

Heiko Paulheim

Outline

- 1. What is Classification?
- 2. k Nearest Neighbors and Nearest Centroids
- 3. Naïve Bayes
- 4. Evaluating Classification
- 5. Decision Trees
- 6. The Overfitting Problem
- 7. Other Classification Approaches
- 8. Hyperparameter Tuning

A Couple of Questions

- What is this?
- Why do you know?
- How have you come to that knowledge?

Introductory Example

Learning a new concept, e.g., "Tree"

"tree"

"tree"

"tree"

"not a tree"

"not a tree"

"not a tree"

Introductory Example

- Example: learning a new concept, e.g., "Tree"
 - we look at (positive and negative) examples
 - ...and derive a model
 - e.g., "Trees are big, green plants"

Goal: Classification of new instances

"tree?"

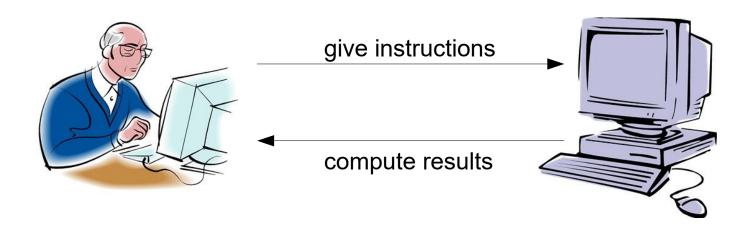
Warning:

Models are only
approximating examples!

Not guaranteed to be
correct or complete!

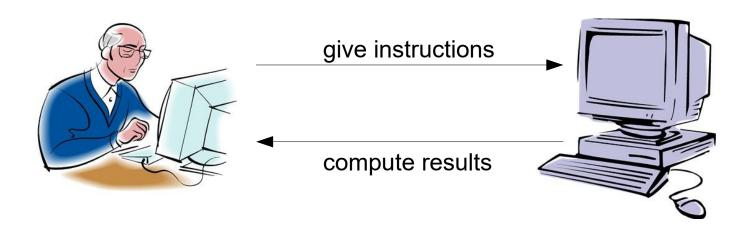
What is Classification?

- Classic programming:
 - if more than 10 orders/year and more than \$100k spent set customer.isPremiumCustomer = true
- The prevalent style of programming computers
 - works well as long as we know the rules
 - e.g.: what makes a customer a premium customer?



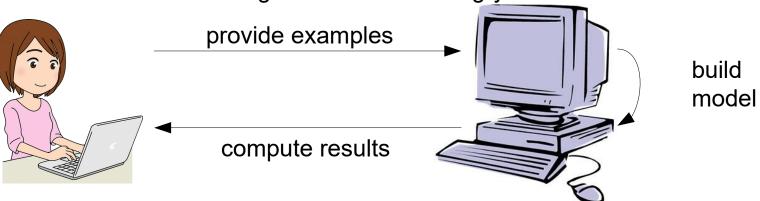
What is Classification?

- Sometimes, it's not so easy
- E.g., due to missing knowledge
 - if customer is likely to order a new phone send advertisement for new phones
- E.g., due to difficult formalization as an algorithm
 - if customer review is angry send apology



What is Classification?

- A different paradigm:
 - User provides computer with examples
 - Computer finds model by itself
 - Notion: the computer *learns* from examples (term: *machine learning*)
- Example
 - labeled examples of angry and non-angry customer reviews
 - computer finds model for telling if a customer is angry



Classification: Formal Definition

Given:

- a set of labeled records, consisting of
 - data fields (a.k.a. attributes or features)
 - a class label (e.g., true/false)

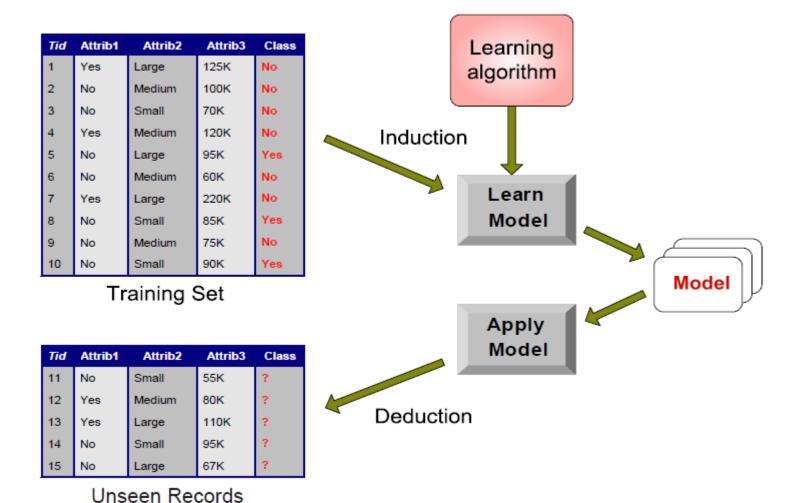
Generate

- a function f(r)
 - input: a record
 - output: a class label
- which can be used for classifying previously unseen records

Variants:

- single class problems (e.g., only true/false)
- multi class problems
- multi label problems (more than one class per record, not covered in this lecture)
- hierarchical multi class/label problems (with class hierarchy, e.g., product categories)

The Classification Workflow



Classification Applications – Examples

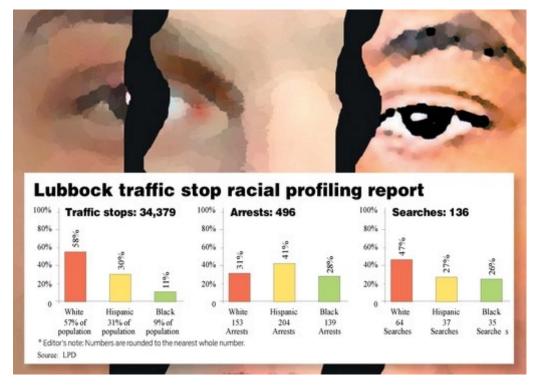
- Attributes: a set of symptoms (cough, sore throat...)
 - class: does the patient suffer from CoViD-19?
- Attributes: the values in your tax declaration
 - class: are you trying to cheat?
- Attributes: your age, income, debts, ...
 - class: are you getting credit by your bank?
- Attributes: the countries you phoned with in the last 6 months
 - class: are you a terrorist?

