Outline

1. What is Classification?
2. k Nearest Neighbors and Nearest Centroids
3. Naïve Bayes
4. Evaluating Classification
5. Decision Trees
6. The Overfitting Problem
7. Other Classification Approaches
8. Hyperparameter Tuning
A Couple of Questions

- What is this?
- Why do you know?
- How have you come to that knowledge?
Introductory Example

- Learning a new concept, e.g., "Tree"

"tree"

"not a tree"

"not a tree"

"not a tree"
Introductory Example

• Example: learning a new concept, e.g., "Tree"
 – we look at (positive and negative) examples
 – ...and derive a model
 • e.g., "Trees are big, green plants"

• Goal: Classification of new instances

"tree?"

Warning: Models are only approximating examples! Not guaranteed to be correct or complete!
What is Classification?

• Classic programming:
 – if more than 10 orders/year and more than $100k spent
 set customer.isPremiumCustomer = true

• The prevalent style of programming computers
 – works well as long as we know the rules
 – e.g.: what makes a customer a premium customer?
What is Classification?

• Sometimes, it's not so easy
• E.g., due to missing knowledge
 – if customer is likely to order a new phone
 send advertisement for new phones
• E.g., due to difficult formalization as an algorithm
 – if customer review is angry
 send apology
What is Classification?

• A different paradigm:
 – User provides computer with examples
 – Computer finds model by itself
 – Notion: the computer *learns* from examples (term: *machine learning*)

• Example
 – labeled examples of angry and non-angry customer reviews
 – computer finds model for telling if a customer is angry

![Diagram of a person providing examples to a computer, which builds a model and computes results.](image)
Classification: Formal Definition

• Given:
 – a set of labeled records, consisting of
 • data fields (a.k.a. attributes or features)
 • a class label (e.g., true/false)

• Generate
 – a function $f(r)$
 • input: a record
 • output: a class label
 – which can be used for classifying previously unseen records

• Variants:
 – single class problems (e.g., only true/false)
 – multi class problems
 – multi label problems (more than one class per record, not covered in this lecture)
 – hierarchical multi class/label problems (with class hierarchy, e.g., product categories)
The Classification Workflow

<table>
<thead>
<tr>
<th>Tid</th>
<th>Attrib1</th>
<th>Attrib2</th>
<th>Attrib3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Large</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Medium</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Small</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Medium</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Large</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Medium</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Large</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Small</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Medium</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Small</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Training Set

<table>
<thead>
<tr>
<th>Tid</th>
<th>Attrib1</th>
<th>Attrib2</th>
<th>Attrib3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>No</td>
<td>Small</td>
<td>55K</td>
<td>?</td>
</tr>
<tr>
<td>12</td>
<td>Yes</td>
<td>Medium</td>
<td>80K</td>
<td>?</td>
</tr>
<tr>
<td>13</td>
<td>Yes</td>
<td>Large</td>
<td>110K</td>
<td>?</td>
</tr>
<tr>
<td>14</td>
<td>No</td>
<td>Small</td>
<td>95K</td>
<td>?</td>
</tr>
<tr>
<td>15</td>
<td>No</td>
<td>Large</td>
<td>67K</td>
<td>?</td>
</tr>
</tbody>
</table>

Unseen Records

Induction

Apply Model

Deduction

Learning algorithm

Model
Classification Applications – Examples

• Attributes: a set of symptoms (cough, sore throat...)
 – class: does the patient suffer from CoViD-19?

• Attributes: the values in your tax declaration
 – class: are you trying to cheat?

• Attributes: your age, income, debts, …
 – class: are you getting credit by your bank?

• Attributes: the countries you phoned with in the last 6 months
 – class: are you a terrorist?
Classification Applications – Examples

• Attributes: words in a product review
 – Class: Is it a fake review?

