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What is Cluster Analysis?

• Finding groups of objects such that 

– the objects in a group will be similar to one another

– and different from the objects in other groups.

• Goal: Get a better understanding of the data.

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized
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Cluster Analysis as Unsupervised Learning

• Supervised learning: Discover patterns in the data that relate data 
attributes with a target (class) attribute

– The set of classes is known before

– Class attributes are usually provided by human annotators

– Patterns are used for prediction of the target attribute for new data

• Unsupervised learning: The data has no target attribute

– We want to explore the data to find some intrinsic structures in it

– The set of classes/clusters is not known before

– Cluster Analysis and Association Rule Mining are unsupervised learning 
tasks
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Types of Clusterings

• Partitional Clustering

– A division data objects into non-overlapping subsets (clusters) 
such that each data object is in exactly one subset

• Hierarchical Clustering

– A set of nested clusters 
organized as a 
hierarchical tree 
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Aspects of Cluster Analysis

• Clustering algorithm
– Partitional Algorithms

– Hierarchical Algorithms

– Density-based Algorithms

–  …

• Proximity (similarity, or dissimilarity) measure
– Euclidean Distance

– Cosine Similarity

– Domain-specific Similarity Measures

– …

• Clustering Quality
– Intra-clusters distance  minimized

– Inter-clusters distance  maximized
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Notion of a Cluster can be Ambiguous

How many clusters?

Four Clusters Two Clusters 

Six Clusters 

The usefulness of a clustering depends 
on the goals of the analysis!
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Applications: Market Research

• Identify different groups of customers
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Application: Product Grouping

• Identify offers of same (or similar) products, e.g., on ebay
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Applications: Social Network Analysis

• Identifying communities of people, e.g., with similar interests
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Applications: Grouping Search Engine Results

• Automatically find groups of related pages in the result set
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Applications: Image Recognition

• Identify portions of an image that belong to the same object
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K-Means Clustering

• Partitional clustering approach

• Each cluster is associated with a centroid (center point)

• Each point is assigned to the cluster with the 
closest centroid

• Number of clusters, K, must be specified manually
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K-Means Clustering

• Basic Algorithm:
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K-Means Example, Step 1

k1

k2

k3

X

Y

Pick 3 
initial
cluster
centers
(randomly)
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K-Means Example, Step 2

k1

k2

k3

X

Y

Assign
each point
to the closest
cluster
center
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K-Means Example, Step 3

X

Y

Move
each cluster 
center
to the mean
of each cluster

k1

k2

k2

k1

k3

k3
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K-Means Example, Step 4 …

X

Y

Reassign
points 
closest to a 
different new 
cluster center

Q: Which 
points are 
reassigned?

k1

k2

k3
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K-Means Example, Step 4

X

Y

A: Two 
points are 
reassigned

k1

k3

k2
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K-Means Example, Step 5

X

Y

Re-compute 
cluster 
means

k1

k3

k2



9/12/22 Heiko Paulheim 21 

K-Means Example, Step 6

X

Y

Move cluster 
centers to 
cluster 
means

k2

k1

k3
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Alternative Convergence Criteria 

• no (or minimum) re-assignments of data points to different clusters

• no (or minimum) change of centroids, or 

• minimum decrease in the sum of squared errors (SSE)

– see next slide

• Stop after X iterations
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Evaluating K-Means Clusterings

• The most common cohesion measure is the Sum of Squared Errors 
(SSE)

– For each point, the error is the distance to the nearest centroid

– To get SSE, we square these errors and sum them.

• Cj is the j-th cluster

• mj is the centroid of cluster Cj (the mean vector of all the data points in Cj)

• dist(x, mj) is the distance between data point x and centroid mj

• Given several clusterings (and a fixed k), 
we should prefer the one with the smallest SSE
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Illustration: Sum of Squared Error

• Clustering problem given:

• Good solution:

– i.e., small distances to centroid

• Not so good solution:

– i.e., larger distances to centroid
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Weaknesses of K-Means: Initial Seeds

• Results can vary significantly depending on initial choice of seeds 
(number and position)
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Weaknesses of K-Means: Initial Seeds

• If we use different seeds, we get good results.
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Improving the Clustering Results

• Restart a number of times with different random seeds 
(but fixed k)

– chose the resulting clustering with the smallest sum of squared error 
(SSE)

• Run k-means with different values of k

– The SSE for different values of k cannot directly be compared  

– think: what happens for k → number of examples?

