handled them)?
 - Validity tests of attributes (Height above sea level < 9000)?</p>
 - Check for inconsistencies (age=42, birthday=03/07/1997)
 - Check for duplicates
 - Data normalization
 - Additional features generated?
 - Has binning been tried out?
 - Correlation analysis implemented?
 - Feature subset selection implemented?
- External Knowledge:
 - Are additional datasets used?

- ML approaches
 - How many different ML approaches were tried out?
 - Do you have at least one symbolic and one non symbolic approach?
 - Do you have at least one baseline (majority class / mean value / domain specific ...)?
- Evaluation
 - Is there a train test split or 10 fold cross validation implemented
 - Is eval stratified?
 - Cost matrix or not?
 - Are the hyper parameters tuned (in which range / which attributes) ?
 - Are the tests systematic?
 - Analyse a symbolic model (how does the decision tree / rules /... looks like)
 - What features do have a high impact on the result?

- Result
 - Is the result is <u>critically</u> evaluated
 - Is the result analyzed against the baseline
 - What does the result mean given the problem (could you use it)

Deadly Errors to Avoid

• Normalize numeric data before calculating any similarity metrics

- If your data is unbalanced
 - balance your training data
 - do NOT balance your test data
 - report P/R/F1, not accuracy

Final Exam

- Date: Thursday, December 10th, 2020
- Duration: 60 minutes
- Structure: 5 6 open questions that
 - check whether you have understood the content of the lecture
 - require you to describe the ideas behind algorithms and methods
 - might require you to do some simple calculations