Classification Applications – Examples

- Attributes: words in a product review
 - Class: Is it a fake review?
- Attributes: words and header fields of an e-mail
 - Class: Is it a spam e-mail?

Classification Applications – Examples

- A controversial example
 - Class: whether you are searched by the police
 - Class: whether you are selected at the airport for an extra check



http://lubbockonline.com/stories/030609/loc_405504016.shtml

Classification Algorithms

- Recap:
 - we give the computer a set of labeled examples
 - the computer learns to classify new (unlabeled) examples
- How does that work?

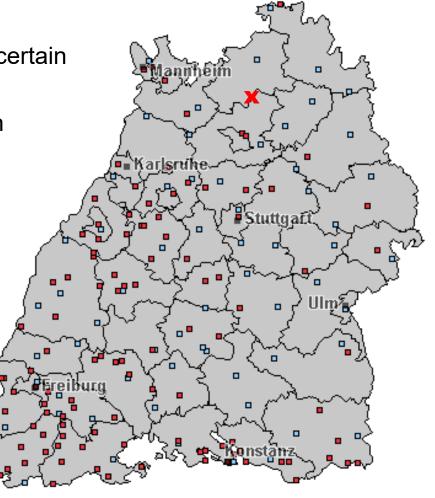
k Nearest Neighbors

Problem

find out what the weather is in a certain place

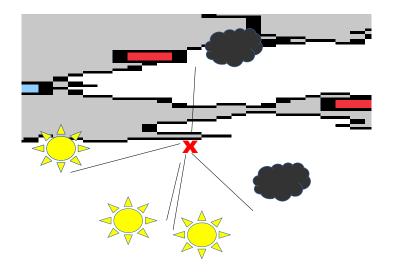
where there is no weather station

– how could you do that?



k Nearest Neighbors

- Idea: use the average of the nearest stations
- Example:
 - 3x sunny
 - 2x cloudy
 - result: sunny
- Approach is called
 - "k nearest neighbors"
 - where k is the number of neighbors to consider
 - in the example: k=5
 - in the example: "near" denotes geographical proximity



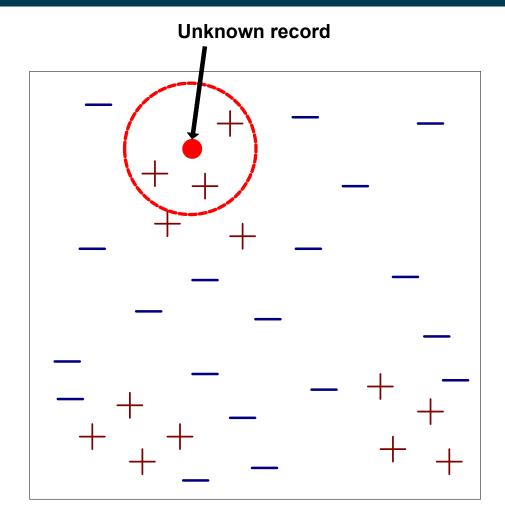
k Nearest Neighbors

- Further examples:
- Is a customer going to buy a product?
 - → have similar customers bought that product?
- What party are you going to vote for?
 - → what party do your (closest) friends/family members vote for?
- Is a film going to win an oscar?
 - → have similar films won an oscar?
- and so on...

Recap: Similarity and Distance

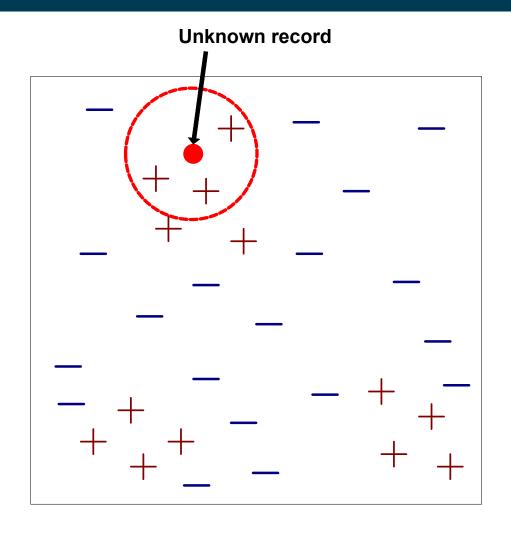
- k Nearest Neighbors
 - requires a notion of similarity (i.e., what is "near"?)
- Review: similarity measures for clustering
 - similarity of individual data values
 - similarity of data points
- Think about scales and normalization!

