
Data and Web Science Group

Prof. Dr. Heiko Paulheim

B6 – B0.22

68131 Mannheim

Data Mining
Exercise 4: Classification

4.1. Learning a classifier for the Iris Data Set – Part II
Last exercise, you have learned lazy classification models for the Iris dataset. Now try a Decision Tree
based approach with 10-fold cross-validation.

1. Discretise the Iris data set into three bins. Then use the DecisionTreeClassifier with a 10-fold
stratified cross validation and compute the accuracy. Afterwards plot the decision tree.

2. Remove the discretization and adjust the max_depth parameter of DecisionTreeClassifier to
increase the accuracy. Does the accuracy change? Compare the complexity of the two
models. Which model should be preferred according to Occam’s razor?

4.2. Who should get a bank credit?
The German credit data set from the UCI data set library (http://archive.ics.uci.edu/ ml/index.html)
describes the customers of a bank with respect to whether they should get a bank credit or not. The
data set is provided as credit-g.arff file in ILIAS.

1. Plot ROC curves for k-NN (different k values), Decision Tree and Naïve Bayes classification
(you can use the given avg_roc function). Which classification approach looks most promising
to you?

2. For the two most promising classification approaches, compute the accuracy and confusion
matrix in a 10-fold cross-validation setup (use cross_val_predict function). Which level of
accuracy do you reach?

3. What do the precision and recall values for the class “bad” customer tell you? Try to improve
the situation by increasing the number of “bad” customers in the training set (in the cross-
validation!). How do precision and recall change if you apply this procedure?

4. To model a use-case specific evaluation, as observed in the previous example, compute the
cost of all misclassifications. Set up your cost matrix by assuming that you will lose 1 unit if
you refuse a credit to a good customer, but that you lose 100 units if you give a bad
customer a credit. Re-run the experiments from 4.2 and evaluate the results.

5. As the creation of training data is mostly a manual task and humans tend to be fallible,
training data might include noise. Simulate this behavior by using the Add Noise function and
change the parameter “percentage” from 0% over 10% to 20%. Is your preferred
classification approach still feasible for this situation? How does the performance of the
other classifiers evolve?

4.3.Parameter optimization

1. Now try to find a more appropriate configuration for the Decision Tree classifier from
exercise 4.2.4. Use the GridSearchCV from scikit-learn. Try the following parameters of the
Decision Tree:

◦ criterion: ['gini', 'entropy']

◦ 'max_depth': [1, 2, 3, 4, 5, None] (What does None mean?)

◦ 'min_samples_split': [2,3,4,5]

You should come up with 48 (2 x 6 x 4) combinations.

What is the best configuration for the data set and the classification approach?

2. What is the cost of misclassification for this configuration?

3. How does the optimal decision tree differ from the one you have learned in 4.2.4?

	Exercise 4: Classification
	4.1. Learning a classifier for the Iris Data Set – Part II
	4.2. Who should get a bank credit?
	4.3.Parameter optimization
	1. Now try to find a more appropriate configuration for the Decision Tree classifier from exercise 4.2.4. Use the GridSearchCV from scikit-learn. Try the following parameters of the Decision Tree:
	criterion: ['gini', 'entropy']
	'max_depth': [1, 2, 3, 4, 5, None] (What does None mean?)
	'min_samples_split': [2,3,4,5]
	You should come up with 48 (2 x 6 x 4) combinations.
	What is the best configuration for the data set and the classification approach?
	2. What is the cost of misclassification for this configuration?
	3. How does the optimal decision tree differ from the one you have learned in 4.2.4?