– Workarounds

• Choose k where SSE improvement 
decreases (knee value of k) 

– Employ X-Means

• variation of K-Means algorithm 
that automatically determines k

• starts with small k, then splits large 
clusters until improvement decreases

knee value



9/12/22 Heiko Paulheim 28 

Choosing k – Cluster Evaluation

• Recap: we want to maximize

– Cohesion: measures how closely related are objects in a cluster

– Separation: measure how distinct or well-separated a cluster is from 
other clusters

cohesion separation
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Silhouette Coefficient

• Cohesion a(x): average distance of x to all other vectors in the 
same cluster.

• Separation b(x): average distance of x to the vectors in other 
clusters. Find the minimum among the clusters.

• Silhouette s(x):

• s(x) = [-1, +1]: -1=bad, 0=indifferent, 1=good

• Silhouette coefficient (SC):
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Selecting k Using the Silhouette Coefficient

• Approach

– Run k-means with different k values

– Plot the Silhouette Coefficient

– Pick the best (i.e., highest silhouette coefficient
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Weaknesses of K-Means: Outlier Handling
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• Possible remedy: 

– remove data points far away from centroids

– to be safe: monitor these possible outliers over a few iterations 
and then decide to remove them 

• Other remedy: random sampling

– choose a small subset of the data points

– the chance of selecting an outlier is very small if the data set is 
large enough

– after determining the centroids based on samples, assign the 
rest of the data points

– also a method for improving runtime performance!

Weaknesses of K-Means: Outlier Handling
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K-Medoids

• K-Medoids is a K-Means variation that uses the medians of each 
cluster instead of the mean

• Medoids are the most central existing data points in each cluster

• K-Medoids is more robust against outliers as the median is not 
affected by extreme values:

– Mean and Median of 1, 3, 5, 7, 9 is 5

– Mean of 1, 3, 5, 7, 1009 is 205

– Median of 1, 3, 5, 7, 1009 is 5



9/12/22 Heiko Paulheim 34 

34

K-Means Clustering Summary

• Advantages

– Simple, understandable

– Efficient time complexity:
O(t k n) 

• n: number of data points

• k: number of clusters

• t: number of iterations 

• Disadvantages

– Must pick number of clusters 
before hand

– All items are forced into a 
cluster

– Sensitive to outliers

– Sensitve to initial seeds
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K-Means Clustering in Python

Python
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DBSCAN

• DBSCAN is a density-based algorithm

– Density = number of points within a specified radius (Eps)

• Divides data points in three classes:

– A point is a core point if it has more than a specified number of 
points (MinPts) within Eps, including the point itself

• These are points that are at the interior of a cluster

– A border point has fewer than MinPts within Eps, but is in the 
neighborhood of a core point

– A noise point is any point that is not a core point or a border 
point

• like a cluster named “other” or “misc.”
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DBSCAN: Core, Border, and Noise Points

MinPts=7
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DBSCAN: Illustrative Example
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DBSCAN Algorithm

• Eliminate noise points

• Perform clustering on the remaining points perform recursion
for all points in the
Eps-neighborhood

of the point
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DBSCAN: Core, Border and Noise Points

Original Points Point types: core, 
border and noise

Eps = 10, MinPts = 4
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When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes
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When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.92)

 (MinPts=4, Eps=9.75)

• Varying densities

• High-dimensional data
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DBSCAN: Determining EPS and MinPts

• Idea: for points in a cluster, their kth nearest neighbors are at 
roughly the same distance

• Noise points have the kth nearest neighbor at farther distance

• So, plot sorted distance of every point to its kth nearest neighbor

Area where a good
Epsilon value
is assumed 
to be found
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DBScan in Python
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Hierarchical Clustering 

• Produces a set of nested clusters organized as a 
hierarchical tree.

• Can be visualized as a Dendrogram

– A tree like diagram that records the sequences of merges or splits.