Nearest-Neighbor Classifiers



- Requires three things
 - The set of stored records
 - A distance metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve

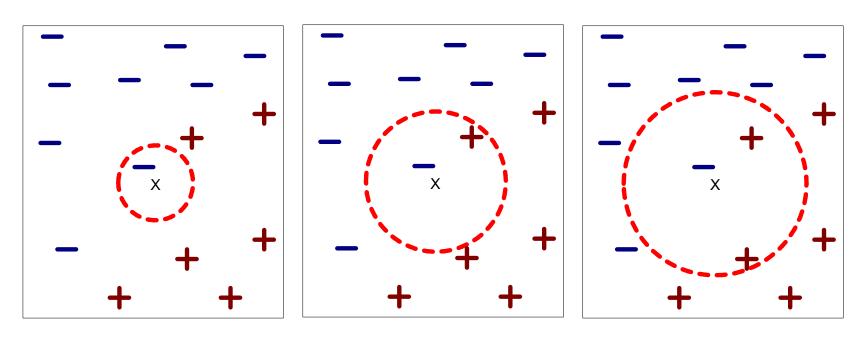
Nearest-Neighbor Classifiers



- To classify an unknown record:
 - Compute distance to each training record
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record
 - by taking majority vote
 - by weighing the vote according to distance

Definition of the k Nearest Neighbors

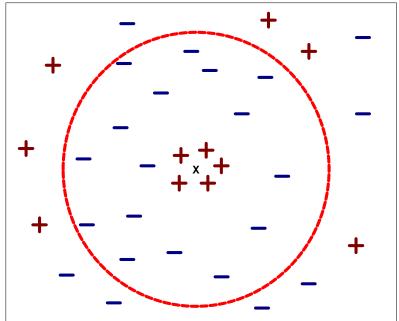
The k nearest neighbors of a record x are data points that have the k smallest distance to x.



- (a) 1-nearest neighbor
- (b) 2-nearest neighbor
- (c) 3-nearest neighbor

Choosing a Good Value for k

- If k is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classes



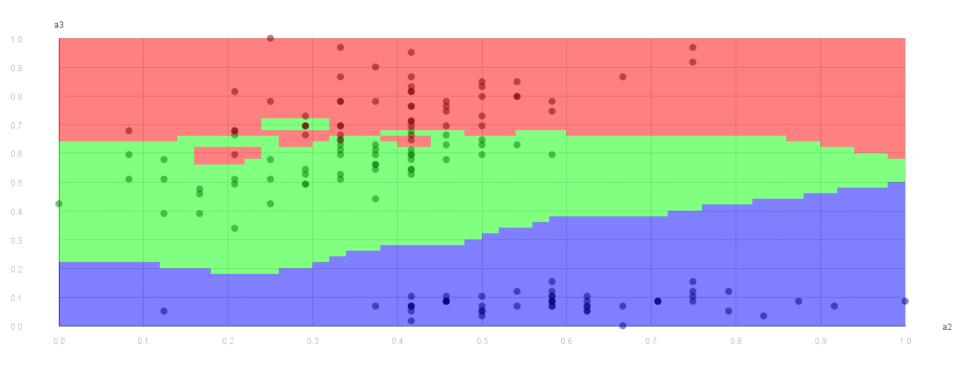
Rule of thumb: Test k values between 1 and 10.

Discussion of K-Nearest Neighbor

- Often very accurate
- ... but slow as training data needs to be searched
- Can handle decision boundaries which are not parallel to the axes
- Assumes all attributes are equally important
 - Remedy: Attribute selection or using attribute weights

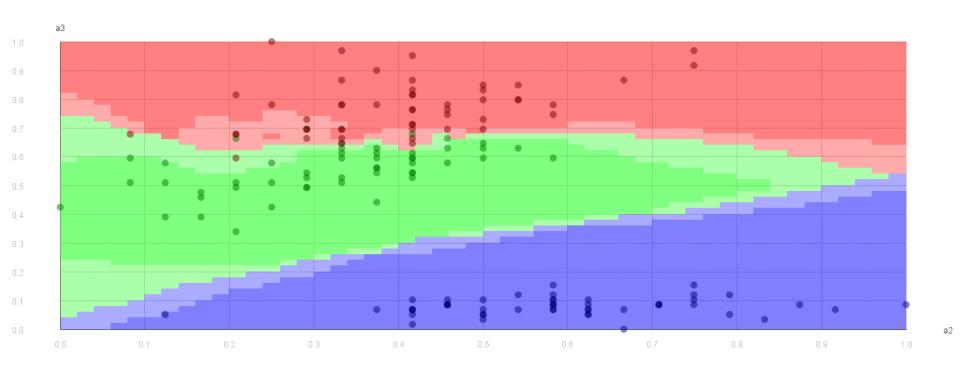
Decision Boundaries of a k-NN Classifier

- k=1
- Single noise points have influence on model



Decision Boundaries of a k-NN Classifier

- k=3
- Boundaries become smoother
- Influence of noise points is reduced



KNN in Python

Training the model:

```
scaler = MinMaxScaler()
features_norm = scaler.fit_transform(features)
model = KNeighborsClassifier(n_neighbors=3)
model.fit(features_norm, label)
```

Applying the model:

```
test_norm = scaler.transform(test)
model.predict(test_norm)
```

Experiment

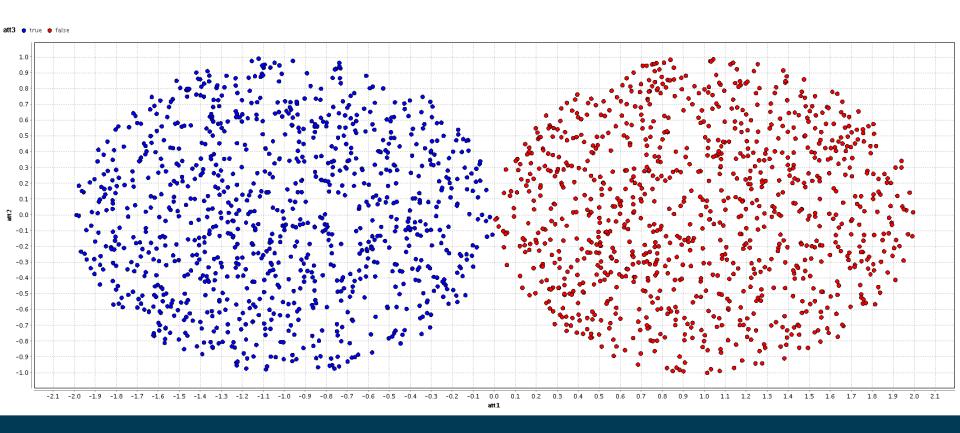
- Trying to predict: do you want to watch "Avatar the Way of the Water" (coming to cinemas in December)?
- Binary attributes: have you watched these 2022 films?
 - 1) Moonfall
 - 2) Uncharted
 - 3) King Richard
 - 4) The Batman
 - 5) Cyrano
 - 6) Sonic the Hedgehog 2
 - 7) Fantastic Beasts: The Secrets of Dumbledore
 - 8) The Northman
 - 9) Jurassic World
 - 10)Bullet Train

