Data Mining 1

Introduction to the Student Projects
Outline

1. Requirements for Student Projects
2. Requirements for Project Reports
3. Final Exam
Student Projects

• **Goals**

 – Gain practical experience with the complete data mining process
 – Get to know additional problem-specific
 • preprocessing methods
 • data mining methods

• **Expectation**

 – Select an interesting data mining problem of your choice
 – Solve the problem using
 • the data mining methods that we have learned so far plus some advanced problem-specific data pre-processing
 • other data mining methods which might be helpful for solving the problem and build on what we learned in class
Procedure

• Teams of **five** students
 – realize a data mining project
 – write a 12 page summary of the project and the methods employed in the project
 – present the project results to the other students (10 minutes presentation + 5 minutes discussion)

• Final mark for the course
 – 20 % written summary about the project
 – 5 % project presentation
 – 75 % written exam
Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.10.2020</td>
<td>Introduction to Student Projects</td>
<td>Exercise: Classification 2</td>
</tr>
<tr>
<td>Monday, November 2nd, 2020, 23:59: Submission of Project Proposals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02.11.2020</td>
<td>Lecture: Regression</td>
<td>Project feedback</td>
</tr>
<tr>
<td>09.11.2020</td>
<td>Project feedback</td>
<td>Exercise: Regression</td>
</tr>
<tr>
<td>16.11.2020</td>
<td>Lecture: Text Mining</td>
<td>Project feedback</td>
</tr>
<tr>
<td>23.11.2020</td>
<td>Project feedback</td>
<td>Exercise: Text Mining</td>
</tr>
<tr>
<td>30.11.2020</td>
<td>Lecture: Association Analysis</td>
<td>Presentation of project results</td>
</tr>
</tbody>
</table>

Wednesday, December 23th, 2020, 23:59: Submission of Project Report
Where to find interesting Data Sets?

- **Public sector data**
 - US government: https://www.data.gov
 - UK government: https://data.gov.uk
 - EU: https://www.europeandataportal.eu
 - Health data (over 125 years): https://www.healthdata.gov/

- **Data registries**
 - Datasets hosted on Amazon AWS https://registry.opendata.aws
 - Million Song Dataset, 1000 Genome Project, database of satellite imagery of Earth from NASA, Web Crawl
 - Google’s Dataset Search: https://datasetsearch.research.google.com/
 - Microsoft Datasets: https://msropendata.com/
 - Dataset collection on Github: https://github.com/awesomedata/awesome-public-datasets
 - Data Hub: http://datahub.io
Where to find interesting Data Sets?

- **Knowledge graphs**
 - Wikidata: https://www.wikidata.org
 - BabelNet: https://babelnet.org
 - DBpedia: http://wiki.dbpedia.org

- **Language resources**
 - WordNet: https://wordnet.princeton.edu
 - Project Gutenberg (36,000 ebooks): http://www.gutenberg.org/

- **Competitions**
 - Kaggle: https://www.kaggle.com/
 - Data Mining Cup: http://www.data-mining-cup.de
 - KDD Cup: https://www.kdd.org/kdd-cup
 - DrivenData: https://www.drivendata.org
 - CrowdAnalytix: https://www.crowdanalytix.com
Where to find interesting Data Sets?

- **Covid19**
 - Johns Hopkins University: https://github.com/CSSEGISandData/COVID-19
 - Our world in data: https://github.com/owid/covid-19-data
 - Harvard: https://dataverse.harvard.edu/dataverse/covid19
Where to find Information about additional Methods?

• Pang-Ning Tan, Michael Steinback, Vipin Kumar: Introduction to Data Mining, Pearson / Addison Wesley.

Where to find Information about additional Methods?

• Check out the solutions to your problem that other people have tried.
 – for instance by looking at submissions of the KDD Cup or Data Mining Cup as well as Kaggle
 – or search for relevant scientific papers using Google Scholar
Some Project Ideas (not binding)

• Web Log Mining
 – Learn a classifier for the categorizing the visitors of your website.
 – Which features matter? Number of pages visited, time on site, ..
 (Bing Liu Chapter 12.x)
 – Preprocess some web log data outside RapidMiner
 – Learn and evaluate classifier within RapidMiner

• Wikipedia Contributors / Hoax Articles
 – Examine the edit history of Wikipedia contributors
 – Cluster users by different attributes (no of edits, edits/day, topic, ...)
 – Or learn a classifier for the categorizing Wikipedia contributors

• Sentiment Analysis for Discussion Forum / Rating Site / Tweets
 – Are people positive or negative about topic / product? (Bing Liu 11.x)