• Attributes: words and header fields of an e-mail
 – Class: Is it a spam e-mail?
Classification Applications – Examples

• A controversial example
 – Class: whether you are searched by the police
 – Class: whether you are selected at the airport for an extra check

http://lubbockonline.com/stories/030609/loc_405504016.shtml
Classification Algorithms

• Recap:
 – we give the computer a set of labeled examples
 – the computer learns to classify new (unlabeled) examples

• How does that work?
k Nearest Neighbors

- Problem
 - find out what the weather is in a certain place
 - where there is no weather station
 - how could you do that?
k Nearest Neighbors

• Idea: use the average of the nearest stations

• Example:
 – 3x sunny
 – 2x cloudy
 – result: sunny

• Approach is called
 – “k nearest neighbors”
 – where k is the number of neighbors to consider
 – in the example: k=5
 – in the example: “near” denotes geographical proximity
- Further examples:
 - Is a customer going to buy a product?
 → have similar customers bought that product?
 - What party are you going to vote for?
 → what party do your (closest) friends/family members vote for?
 - Is a film going to win an oscar?
 → have similar films won an oscar?
- and so on...
Recap: Similarity and Distance

• k Nearest Neighbors
 – requires a notion of similarity (i.e., what is “near”?)

• Review: similarity measures for clustering
 – similarity of individual data values
 – similarity of data points

• Think about scales and normalization!
Nearest-Neighbor Classifiers

• Requires three things
 – The set of stored records
 – A distance metric to compute distance between records
 – The value of k, the number of nearest neighbors to retrieve
Nearest-Neighbor Classifiers

To classify an unknown record:
- Compute distance to each training record
- Identify k nearest neighbors
- Use class labels of nearest neighbors to determine the class label of unknown record
 - by taking majority vote
 - by weighing the vote according to distance
Definition of the k Nearest Neighbors

The k nearest neighbors of a record x are data points that have the k smallest distance to x.

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor
Choosing a Good Value for k

– If \(k \) is too small, sensitive to noise points

– If \(k \) is too large, neighborhood may include points from other classes

– Rule of thumb: Test \(k \) values between 1 and 10.
Discussion of K-Nearest Neighbor

• Often very accurate
• … but slow as training data needs to be searched

• Can handle decision boundaries which are not parallel to the axes
• Assumes all attributes are equally important
 – Remedy: Attribute selection or using attribute weights
Decision Boundaries of a k-NN Classifier

- k=1
- Single noise points have influence on model
Decision Boundaries of a k-NN Classifier

- $k=3$
- Boundaries become smoother
- Influence of noise points is reduced
KNN in Python

• Training the model:

```python
scaler = MinMaxScaler()
features_norm = scaler.fit_transform(features)
model = KNeighborsClassifier(n_neighbors=3)
model.fit(features_norm,label)
```

• Applying the model:

```python
test_norm = scaler.transform(test)
model.predict(test_norm)
```
Experiment

• Trying to predict: do you want to watch “Avatar – the Way of the Water” (coming to cinemas in December)?

• Binary attributes: have you watched these 2022 films?
 1) Moonfall
 2) Uncharted
 3) King Richard
 4) The Batman
 5) Cyrano
 6) Sonic the Hedgehog 2
 7) Fantastic Beasts: The Secrets of Dumbledore
 8) The Northman
 9) Jurassic World
 10) Bullet Train
Contrast: Nearest Centroids

• a.k.a. Rocchio classifier
• Training: compute centroid for each class
 – center of all points of that class
 – like: centroid for a cluster
• Classification:
 – assign each data point to nearest centroid
• Python:
 – scikit_learn.neighbors.NearestCentroid

Sounds pretty much just like k-NN, huh?
k-NN vs. Nearest Centroid

- Basic problem: two circles
 - Both k-NN and Nearest Centroid are rather perfect
k-NN vs. Nearest Centroid

- Label noise (i.e., some data points are mislabeled)
 - k-NN loses performance
 - Nearest Centroid is stable
k-NN vs. Nearest Centroid

- Unbalanced data (one class significantly smaller than the other)
 - k-NN loses performance
 - Nearest Centroid is stable
k-NN vs. Nearest Centroid

