Data Mining I
Cluster Analysis

Heiko Paulheim
Outline

1. What is Cluster Analysis?
2. Applications for Clustering
3. k-Means Clustering
4. Hierarchical Clustering
5. Density-based Clustering
6. Proximity Measures
What is Cluster Analysis?

• Finding groups of objects such that
 – the objects in a group will be similar to one another
 – and different from the objects in other groups.
• Goal: Get a better understanding of the data.
Cluster Analysis as Unsupervised Learning

• **Supervised learning**: Discover patterns in the data that relate data attributes with a target (class) attribute
 – The set of classes is known before
 – Class attributes are usually provided by human annotators
 – Patterns are used for prediction of the target attribute for new data

• **Unsupervised learning**: The data has no target attribute
 – We want to explore the data to find some intrinsic structures in it
 – The set of classes/clusters is not known before
 – Cluster Analysis and Association Rule Mining are unsupervised learning tasks
Types of Clusterings

• Partitional Clustering
 – A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset

• Hierarchical Clustering
 – A set of nested clusters organized as a hierarchical tree
Aspects of Cluster Analysis

• Clustering algorithm
 – Partitional Algorithms
 – Hierarchical Algorithms
 – Density-based Algorithms
 – ...

• Proximity (similarity, or dissimilarity) measure
 – Euclidean Distance
 – Cosine Similarity
 – Domain-specific Similarity Measures
 – ...

• Clustering Quality
 – Intra-clusters distance \Rightarrow minimized
 – Inter-clusters distance \Rightarrow maximized
Notion of a Cluster can be Ambiguous

How many clusters?

- Six Clusters
- Two Clusters
- Four Clusters

The usefulness of a clustering depends on the goals of the analysis!
Applications: Market Research

- Identify different groups of customers
Application: Product Grouping

- Identify offers of same (or similar) products, e.g., on eBay
Applications: Social Network Analysis

- Identifying communities of people, e.g., with similar interests
Applications: Grouping Search Engine Results

- Automatically find groups of related pages in the result set
Applications: Image Recognition

- Identify portions of an image that belong to the same object
K-Means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified manually
K-Means Clustering

• Basic Algorithm:

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don’t change
K-Means Example, Step 1

Pick 3 initial cluster centers (randomly)
Assign each point to the closest cluster center.
Move each cluster center to the mean of each cluster.
K-Means Example, Step 4 ...

Reassign points closest to a different new cluster center

Q: Which points are reassigned?

\[X \]

\[Y \]
K-Means Example, Step 4

A: Two points are reassigned
K-Means Example, Step 5

Re-compute cluster means

X

Y
K-Means Example, Step 6

Move cluster centers to cluster means
Alternative Convergence Criteria

• no (or minimum) re-assignments of data points to different clusters
• no (or minimum) change of centroids, or
• minimum decrease in the sum of squared errors (SSE)
 – see next slide
• Stop after X iterations
Evaluating K-Means Clusterings

- The most common cohesion measure is the Sum of Squared Errors (SSE)
 - For each point, the error is the distance to the nearest centroid
 - To get SSE, we square these errors and sum them.

\[
SSE = \sum_{j=1}^{k} \sum_{x \in C_j} \left(\text{dist}(x, m_j) \right)^2
\]

- \(C_j\) is the j-th cluster
- \(m_j\) is the centroid of cluster \(C_j\) (the mean vector of all the data points in \(C_j\))
- \(\text{dist}(x, m_j)\) is the distance between data point \(x\) and centroid \(m_j\)

- Given several clusterings (and a fixed \(k\)), we should prefer the one with the smallest SSE
Illustration: Sum of Squared Error

- Clustering problem given:

- Good solution:
 - i.e., small distances to centroid

- Not so good solution:
 - i.e., larger distances to centroid
Weaknesses of K-Means: Initial Seeds

- Results can vary significantly depending on initial choice of seeds (number and position)
Weaknesses of K-Means: Initial Seeds