Contrast: Nearest Centroids

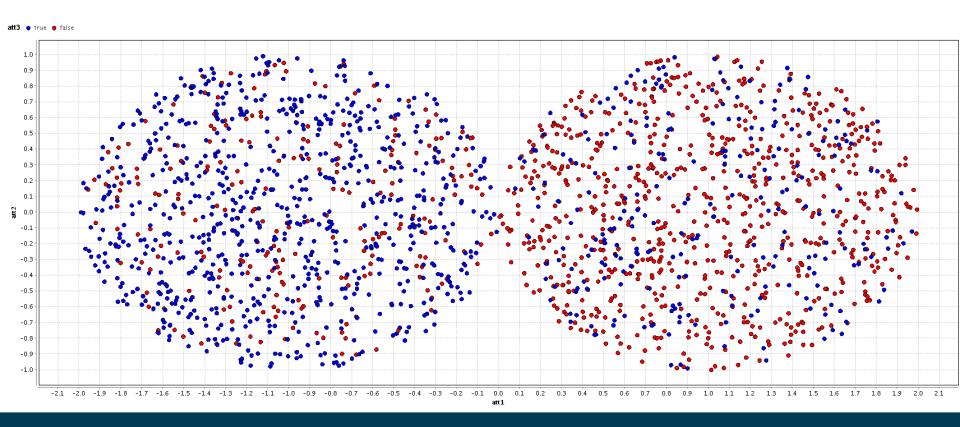
- a.k.a. Rocchio classifier
- Training: compute centroid for each class
 - center of all points of that class
 - like: centroid for a cluster
- Classification:
 - assign each data point to nearest centroid
- Python:
 - scikit_learn.neighbors.NearestCentroid

Sounds pretty much just like k-NN, huh?

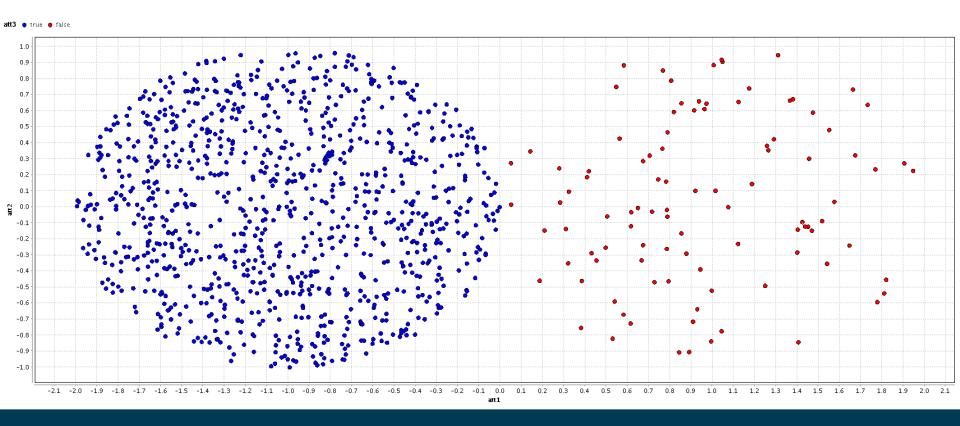
- Basic problem: two circles
 - Both k-NN and Nearest Centroid are rather perfect



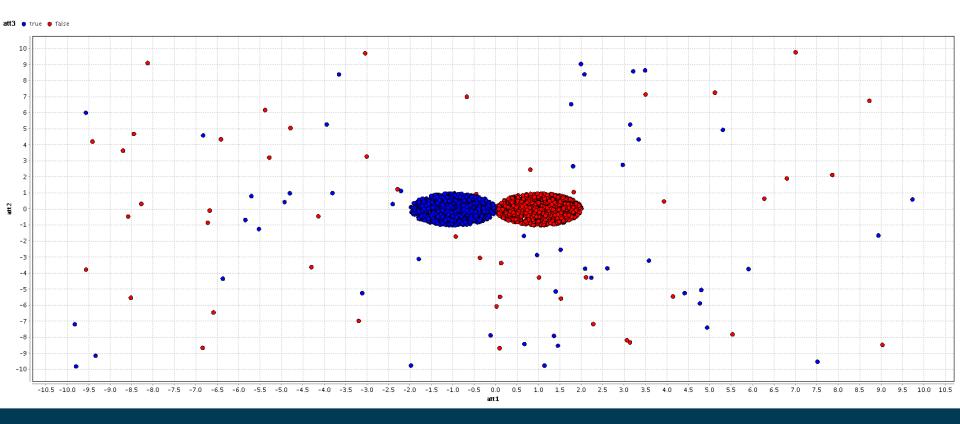
- Label noise (i.e., some data points are mislabeled)
 - k-NN loses performance
 - Nearest Centroid is stable



- Unbalanced data (one class significantly smaller than the other)
 - k-NN loses performance
 - Nearest Centroid is stable



- Outliers are contained in the dataset
 - k-NN is stable
 - Nearest Centroid loses performance



k-NN

- slow at classification time (linear in number of data points)
- requires much memory (storing all data points)
- robust to outliers
- Nearest Centroid
 - fast at classification time (linear in number of classes)
 - requires only little memory (storing only the centroids)
 - robust to label noise
 - robust to class imbalance
- Which classifier is better?
 - that strongly depends on the problem at hand!