- Outliers are contained in the dataset
 - k-NN is stable
 - Nearest Centroid loses performance
k-NN vs. Nearest Centroid

• k-NN
 – slow at classification time (linear in number of data points)
 – requires much memory (storing all data points)
 – robust to outliers

• Nearest Centroid
 – fast at classification time (linear in number of classes)
 – requires only little memory (storing only the centroids)
 – robust to label noise
 – robust to class imbalance

• Which classifier is better?
 – that strongly depends on the problem at hand!
Bayes Classifier

- Based on Bayes Theorem
- Thomas Bayes (1701-1761)
 - British mathematician and priest
 - tried to formally prove the existence of God
- Bayes Theorem
 - important theorem in probability theory
 - was only published after Bayes' death
Conditional Probability and Bayes Theorem

• Question:
 – How likely is C, given that we observe A
 – This is called a conditional probability, denoted $P(C|A)$

• e.g.: Given a symptom, what is the likelihood of a certain disease?

• Bayes Theorem
 – Computes one conditional probability $P(C|A)$ out of another $P(A|C)$
 – given that the base probabilities $P(A)$ and $P(C)$ are known

• Useful in situations where $P(C|A)$ is unknown
 – while $P(A|C)$, $P(A)$ and $P(C)$ are known or easy to determine/estimate?
Conditional Probability and Bayes Theorem

- A probabilistic framework for solving classification problems
- Conditional Probability:
 \[
P(C|A) = \frac{P(A, C)}{P(A)}
 \]
 \[
P(A|C) = \frac{P(A, C)}{P(C)}
 \]
- Bayes theorem:
 \[
P(C|A) = \frac{P(A|C)P(C)}{P(A)}
 \]
Example of Bayes Theorem

- PCR test for SARS-CoV-2
 - exact quality is unknown
- Optimistic estimates\(^1\)
 - If you're infected, a self test shows a positive result with \(p=73\%\) (called “sensitivity”)
 - If you're not infected, a self test shows a negative result with \(p=99\%\) (called “specificity”)

- Assume you have a positive test
 - What's the probability that you're infected with SARS-CoV-2?

\(^1\) see https://www.cochrane.de/news/aktueller-cochrane-review-wie-zuverlaessig-sind-corona-schnelltests
Example of Bayes Theorem

- We want to know $P(\text{Corona}|\text{pos})$
 - Bayes theorem:

 $P(\text{Cor}|\text{pos}) = \frac{P(\text{pos}|\text{Cor})P(\text{Cor})}{P(\text{pos})}$

- We still need $P(\text{pos})$
 - i.e., the probability that a test is positive

 $P(\text{pos}) = P(\text{pos}|\text{Cor}\lor\neg\text{Cor})$

 $= P(\text{pos}|\text{Cor})P(\text{Cor}) + P(\text{pos}|\neg\text{Cor})P(\neg\text{Cor})$

~0.7% in Germany
Example of Bayes Theorem

• Now: numbers

$$P(\text{Corona} | \text{pos}) = \frac{P(\text{pos} | \text{Corona}) P(\text{Corona})}{P(\text{pos})}$$

$$= \frac{P(\text{pos} | \text{Corona}) P(\text{Corona})}{P(\text{pos} | \text{Cor}) \cdot P(\text{Cor}) + P(\text{pos} | \text{¬Cor}) \cdot P(\text{¬Cor})}$$

$$= \frac{0.73 \cdot 0.007}{0.73 \cdot 0.007 + 0.01 \cdot 0.993} = 0.34$$

• That means:
 – at more than 65% probability, you are still healthy, given a positive test!