• If we use different seeds, we get good results.
Improving the Clustering Results

- Restart a number of times with different random seeds (but fixed k)
 - chose the resulting clustering with the smallest sum of squared error (SSE)
- Run k-means with different values of k
 - The SSE for different values of k cannot directly be compared
 - think: what happens for $k \rightarrow$ number of examples?
- Workarounds
 - Choose k where SSE improvement decreases (knee value of k)
 - Employ X-Means
 - variation of K-Means algorithm that automatically determines k
 - starts with small k, then splits large clusters until improvement decreases
Choosing k – Cluster Evaluation

- Recap: we want to maximize
 - Cohesion: measures how closely related are objects in a cluster
 - Separation: measure how distinct or well-separated a cluster is from other clusters

cohesion
separation
Silhouette Coefficient

- **Cohesion** $a(x)$: average distance of x to all other vectors in the same cluster.
- **Separation** $b(x)$: average distance of x to the vectors in other clusters. Find the minimum among the clusters.
- **Silhouette** $s(x)$:

 \[
 s(x) = \frac{b(x) - a(x)}{\max\{a(x), b(x)\}}
 \]

- $s(x) = [-1, +1]$: -1=bad, 0=indifferent, 1=good

- Silhouette coefficient (SC):

 \[
 SC = \frac{1}{N} \sum_{i=1}^{N} s(x)
 \]
Selecting k Using the Silhouette Coefficient

• Approach
 – Run k-means with different k values
 – Plot the Silhouette Coefficient
 – Pick the best (i.e., highest silhouette coefficient)
Weaknesses of K-Means: Outlier Handling

(A): Undesirable clusters

(B): Ideal clusters
Weaknesses of K-Means: Outlier Handling

• Possible remedy:
 – remove data points far away from centroids
 – to be safe: monitor these possible outliers over a few iterations and then decide to remove them

• Other remedy: random sampling
 – choose a small subset of the data points
 – the chance of selecting an outlier is very small if the data set is large enough
 – after determining the centroids based on samples, assign the rest of the data points
 – also a method for improving runtime performance!
K-Medoids

• K-Medoids is a K-Means variation that uses the medians of each cluster instead of the mean

• Medoids are the most central existing data points in each cluster

• K-Medoids is more robust against outliers as the median is not affected by extreme values:
 – Mean and Median of 1, 3, 5, 7, 9 is 5
 – Mean of 1, 3, 5, 7, 1009 is 205
 – Median of 1, 3, 5, 7, 1009 is 5
K-Means Clustering Summary

• **Advantages**
 - Simple, understandable
 - Efficient time complexity: $O(t \cdot k \cdot n)$
 - n: number of data points
 - k: number of clusters
 - t: number of iterations

• **Disadvantages**
 - Must pick number of clusters before hand
 - All items are forced into a cluster
 - Sensitive to outliers
 - Sensitive to initial seeds
K-Means Clustering in Python

```python
# import KMeans
from sklearn.cluster import KMeans

# create clusterer
estimator = KMeans(n_clusters = 3)

# create clustering
cluster_ids = estimator.fit_predict(dataset[['Att1', 'Att2']])
```
DBSCAN

- DBSCAN is a density-based algorithm
 - Density = number of points within a specified radius (Eps)
- Divides data points in three classes:
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps, including the point itself
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point
 - like a cluster named “other” or “misc.”
DBSCAN: Core, Border, and Noise Points

MinPts=7
DBSCAN Algorithm

- Eliminate noise points
- Perform clustering on the remaining points

```python
current_cluster_label ← 1
for all core points do
    if the core point has no cluster label then
        current_cluster_label ← current_cluster_label + 1
        Label the current core point with cluster label current_cluster_label
    end if
    for all points in the Eps-neighborhood, except ith the point itself do
        if the point does not have a cluster label then
            Label the point with cluster label current_cluster_label
        end if
    end for
end for
```

perform recursion for all points in the Eps-neighborhood of the point
DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4
When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes
When DBSCAN Does NOT Work Well