Bayes Classifier

- Based on Bayes Theorem
- Thomas Bayes (1701-1761)
 - British mathematician and priest
 - tried to formally prove the existence of God
- Bayes Theorem
 - important theorem in probability theory
 - was only published after Bayes' death

Conditional Probability and Bayes Theorem

- Question:
 - How likely is C, given that we observe A
 - This is called a conditional probability, denoted P(C|A)
- e.g.: Given a symptom, what is the likelihood of a certain disease?
- Bayes Theorem
 - Computes one conditional probability P(C|A) out of another P(A|C)
 - given that the base probabilities P(A) and P(C) are known
- Useful in situations where P(C|A) is unknown
 - while P(A|C), P(A) and P(C) are known or easy to determine/estimate?

Conditional Probability and Bayes Theorem

- A probabilistic framework for solving classification problems
- Conditional Probability:

$$P(C|A) = \frac{P(A,C)}{P(A)}$$

$$P(A|C) = \frac{P(A,C)}{P(C)}$$

Bayes theorem:

$$P(C|A) = \frac{P(A|C)P(C)}{P(A)}$$

Example of Bayes Theorem

- PCR test for SaRS-CoV-2
 - exact quality is unknown
- Optimistic estimates¹
 - If you're infected, a self test shows a positive result with p=73% (called "sensitivity")

- If you're not infected, a self test shows a negative result with p=99% (called "specificity")
- Assume you have a positive test
 - What's the probability that you're infected with SARS-CoV-2?

¹see https://www.cochrane.de/news/aktueller-cochrane-review-wie-zuverlaessig-sind-corona-schnelltests

Example of Bayes Theorem

- We want to know P(Corona|pos)
 - Bayes theorem:

$$P(Cor | pos) = \frac{P(pos | Cor) P(Cor)}{P(pos)}$$

~0.7% in Germany

- We still need P(pos)
 - i.e., the probability that a test is positive

$$P(pos) = P(pos | Cor \lor \neg Cor)$$

= $P(pos | Cor) \cdot P(Cor) + P(pos | \neg Cor) \cdot P(\neg Cor)$

Example of Bayes Theorem

Now: numbers

$$P(Corona \mid pos) = \frac{P(pos \mid Corona)P(Corona)}{P(pos)}$$

$$= \frac{P(pos \mid Corona)P(Corona)}{P(pos \mid Cor) \cdot P(Cor) + P(pos \mid Cor) \cdot P(\neg Cor)}$$

$$= \frac{0.73 \cdot 0.007}{0.73 \cdot 0.007 + 0.01 \cdot 0.993} = 0.34$$

- That means:
 - at more than 65% probability, you are still healthy, given a positive test!
- Caveat:
 - numbers P(Cor) and (P¬Cor) are different due to non-random testing!

Estimating the Prior Probability P(C)

- The prior probability P(C_j) for each class is estimated by
 - counting the records in the training set that are labeled with class C_i
 - dividing the count by the overall number of records
- Example:
 - $P(Play=no) = \frac{5}{14}$
 - P(Play=yes) = 9/14

Training Data

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Estimating the Conditional Probability P(A | C)

- Naïve Bayes assumes that all attributes are statistically independent
 - knowing the value of one attribute says nothing about the value of another
 - this independence assumption is almost never correct!
 - but ... this scheme works well in practice
- The independence assumption allows the joint probability $P(A \mid C)$ to be reformulated as the product of the individual probabilities $P(A_i \mid C_i)$:

$$P(A_1, A_2, ..., A_n | C_j) = \prod P(A_n | C_j) = P(A_1 | C_j) \times P(A_2 | C_j) \times ... \times P(A_n | C_j)$$

```
P(Outlook=rainy, Temperature=cool | Play=yes)
= P(Outlook=rainy | Play=yes) × P(Temperature=cool | Play=yes)
```

Result: The probabilities P(A_i| C_j) for all A_i and C_j can be estimated directly from the training data

Estimating the Probabilities P(A_i | C_i)

Outlook		Temperature		Humidity		Windy			Play				
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

- 1.1. count how often an attribute value co-occurs with class C_i
- 2. divide by the overall number of instances in class C_i

Example:

"Outlook=sunny" occurs on 2/9 examples in class "Yes"

→ p(Outlook=sunny|Yes) = 2/9

Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

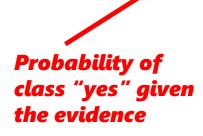
Classifying a New Record

Unseen record

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Class-conditional probability of the evidence

$$P(yes | E) = P(Outlook = Sunny | yes)$$



$$\times P(Temperature = Cool \mid yes)$$

$$\times P(Humidity = High \mid yes)$$

$$\times P(Windy = True \mid yes)$$

$$\times \frac{P(yes)}{P(E)}$$
 Prior probability of class "yes" Prior probability of evidence

$$=\frac{\frac{2}{9}\times\frac{3}{9}\times\frac{3}{9}\times\frac{3}{9}\times\frac{9}{14}}{P(E)}$$

Classifying a New Record (ctd.)

Out	Outlook		Те	Temperature		Hur	Humidity		Windy			Play	
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Prior probability Evidence

Likelihood of the two classes

For "yes" = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

For "no" = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Conversion into a probability by normalization:

P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205

P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

Choose Maximum.