• Caveat:
 – numbers \(P(\text{Cor}) \) and \(P(\text{¬Cor}) \) are different due to non-random testing!
The prior probability $P(C_j)$ for each class is estimated by

1. counting the records in the training set that are labeled with class C_j
2. dividing the count by the overall number of records

Example:
- $P(\text{Play}=\text{no}) = \frac{5}{14}$
- $P(\text{Play}=\text{yes}) = \frac{9}{14}$
Estimating the Conditional Probability $P(A | C)$

- Naïve Bayes assumes that all attributes are statistically independent
 - knowing the value of one attribute says nothing about the value of another
 - this independence assumption is almost never correct!
 - but … this scheme works well in practice

- The independence assumption allows the joint probability $P(A | C)$ to be reformulated as the product of the individual probabilities $P(A_i | C_j)$:

$$P(A_1, A_2, ..., A_n | C_j) = \prod P(A_n | C_j) = P(A_1 | C_j) \times P(A_2 | C_j) \times ... \times P(A_n | C_j)$$

$$P(\text{Outlook}=\text{rainy}, \text{Temperature}=\text{cool} | \text{Play}=\text{yes})$$
 $$= P(\text{Outlook}=\text{rainy} | \text{Play}=\text{yes}) \times P(\text{Temperature}=\text{cool} | \text{Play}=\text{yes})$$

- Result: The probabilities $P(A_i | C_j)$ for all A_i and C_j can be estimated directly from the training data
Estimating the Probabilities $P(A_i \mid C_j)$

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Yes 2</td>
<td>No 3</td>
<td>Yes 2</td>
<td>No 2</td>
</tr>
<tr>
<td></td>
<td>Hot 2</td>
<td>Yes 2</td>
<td>High 3</td>
<td>No 4</td>
</tr>
<tr>
<td>Overcast</td>
<td>Yes 4</td>
<td>No 0</td>
<td>Yes 6</td>
<td>No 1</td>
</tr>
<tr>
<td></td>
<td>Mild 4</td>
<td>No 2</td>
<td>High 3</td>
<td>No 1</td>
</tr>
<tr>
<td>Rainy</td>
<td>Yes 3</td>
<td>No 2</td>
<td>Yes 6</td>
<td>No 3</td>
</tr>
<tr>
<td>Overcast</td>
<td>Yes 4/9</td>
<td>No 0/5</td>
<td>Yes 6/9</td>
<td>No 1/5</td>
</tr>
<tr>
<td>Rainy</td>
<td>Yes 3/9</td>
<td>No 2/5</td>
<td>Yes 6/9</td>
<td>No 1/5</td>
</tr>
</tbody>
</table>

1. count how often an attribute value co-occurs with class C_j
2. divide by the overall number of instances in class C_j

Example:
“Outlook=sunny” occurs on 2/9 examples in class “Yes”
$\Rightarrow p(\text{Outlook}=\text{sunny}|\text{Yes}) = 2/9$
Classifying a New Record

An unseen record with the following data:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Cool</td>
<td>High</td>
<td>True</td>
<td>?</td>
</tr>
</tbody>
</table>

We can calculate the probability of class "yes" given the evidence using Bayes' theorem:

\[
P(\text{yes} \mid E) = \frac{P(\text{Outlook} = \text{Sunny} \mid \text{yes}) \times P(\text{Temperature} = \text{Cool} \mid \text{yes}) \times P(\text{Humidity} = \text{High} \mid \text{yes}) \times P(\text{Windy} = \text{True} \mid \text{yes})}{P(E)}
\]

Prior probability of class "yes":

\[
P(\text{yes}) = \frac{\text{Prior probability of evidence}}{P(E)}
\]

Prior probability of evidence:

\[
P(E) = \frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14}
\]

Class-conditional probability of the evidence:

\[
P(\text{yes} \mid E) = \frac{\text{Probability of class “yes” given the evidence}}{P(E)}
\]
Classifying a New Record (ctd.)