- Varying densities
- High-dimensional data

Original Points

(MinPts=4, Eps=9.92)

(MinPts=4, Eps=9.75)
DBSCAN: Determining EPS and MinPts

- Idea: for points in a cluster, their k^{th} nearest neighbors are at roughly the same distance
- Noise points have the k^{th} nearest neighbor at farther distance
- So, plot sorted distance of every point to its k^{th} nearest neighbor

Area where a good Epsilon value is assumed to be found
import DBSCAN
from sklearn.cluster import DBSCAN

create the clusterer
clusterer = DBSCAN(min_samples=3, eps=1.5, metric='euclidean')

create the clusters
clusters = clusterer.fit_predict(dataset[['Att1', 'Att2']])
Hierarchical Clustering

• Produces a set of nested clusters organized as a hierarchical tree.

• Can be visualized as a Dendrogram
 – A tree-like diagram that records the sequences of merges or splits.
 – The y-axis displays the former distance between merged clusters.
Strengths of Hierarchical Clustering

- We do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by ‘cutting’ the dendogram at the proper level

- May be used to look for meaningful taxonomies
 - taxonomies in life sciences
 - taxonomy of customer groups
Starting Situation

• Start with clusters of individual points and a proximity matrix

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proximity Matrix
Intermediate Situation

- After some merging steps, we have a number of clusters.
- We want to keep on merging the two closest clusters (C2 and C5?)
How to Define Inter-Cluster Similarity?

Possible approaches:

• Single Link (MIN)
• Complete Link (MAX)
• Group Average
• Distance Between Centroids
Cluster Similarity: Single Link

• Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 – i.e., there is only one **single link** between the two clusters with this distance
 (all others have a higher distance)
Example: Single Link

Nested Clusters

Dendrogram
Cluster Similarity: Complete Linkage

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters.
- For each pair of points in the two clusters, the distance is an upper bound.
 - i.e., the linkage with that distance is complete with respect to all data points.
Example: Complete Linkage

Nested Clusters

Dendrogram
Single Link vs. Complete Linkage

• Single Link:
 – Pro: Can handle non-elliptic shapes
 – Con: Sensitive to outliers

• Complete Linkage:
 – Pro: Less sensitive to noise and outliers
 – Con: biased towards globular clusters
 – Con: tends to break large clusters
Cluster Similarity: Group Average

• Proximity of two clusters is the average of pair-wise proximity between points in the two clusters.

\[
\text{proximity}(\text{Cluster}_i, \text{Cluster}_j) = \frac{\sum_{p_i \in \text{Cluster}_i, p_j \in \text{Cluster}_j} \text{proximity}(p_i, p_j)}{|\text{Cluster}_i| \times |\text{Cluster}_j|}
\]

• Need to use average connectivity for scalability since total proximity favors large clusters.
Example: Group Average

Nested Clusters

Dendrogram
Hierarchical Clustering: Group Average

• Compromise between Single and Complete Link
• Strengths
 – Less susceptible to noise and outliers
• Limitations
 – Biased towards globular clusters
Hierarchical Clustering: Problems & Limitations

• Greedy algorithm:
 – decision taken (i.e., merge two clusters) cannot be undone

• Different variants have problems with one or more of the following
 – Sensitivity to noise and outliers
 – Difficulty handling different sized clusters and convex shapes
 – Breaking large clusters

• High Space and Time Complexity
 – $O(N^2)$ space since it uses the proximity matrix (N: number of data points)
 – $O(N^3)$ time in many cases
 – N steps processes the similarity matrix (N^2)
 • Complexity can be reduced to $O(N \log(N))$ time for some approaches
Agglomerative Clustering in Python

```python
# import linkage and dendrogram from scipy
from scipy.cluster.hierarchy import linkage

# create the clustering
Z = linkage(dataset[["Item1", "Item2"]], "complete")

# plot the dendrogram
dendrogram(Z, labels=dataset["ID"].values)

# setup the labels
plt.xlabel("IDs")
plt.ylabel("distance")

# show the plot
plt.show()
```