Handling Numerical Attributes

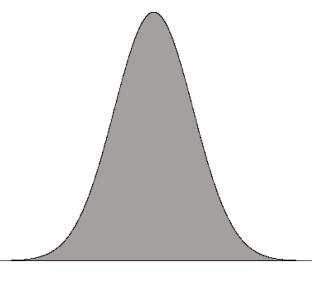
Option 1:

Discretize numerical attributes before learning classifier.

- Temp= 37°C → "Hot"
- Temp= 21°C → "Mild"
- Option 2:

Make assumption that numerical attributes have a normal distribution given the class.

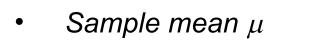
- use training data to estimate parameters of the distribution (e.g., mean and standard deviation)
- once the probability distribution is known, it can be used to estimate the conditional probability P(A_i|C_i)



Handling Numerical Attributes

The probability density function for the normal distribution is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$



$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Standard deviation
$$\sigma$$
 $\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2}$

Both parameters can be estimated from the training data

Statistics for the Weather Data

Outlook		Temperature		Hur	Humidity		Windy		Play		
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	64, 68,	65, 71,	65, 70,	70, 85,	False	6	2	9	5
Overcast	4	0	69, 70,	72, 80,	70, 75,	90, 91,	True	3	3		
Rainy	3	2	72,	85,	80,	95,					
Sunny	2/9	3/5	μ =73	μ =75	μ =79	μ =86	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	σ =6.2	σ =7.9	σ =10.2	σ =9.7	True	3/9	3/5		
Rainy	3/9	2/5									

Example calculation:

$$f(temp = 66 \mid yes) = \frac{1}{\sqrt{2\pi} 6.2} e^{-\frac{(66-73)^2}{2*6.2^2}} = 0.0340$$

Classifying a New Record

Unseen record

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

```
Likelihood of "yes" = 2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036

Likelihood of "no" = 3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136

P("yes") = 0.000036 / (0.000036 + 0.000136) = 20.9\%

P("no") = 0.000136 / (0.000036 + 0.000136) = 79.1\%
```

Caveat: Some numeric attributes are not normally distributed and you may thus need to choose a different probability density function or use discretization

Handling Missing Values

- Missing values may occur in training and in unseen classification records
- Training: Record is not included into frequency count for attribute value-class combination
- Classification: Attribute will be omitted from calculation.
 - Example:

Unseen record

Outlook	Temp.	Humidity	Windy	Play
?	Cool	High	True	?

Likelihood of "yes" = $3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238$

Likelihood of "no" = $1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343$

P("yes") = 0.0238 / (0.0238 + 0.0343) = 41%

P("no") = 0.0343 / (0.0238 + 0.0343) = 59%

Zero Frequency Problem

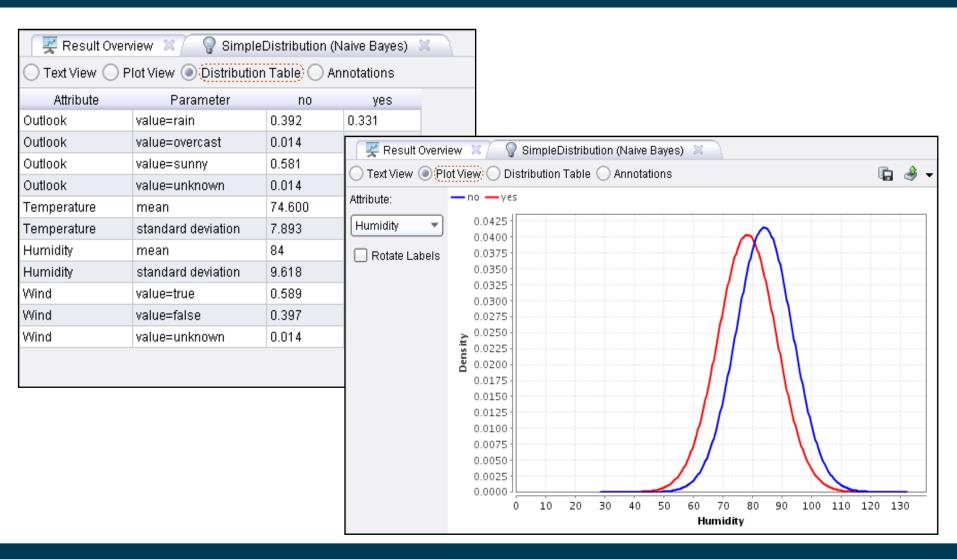
- If one of the conditional probabilities is zero, then the entire expression becomes zero
- And it is not unlikely that an exactly same data point has not yet been observed
- Probability estimation:

Original:
$$P(A_i|C) = \frac{N_{ic}}{N_c}$$

Laplace: $P(A_i|C) = \frac{N_{ic}+1}{N_c+c}$

c: number of attribute values of A

Anatomy of a Naïve Bayes Model



Using Conditional Probabilities for Naïve Bayes

🔀 Resu	ılt Overview	🛮 / 📵 Example	Set (Retrieve Golf-Te	stset) 🛚					
Data Vie	w 🔘 Meta D	ata View 🔘 Plot V	iew O Advanced C	harts 🔘 Annotatio	ns				
ExampleSe	t (14 example	s, 4 special attribut	tes, 4 regular attribut	es)				View Filter (1	14 / 14)
Row No.	Play	confidence(no)	confidence(yes)	prediction(Play)	Outlook	Temperature	Humidity	Wind	
1	yes	0.711	0.289	no	sunny	85	85	false	
2	no	0.058	0.942	yes	overcast	80	90	true	
3	yes	0.014	0.986	yes	overcast	83	78	false	
4	yes	0.412	0.588	yes	rain	70	96	false	
5	yes	0.460	0.540	yes	rain	68	80	true	
6	no	0.336	0.664	yes	rain	65	70	true	
7	yes	0.010	0.990	doo	oificr ic	auita aur		true	
8	no	0.596	0.404	no Clas	Siller is	<mark>quite sur</mark>	е	false	
9	yes	0.248	0.752	yes	sunny	69	70	false	
10	no	0.407	0.593	yes	sunny	75	80	false	
11	yes	0.496	0.504	cla	ccifior ic	not cure		true	
12	yes	0.038	0.962	yes	classifier is not sure		•	true	
13	no	0.027	0.973	yes	overcast	81	75	true	
14	yes	0.453	0.547	yes	rain	71	80	true	

Decision Boundary of Naive Bayes Classifier

- Usually larger coherent areas
- Soft margins with uncertain regions
- Arbitrary (often curved) shapes

Naïve Bayes (Summary)

- Robust to isolated noise points
 - they have a small impact on the probabilities
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)

Why Naïve Bayes?