• SPAM Detection
 – eMail, blog or discussion forum (Bing Liu 6.10, 11.9)
Some Projects realized in previous Semesters

- Mannheim Police Reports
 - Learn classifiers for police reports
 - Identify type of incident, severity of incident, location of incident
- Bundesliga Betting Rules
 - Find rules that help you to predict the outcome of a Bundesliga game
- last.fm Playlist Analysis
 - Cluster last.fm users according to the style of the songs they are listening to
 - Find commons sets of songs for the different clusters
- Analysis of Training Data of a Fitness Center
 - Find different customer groups by clustering exercise data
 - Find frequent combinations of exercises
- Sentiment Analysis of Tweets about Movies
 - Learned classifier from IMDB movie reviews
 - Applied and tested with tweets afterwards
- Classifying a Document‘s Perspective
 - using the example of Israeli – Palestinian Essays
Project Outlines

- maximum 4 pages including title page, using DWS master thesis layout
 - Include a project name and your team number on the first page!
- due Monday, November 2nd, 2020, 23:59
- send by eMail to Heiko, Nico, Ralph & Sven
- answer the following questions:
 1. What is the problem you are solving?
 2. What data will you use?
 - Where will you get it?
 - How will you gather it?
 3. How will you solve the problem?
 - What preprocessing steps will be required?
 - Which algorithms do you plan to use?
 - Be as specific as you can!
 4. How will you measure success? (Evaluation method)
 5. What do you expect your results to look like? (Model/Clusters/Patterns)
Coaching Sessions

• We will give you tips and answer questions concerning your project.
• Registration via email is mandatory!
 – until Monday night!
 – including the questions that you like to discuss
• We will assign you a time slot afterwards and inform you about the slot via email

• Every team has to attend at least one coaching session!
Project Report

- 12 pages (exactly!) including title/toc page and reference page
 - max. 10 pages, no appendix
 - Each extra page and each day of late submission downgrades your mark by 0.3!
- due **Wednesday, December 23th, 2020, 23:59**
- send by email to Heiko, Nico, Ralph & Sven
Project Report

• Outline for project report:
 1. Application area and goals (Business Understanding)
 2. Structure and size of the data set (minimum 1 page) (Data Understanding)
 3. Preprocessing
 4. Data Mining
 – (External Knowledge)
 – ML approaches
 – Evaluation
 5. Results
Project Report

• Requirements

1. You must use the DWS master thesis layout.
2. Please cite sources properly. Preferred citation style [Author, year].
3. Also submit your RapidMiner processes/Python scripts and (a subset) of your data.
4. Include your project name and your team number on the first page!
Checklist

• Business Understanding:
 – What is the actual problem (in the domain)?
 – What is the target variable?
 – Clustering/Classification/Regression?

• Data Understanding:
 – Are examples sorted (time series)?
 – What is the distribution of labels / target variable?
 – Are all attributes and their types listed?
 – Are attributes explained?
 – What is the quality of the data?
Checklist

• Preprocessing
 – Are missing values replaced (in case needed)?
 – Checked for outliers (and handled them)?
 – Validity tests of attributes (Height above sea level < 9000)?
 – Check for inconsistencies (age=42, birthday=03/07/1997)
 • Check for duplicates
 – Data normalization
 – Additional features generated?
 – Has binning been tried out?
 – Correlation analysis implemented?
 – Feature subset selection implemented?

• External Knowledge:
 – Are additional datasets used?
Checklist

• ML approaches
 – How many different ML approaches were tried out?
 – Do you have at least one symbolic and one non symbolic approach?
 – Do you have at least one baseline (majority class / mean value / domain specific ...)?

• Evaluation
 – Is there a train test split or 10 fold cross validation implemented
 – Is eval stratified?
 – Cost matrix or not?
 – Are the hyper parameters tuned (in which range / which attributes) ?
 – Are the tests systematic?
 – Analyse a symbolic model (how does the decision tree / rules /... looks like)
 – What features do have a high impact on the result?
Checklist

• Result
 – Is the result is critically evaluated
 – Is the result analyzed against the baseline
 – What does the result mean given the problem (could you use it)
Deadly Errors to Avoid

• Normalize numeric data before calculating any similarity metrics

• If your data is unbalanced
 – balance your training data
 – do NOT balance your test data
 – report P/R/F1, not accuracy
Final Exam

• Date: Thursday, December 10th, 2020
• Duration: 60 minutes
• Structure: 5 - 6 open questions that
 – check whether you have understood the content of the lecture
 – require you to describe the ideas behind algorithms and methods
 – might require you to do some simple calculations