Choose inter-cluster similarity metric, e.g. ‘single’, ‘complete’, ‘average’, ‘centroid’
Proximity Measures

• So far, we have seen different clustering algorithms
 – all of which rely on distance (proximity, similarity, ...) measures

• Similarity
 – Numerical measure of how alike two data objects are (higher: more alike)
 – Often falls in the range $[0,1]$

• Dissimilarity (or distance)
 – Numerical measure of how different are two data objects (higher: less alike)
 – Minimum dissimilarity is often 0
 – Upper limit varies

• A wide range of different measures is used depending on the requirements of the application
Proximity of Single Attributes

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Dissimilarity</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>[d = \begin{cases} 0 & \text{if } p = q \ 1 & \text{if } p \neq q \end{cases}]</td>
<td>[s = \begin{cases} 1 & \text{if } p = q \ 0 & \text{if } p \neq q \end{cases}]</td>
</tr>
<tr>
<td>Ordinal</td>
<td>[d = \frac{</td>
<td>p-q</td>
</tr>
<tr>
<td>Interval or Ratio</td>
<td>[d =</td>
<td>p-q</td>
</tr>
</tbody>
</table>

Similarity and dissimilarity for simple attributes

\(p\) and \(q\) are the attribute values for two data objects
Similarity Functions: an Overview

- **Similarity Measures**
 - **Edit-based**
 - Hamming
 - Levenshtein
 - Numbers
 - **Token-based**
 - Jaro
 - Jaro-Winkler
 - Words / n-grams
 - Cosine Similarity
 - Monge-Elkan
 - Soft TF-IDF
 - **Hybrid**
 - Jaccard
 - Kölner Phonetik
 - **Datatype-specific**
 - Dates/Times
 - Geo-Coordinates
 - Sets of Values
 - **Embedding-based**
 - fastText
 - BERT
 - **Phonetic**
 - Soundex

See course: Web Data Integration
Proximity of Data Points

- All those measures cover the proximity of single attribute values
- But we usually have data points with many attributes
 - e.g., age, height, weight, sex...
- Thus, we need proximity measures for data points
Euclidean Distance

• Definition:

\[\text{dist} = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2} \]

 Where \(n \) is the number of dimensions (attributes) and \(p_k \) and \(q_k \) are the \(k^{th} \) attributes of data objects \(p \) and \(q \).

• More generally: \(L_p \) norm:

\[\text{dist} = \left(\sum_{k=1}^{n} (p_k - q_k)^p \right)^{\frac{1}{p}} \]
L₁ vs. L₂ Norm

- **L₁ norm**: also called Manhattan distance
 - Minimum distance to go from one crossing to another
 - In a squared city (like Manhattan)

- **L₂ norm**: Euclidean Distance

- **Example**:
 - \(L₁ = 7 \)
 - \(L₂ = 5 \)
Caution: Pitfalls!

• Let us try to cluster the German federal states
• We have to determine the (semantic) distance, e.g., between
 – Baden-Württemberg
 • population = 10,569,111
 • area = 35,751.65 km²
 – Bavaria
 • population = 12,519,571
 • area = 70,549.44 km²

• Euclidean = \(\sqrt{(10,569,111 - 12,591,571)^2 + (35,751.65 - 70,549.44)^2}\)

 = \(\sqrt{4.090.344.451.600 + 1.210.886.188}\)
Caution: Pitfalls!