- Recap:
 - we assume that all the attributes are independent
- This does not hold for many real world datasets
 - e.g., persons: sex, weight, height
 - e.g., cars: weight, fuel consumption
 - e.g., countries: population, area, GDP
 - e.g., food: ingredients
 - e.g., text: word occurrences ("Donald", "Trump", "Duck")

– ...

Naïve Bayes Discussion

- Naïve Bayes works surprisingly well
 - even if independence assumption is clearly violated
 - Classification doesn't require accurate probability estimates as long as maximum probability is assigned to correct class
- Too many redundant attributes will cause problems
 - Solution: Select attribute subset as Naïve Bayes often works as well or better with just a fraction of all attributes
- Technical advantages:
 - Learning Naïve Bayes classifiers is computationally cheap (probabilities are estimated in one pass over the training data)
 - Storing the probabilities does not require a lot of memory

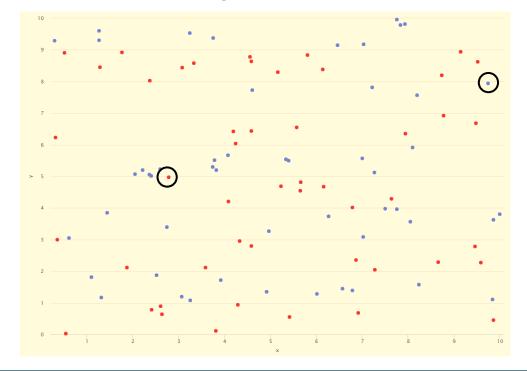
Redundant Variables

- Consider two variables which are perfectly correlated
 - i.e., one is redundant
 - e.g.: a measurement in different units
- Violate independence assumption in Naive Bayes
 - Can, at large scale, skew the result
 - Consider, e.g., a price attribute in 20 currencies
 - → price variable gets 20 times more influence
- May also skew the distance measures in k-NN
 - But the effect is not as drastic
 - Depends on the distance measure used

Irrelevant Variables

- Consider a random variable x, and two classes A and B
 - For Naive Bayes: p(x=v|A) = p(x=v|B) for any value v
 - Since it is random, it does not depend on the class variable
 - The overall result does not change

For kNN:

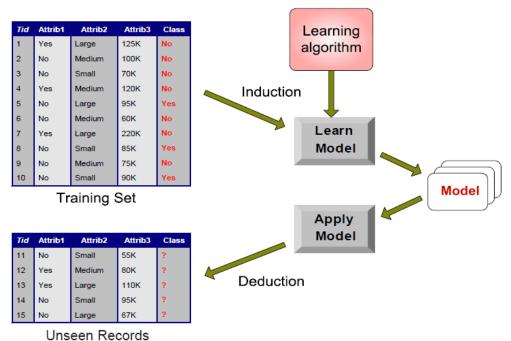


Comparison kNN and Naïve Bayes

- Computation
 - Naïve Bayes is often faster
- Naïve Bayes uses all data points
 - Naive Bayes is less sensitive to label noise
 - k-NN is less sensitive to outliers
- Redundant attributes
 - are less problematic for kNN
- Irrelevant attributes
 - are less problematic for Naïve Bayes
 - attribute values equally distributed across classes
 - → same factor for each class
- In both cases
 - attribute pre-selection makes sense (see Data Mining II)

Lazy vs. Eager Learning

- K-NN is a "lazy" methods
- They do not build an explicit model!
 - "learning" is only performed on demand for unseen records
- Nearest Centroid and Naive Bayes are simple "eager" methods



Lazy vs. Eager Learning

- We have seen a technique for lazy learning
 - k nearest neighbors
- ...and two very simple technique for eager learning
 - Nearest Centroids
 - Naïve Bayes
- We will see more eager learning in the next lectures
 - where explicit models are built
 - e.g., decision trees
 - e.g., rule sets

Model Evaluation

- This week: metrics
 - how to measure performance?
 - here: quality of predictions, not: training time
- Next week: evaluation methods
 - how to obtain meaningful and reliable estimates?

Metrics for Performance Evaluation

- Looking at correctly/incorrectly classified instances
- Two class problem (positive/negative class):
 - true positives, false positives, true negatives, false negatives
- Confusion Matrix:

	PRE	PREDICTED CLASS							
ACTUAL		Class=Yes	Class=No						
CLASS	Class=Yes	TP	FN						
	Class=No	FP	TN						

Metrics for Performance Evaluation

Most frequently used metrics:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Error Rate = 1 - Accuracy

	PREDICTED CLASS								
ACTUAL		Class=Yes	Class=No						
CLASS	Class=Yes	TP	FN						
	Class=No	FP	TN						

What is a Good Accuracy?