– The y-axis displays the former distance between merged clusters.
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Strengths of Hierarchical Clustering

• We do not have to assume any particular number of clusters
– Any desired number of clusters can be obtained 

by ‘cutting’ the dendogram 
at the proper level

• May be used to look for 
meaningful taxonomies
– taxonomies in life sciences

– taxonomy of customer groups 
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Starting Situation 

• Start with clusters of individual points and a proximity matrix

...
p1 p2 p3 p4 p9 p10 p11 p12

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5
. . .

.

.

. Proximity Matrix
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Intermediate Situation

• After some merging steps, we have a number of clusters

• We want to keep on merging the two closest clusters 
(C2 and C5?) 

C1

C4

C2 C5

C3

...
p1 p2 p3 p4 p9 p10 p11 p12
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How to Define Inter-Cluster Similarity?

 

Similarity?

Possible approaches:

• Single Link (MIN)

• Complete Link (MAX)

• Group Average

• Distance Between Centroids
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Cluster Similarity: Single Link 

• Similarity of two clusters is based on the two most similar (closest) 
points in the different clusters

– i.e., there is only one single link between the two clusters with this 
distance

(all others have a higher distance)
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Example: Single Link

Nested Clusters Dendrogram

1

2

3

4

5

6

1
2

3

4

5



9/12/22 Heiko Paulheim 52 

Cluster Similarity: Complete Linkage

• Similarity of two clusters is based on the two least similar (most 
distant) points in the different clusters

• For each pair of points in the two clusters, the distance is an upper 
bound
– i.e., the linkage with that distance is complete with respect to all 

data points
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Example: Complete Linkage

Nested Clusters Dendrogram
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Single Link vs. Complete Linkage

• Single Link:

– Pro: Can handle non-elliptic shapes

– Con: Sensitive to outliers

• Complete Linkage:

– Pro: Less sensitive to noise and outliers

– Con: biased towards globular clusters

– Con: tends to break large clusters
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Cluster Similarity: Group Average

• Proximity of two clusters is the average of pair-wise 
proximity between points in the two clusters.

• Need to use average connectivity for scalability 
since total proximity favors large clusters
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Example: Group Average

Nested Clusters Dendrogram
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Hierarchical Clustering: Group Average

• Compromise between Single and Complete Link

• Strengths

– Less susceptible to noise and outliers

• Limitations

– Biased towards globular clusters
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Hierarchical Clustering: Problems & Limitations

• Greedy algorithm:

– decision taken (i.e., merge two clusters) cannot be undone

• Different variants have problems with one or more of the following

– Sensitivity to noise and outliers

– Difficulty handling different sized clusters and convex shapes

– Breaking large clusters

• High Space and Time Complexity

– O(N2) space since it uses the proximity matrix (N: number of data points) 

– O(N3) time in many cases

– N steps procesing the similarity matrix (N2)

• Complexity can be reduced to O(N log(N)) time for some approaches



9/12/22 Heiko Paulheim 59 

Agglomerative Clustering in Python

Choose inter-cluster 
similarity metric, e.g. 
‘single’, ‘complete’, 
‘average’, ‘centroid’
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Proximity Measures

• So far, we have seen different clustering algorithms
– all of which rely on distance (proximity, similarity, ...) measures

• Similarity

– Numerical measure of how alike two data objects are (higher: more alike)

– Often falls in the range [0,1]

• Dissimilarity (or distance)

– Numerical measure of how different are two data objects (higher: less 
alike)

– Minimum dissimilarity is often 0

– Upper limit varies

• A wide range of different measures is used 
depending on the requirements of the application
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Proximity of Single Attributes

p and q are the attribute values for two data objects
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Similarity Functions: an Overview

Similarity
Measures

Edit-based Token-based

Phonetic

Hybrid
Datatype-
specific

Numbers

Geo-
Coordinates

Soundex

Kölner
Phonetik

Soft TF-IDF

Monge-Elkan

Words / n-grams

Jaccard

Levenshtein
Jaro

Jaro-WinklerHamming

Cosine
Similarity

Dates/
Times

fastText BERT

Sets of 
Values

Embedding
-based

See course: 
Web Data Integration
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Proximity of Data Points

• All those measures cover the proximity of single attribute values

• But we usually have data points with many attributes

– e.g., age, height, weight, sex...

• Thus, we need proximity measures for data points
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Euclidean Distance

• Definition:

– Where n is the number of dimensions (attributes) and 
pk and qk are the kth attributes of data objects p and q.