• Let us try to cluster the German federal states

• We have to determine the distance, e.g., between
 – Baden-Württemberg
 • population = 10,569,111
 • area = 35,751,650,000 m²
 – Bavaria
 • population = 12,519,571
 • area = 70,549,440,000 m²

• Euclidean =
 \[\sqrt{(10,569,111 - 12,519,571)^2 + (35,751,650,000 - 70,549,440,000)^2} \]
 \[= \sqrt{4.090.344.451.600 + 1.210.886.188.884.100.000.000} \]
Caution: Pitfalls!

- We are easily comparing apples and oranges
 - and changing units of measurement changes the clustering result!
 - imagine: the same dataset processed in Europe (metric units) and the US (imperial units)

- Recommendation:
 - use *normalization* before clustering
 - generally: for all data mining algorithms involving *distances*
Normalization in Python

```python
# import min-max scaler
from sklearn import preprocessing.MinMaxScaler()

# create scaler
scaler = MinMaxScaler()

# normalize the relevant attributes
dataset[['Att1', 'Att2']] = scaler.fit_transform(dataset[['Att1', 'Att2']])
```
Similarity of Binary Attributes

• Common situation is that objects, p and q, have only binary attributes
 – e.g., customer bought an item (yes/no)

• Compute similarities using the following quantities
 – $M_{01} = \text{the number of attributes where } p \text{ was 0 and } q \text{ was 1}$
 – $M_{10} = \text{the number of attributes where } p \text{ was 1 and } q \text{ was 0}$
 – $M_{00} = \text{the number of attributes where } p \text{ was 0 and } q \text{ was 0}$
 – $M_{11} = \text{the number of attributes where } p \text{ was 1 and } q \text{ was 1}$
Symmetric Binary Attributes

- A binary attribute is symmetric if both of its states (0 and 1) have equal importance, and carry the same weights, e.g., male and female of the attribute Gender

- Similarity measure: Simple Matching Coefficient

\[
SMC(x_i, x_j) = \frac{M_{11} + M_{00}}{M_{01} + M_{10} + M_{11} + M_{00}}
\]

Number of matches / number of all attributes values
Asymmetric Binary Attributes

- **Asymmetric:** If one of the states is more important or more valuable than the other.
 - By convention, state 1 represents the more important state.
 - 1 is typically the rare or infrequent state.
 - Example: Shopping Basket, Word/Document Vector

- Similarity measure: **Jaccard Coefficient**

\[
J(x_i, x_j) = \frac{M_{11}}{M_{01} + M_{10} + M_{11}}
\]

Number of 11 matches / number of not-both-zero attributes values
SMC versus Jaccard: Example

\[
p = 100000000000 \\
q = 00000010011
\]

\[
M_{01} = 2 \quad \text{(the number of attributes where } p \text{ was 0 and } q \text{ was 1)} \\
M_{10} = 1 \quad \text{(the number of attributes where } p \text{ was 1 and } q \text{ was 0)} \\
M_{00} = 7 \quad \text{(the number of attributes where } p \text{ was 0 and } q \text{ was 0)} \\
M_{11} = 0 \quad \text{(the number of attributes where } p \text{ was 1 and } q \text{ was 1)}
\]

\[
SMC = \frac{M_{11} + M_{00}}{M_{01} + M_{10} + M_{11} + M_{00}} = \frac{0+7}{2+1+0+7} = 0.7
\]
\[
J = \frac{M_{11}}{M_{01} + M_{10} + M_{11}} = \frac{0}{2+1+0} = 0
\]

Example interpretation:
- \(p \) bought item 1
- \(q \) bought item 7 and 10

- SMC: same items \textit{not} bought → similar customers
- J: same items bought → similar customers
SMC vs. Jaccard

• Which of the two measures would you use
 – ...for a dating agency?
 • hobbies
 • favorite bands
 • favorite movies
 • ...

 – ...for the Wahl-O-Mat
 • (dis-)agreement with political statements
 • recommendation for voting
Take Home Messages

• Clustering groups similar objects
 – for analyzing the data at hand

• We know partitional and hierarchical clustering

• All clustering methods rely on distances
 – there are different distance functions
 – normalization is essential
Questions?