- i.e., when are you done?
 - at 75% accuracy?
 - at 90% accuracy?
 - at 95% accuracy?
- Depends on difficulty of the problem!
- Baseline: naive guessing
 - always predict majority class
- Compare
 - Predicting coin tosses with accuracy of 50%
 - Predicting dice roll with accuracy of 50%
 - Predicting lottery numbers (6 out of 49) with accuracy of 50%

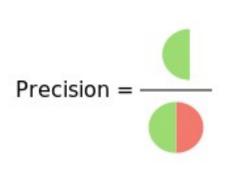
Limitation of Accuracy: Unbalanced Data

- Sometimes, classes have very unequal frequency
 - Fraud detection: 98% transactions OK, 2% fraud
 - eCommerce: 99% don't buy, 1% buy
 - Intruder detection: 99.99% of the users are no intruders
 - Security: >99.99% of Americans are not terrorists
- Consider a 2-class problem:
 - Number of Class 0 examples = 9990, Number of Class 1 examples = 10
 - If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Precision and Recall

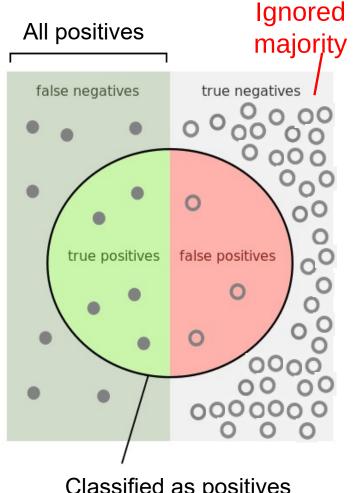
How many examples that are classified positive are actually positive?

Which fraction of all positive examples is classified correctly?



$$p = \frac{TP}{TP + FP}$$

$$r = \frac{TP}{TP + FN}$$



Classified as positives

Heiko Paulheim 9/20/22 67

Precision and Recall Example

	Predicted positive	Predicted negative
Actual positive	1	99
Actual negative	0	1000

- This confusion matrix gives us
 - \blacksquare precision p = 100% and
 - \blacksquare recall r = 1%
- because we only classified one positive example correctly and no negative examples wrongly
- We want a measure that combines precision and recall

F₁-Measure

- It is hard to compare two classifiers using two measures
- F₁-Score combines precision and recall into one measure
 - by using the harmonic mean

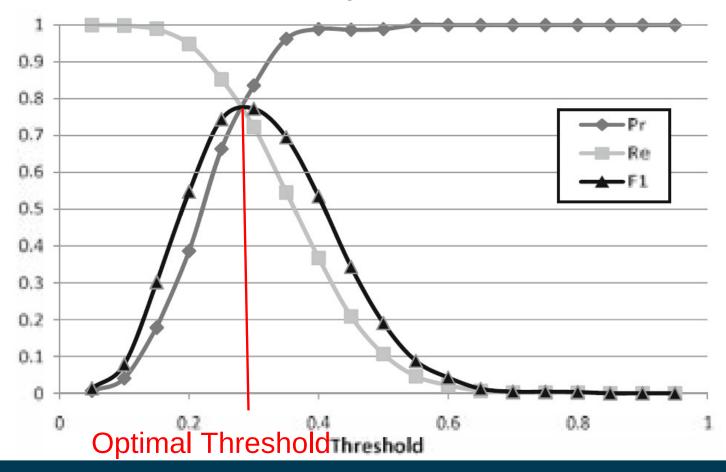
$$F_1 = \frac{2}{\frac{1}{p+r}} = \frac{2pr}{p+r}$$

- The harmonic mean of two numbers tends to be closer to the smaller of the two
- For F₁-value to be large, both p and r must be large

F₁-Measure Graph

Low threshold: Low precision, high recall

Restrictive threshold: High precision, low recall



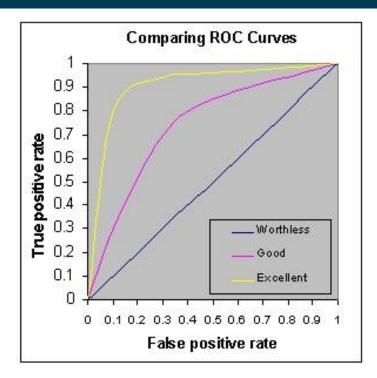
ROC Curves

- Some classification algorithms provide confidence scores
 - how sure the algorithms is with its prediction
 - e.g., Naive Bayes: the probability
 - e.g., k-NN: the fraction of examples of the predicted class among the k neighbors
- Drawing a ROC Curve
 - Sort classifications according to confidence scores (e.g.: predicted probabilities in Naive Bayes)
 - Fvaluate
 - correct prediction: draw one step up
 - incorrect prediction: draw one step to the right

Interpreting ROC Curves

- Best possible result:
 - all correct predictions have higher confidence than all incorrect ones
- The steeper, the better
 - random guessing results in the diagonal
 - so a decent algorithm should result in a curve significantly above the diagonal
- Comparing algorithms:
 - Curve A above curve B means algorithm A better than algorithm B

- area under curve (aka ROC AUC)
- normalized to 1



Alternative for Unbalanced Data: Cost Matrix

	PREDICTED CLASS			
ACTUAL CLASS	C(i j)	Class=Yes	Class=No	
	Class=Yes	C(Yes Yes)	C(No Yes)	
	Class=No	C(Yes No)	C(No No)	

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	-
	+	0	100
	-	1	0

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	162	38
	-	160	240

Accuracy = 67%

Cost = 3960

Accuracy = 92%

Cost = 4505

Summary

- Classification
 - predicting the class of an example (e.g. yes/no)
 - the number of classes is fixed and known
 - training examples: labeled classes
- Methods: k-NN, nearest centroid, Naive Bayes (more to come)
 - one size fits all approaches do not exist!
- Evaluation
 - accuracy and error rate
 - recall, precision, and F1 score
 - ROC curves
 - cost-based evaluations

Questions?