• More generally: Lp norm:

dist=√∑
k=1

n

( pk−qk )
2

dist=(∑
k=1

n

( pk−qk )
p )

1
p
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L
1
 vs. L

2
 Norm

• L1 norm: also called Manhattan distance

– minimum distance to go from one crossing to another

– in a squared city (like Manhattan)

• L2 norm: Euclidean Distance

• Example:

– L1 = 7

– L2 = 5
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Caution: Pitfalls!

• Let us try to cluster the German federal states

• We have to determine the (semantic) distance, e.g., between

– Baden-Württemberg

• population = 10,569,111

• area = 35,751.65 km²

– Bavaria

• population = 12,519,571

• area = 70,549.44 km²

• Euclidean = √(10,569,111−12,591,571)2+(35,751.65−70,549.44)2

=√4.090 .344 .451 .600+1.210 .886 .188
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Caution: Pitfalls!

• Let us try to cluster the German federal states

• We have to determine the distance, e.g., between

– Baden-Württemberg

• population = 10,569,111

• area = 35,751,650,000 m²

– Bavaria

• population = 12,519,571

• area = 70,549,440,000 m²

• Euclidean = 

√(10,569,111−12,591,571)2+(35,751,650,000−70,549,440,000)2

=√4.090 .344 .451 .600+1.210 .886 .188.884 .100.000 .000
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Caution: Pitfalls!

• We are easily comparing apples and oranges

– and changing units of measurement 
changes the clustering result!

– imagine: the same dataset processed in Europe (metric units)
and the US (imperial units)

• Recommendation:

– use normalization before clustering

– generally: for all data mining algorithms
involving distances Mars orbiter

worth $125M
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Normalization in Python

Python
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Similarity of Binary Attributes

• Common situation is that objects, p and q, have 
only binary attributes
– e.g., customer bought an item (yes/no)

• Compute similarities using the following quantities
– M01 = the number of attributes where p was 0 and q was 1

– M10 = the number of attributes where p was 1 and q was 0

– M00 = the number of attributes where p was 0 and q was 0

– M11 = the number of attributes where p was 1 and q was 1
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Symmetric Binary Attributes

• A binary attribute is symmetric if both of its states (0 and 1) have 
equal importance, and carry the same weights, e.g., male and 
female of the attribute Gender 

• Similarity measure: Simple Matching Coefficient

           Number of matches / number of all attributes values

 

SMC ( x i , x j )=
M 11+M 00

M 01+M 10+M 11+M 00



9/12/22 Heiko Paulheim 72 

Asymmetric Binary Attributes

• Asymmetric: If one of the states is more important or more valuable 
than the other. 

– By convention, state 1 represents the more important state.

– 1 is typically the rare or infrequent state. 

– Example: Shopping Basket, Word/Document Vector

• Similarity measure: Jaccard Coefficient

  Number of 11 matches / number of not-both-zero attributes values

J ( x i , x j)=
M 11

M 01+M 10+M 11
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SMC versus Jaccard: Example

p =  1 0 0 0 0 0 0 0 0 0    
q =  0 0 0 0 0 0 1 0 0 1 

M01 = 2   (the number of attributes where p was 0 and q was 1)
M10 = 1   (the number of attributes where p was 1 and q was 0)
M00 = 7   (the number of attributes where p was 0 and q was 0)
M11 = 0   (the number of attributes where p was 1 and q was 1)

SMC = (M11+M00)/(M01+M10+M11+M00) = (0+7)/(2+1+0+7) = 0.7 
J = (M11) / (M01+M10+M11) = 0/(2+1+0) = 0 

example interpretation:
p bought item 1

q bought item 7 and 10

J: same items bought → similar customers
SMC: same items not bought → similar customers
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SMC vs. Jaccard

• Which of the two measures would you use

– ...for a dating agency?

• hobbies

• favorite bands

• favorite movies

• …

– ...for the Wahl-O-Mat

• (dis-)agreement with political statements

• recommendation for voting
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Take Home Messages

• Clustering groups similar objects

– for analyzing the data at hand

• We know partitional and hierarchical clustering

• All clustering methods rely on distances

– there are different distance functions

– normalization is essential
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Questions?
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