A new day:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Yes, No</td>
<td>Yes, No</td>
<td>Yes, No</td>
<td>Yes, No</td>
</tr>
<tr>
<td>Overcast</td>
<td>4/9, 0/5</td>
<td>Mild, Cool</td>
<td>High, True</td>
<td>Yes, No</td>
</tr>
<tr>
<td>Rainy</td>
<td>3/9, 2/5</td>
<td>Cool, 3/9</td>
<td>True, 3/9</td>
<td>Yes, No</td>
</tr>
</tbody>
</table>

Prior probability Evidence

Choose Maximum

Likelihood of the two classes

For “yes” = \(\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14} = 0.0053 \)

For “no” = \(\frac{3}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{5}{14} = 0.0206 \)

Conversion into a probability by normalization:

\[
P(\text{“yes”}) = \frac{0.0053}{(0.0053 + 0.0206)} = 0.205
\]

\[
P(\text{“no”}) = \frac{0.0206}{(0.0053 + 0.0206)} = 0.795
\]
Handling Numerical Attributes

- Option 1:
 Discretize numerical attributes before learning classifier.
 - Temp = 37°C ➔ “Hot”
 - Temp = 21°C ➔ “Mild”

- Option 2:
 Make assumption that numerical attributes have a normal distribution given the class.
 - use training data to estimate parameters of the distribution (e.g., mean and standard deviation)
 - once the probability distribution is known, it can be used to estimate the conditional probability $P(A_i|C_j)$
Handling Numerical Attributes

The probability density function for the normal distribution is

\[f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

It is defined by two parameters:

- Sample mean \(\mu \)
 \[\mu = \frac{1}{n} \sum_{i=1}^{n} x_i \]

- Standard deviation \(\sigma \)
 \[\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2} \]

Both parameters can be estimated from the training data.
Statistics for the Weather Data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>2</td>
<td>3</td>
<td>64, 68,</td>
<td>65, 71,</td>
</tr>
<tr>
<td>Overcast</td>
<td>4</td>
<td>0</td>
<td>69, 70,</td>
<td>72, 80,</td>
</tr>
<tr>
<td>Rainy</td>
<td>3</td>
<td>2</td>
<td>72, ...</td>
<td>85, ...</td>
</tr>
<tr>
<td>Sunny</td>
<td>2/9</td>
<td>3/5</td>
<td>μ =73</td>
<td>μ =75</td>
</tr>
<tr>
<td>Overcast</td>
<td>4/9</td>
<td>0/5</td>
<td>σ =6.2</td>
<td>σ =7.9</td>
</tr>
<tr>
<td>Rainy</td>
<td>3/9</td>
<td>2/5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example calculation:

\[
f(temp = 66 \mid yes) = \frac{1}{\sqrt{2\pi} 6.2} e^{-\frac{(66-73)^2}{2*6.2^2}} = 0.0340
\]
Classifying a New Record

Unseen record

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>66</td>
<td>90</td>
<td>true</td>
<td>?</td>
</tr>
</tbody>
</table>

Likelihood of “yes” = \(\frac{2}{9} \times 0.0340 \times 0.0221 \times \frac{3}{9} \times \frac{9}{14} = 0.000036 \)

Likelihood of “no” = \(\frac{3}{5} \times 0.0291 \times 0.0380 \times \frac{3}{5} \times \frac{5}{14} = 0.000136 \)

\[P(\text{“yes”}) = \frac{0.000036}{(0.000036 + 0.000136)} = 20.9\% \]

\[P(\text{“no”}) = \frac{0.000136}{(0.000036 + 0.000136)} = 79.1\% \]

Caveat: Some numeric attributes are not normally distributed and you may thus need to choose a different probability density function or use discretization.
Handling Missing Values

- Missing values may occur in training and in unseen classification records

- **Training**: Record is not included into frequency count for attribute value-class combination

- **Classification**: Attribute will be omitted from calculation

 • Example:

 Unseen record

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Cool</td>
<td>High</td>
<td>True</td>
<td>?</td>
</tr>
</tbody>
</table>

 Likelihood of “yes” = \(\frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14} = 0.0238 \)

 Likelihood of “no” = \(\frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{5}{14} = 0.0343 \)

 \[P(“yes”) = \frac{0.0238}{0.0238 + 0.0343} = 41\% \]

 \[P(“no”) = \frac{0.0343}{0.0238 + 0.0343} = 59\% \]
Zero Frequency Problem

• If one of the conditional probabilities is zero, then the entire expression becomes zero
• And it is not unlikely that an exactly same data point has not yet been observed
• Probability estimation:

Original: \(P(A_i|C) = \frac{N_{ic}}{N_c} \)

Laplace: \(P(A_i|C) = \frac{N_{ic} + 1}{N_c + c} \)

\(c \): number of attribute values of A
Anatomy of a Naïve Bayes Model

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Parameter</th>
<th>no</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlook</td>
<td>value=rain</td>
<td>0.392</td>
<td>0.331</td>
</tr>
<tr>
<td>Outlook</td>
<td>value=overcast</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>Outlook</td>
<td>value=sunny</td>
<td>0.581</td>
<td></td>
</tr>
<tr>
<td>Outlook</td>
<td>value=unknown</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>mean</td>
<td>74.600</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>standard deviation</td>
<td>7.893</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>mean</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>standard deviation</td>
<td>9.618</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>value=true</td>
<td>0.589</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>value=false</td>
<td>0.397</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>value=unknown</td>
<td>0.014</td>
<td></td>
</tr>
</tbody>
</table>
Using Conditional Probabilities for Naïve Bayes

The table shows the result overview for a golf game dataset. Each row represents a prediction made by the Naïve Bayes classifier. The columns include:

- **Row No.**
- **Play** (yes/no)
- **confidence (no)**
- **confidence (yes)**
- **prediction (Play)**
- **Outlook**
- **Temperature**
- **Humidity**
- **Wind**

The classifier is marked as **quite sure** when the confidence for a specific outcome is high. For example, row 2 with a confidence of 0.942 for 'yes' predicts **yes** and is quite sure. Conversely, the classifier is marked as **not sure** when the confidence is low. For instance, row 12 with a confidence of 0.038 for 'yes' predicts **yes** and is not sure.
Decision Boundary of Naive Bayes Classifier

- Usually larger coherent areas
- Soft margins with uncertain regions
- Arbitrary (often curved) shapes
Naïve Bayes (Summary)

• Robust to isolated noise points
 – they have a small impact on the probabilities

• Handle missing values by ignoring the instance during probability estimate calculations

• Robust to irrelevant attributes

• Independence assumption may not hold for some attributes
 – Use other techniques such as Bayesian Belief Networks (BBN)
Why Naïve Bayes?

• Recap:
 – we assume that all the attributes are independent

• This does not hold for many real world datasets
 – e.g., persons: sex, weight, height
 – e.g., cars: weight, fuel consumption
 – e.g., countries: population, area, GDP
 – e.g., food: ingredients
 – e.g., text: word occurrences (“Donald”, “Trump”, “Duck”)
 – ...

Naïve Bayes Discussion

• Naïve Bayes works surprisingly well
 – even if independence assumption is clearly violated
 – Classification doesn’t require accurate probability estimates as long as maximum probability is assigned to correct class

• *Too many* redundant attributes will cause problems
 – Solution: Select attribute subset as Naïve Bayes often works as well or better with just a fraction of all attributes

• Technical advantages:
 – Learning Naïve Bayes classifiers is computationally cheap (probabilities are estimated in one pass over the training data)
 – Storing the probabilities does not require a lot of memory
Redundant Variables

- Consider two variables which are perfectly correlated
 - i.e., one is redundant
 - e.g.: a measurement in different units
- Violate independence assumption in Naive Bayes
 - Can, at large scale, skew the result
 - Consider, e.g., a price attribute in 20 currencies
 → price variable gets 20 times more influence
- May also skew the distance measures in k-NN
 - But the effect is not as drastic
 - Depends on the distance measure used
Irrelevant Variables

• Consider a random variable x, and two classes A and B
 – For Naive Bayes: $p(x=v|A) = p(x=v|B)$ for any value v
 – Since it is random, it does not depend on the class variable
 – The overall result does not change

• For kNN:
Comparison kNN and Naïve Bayes

• Computation
 – Naïve Bayes is often faster

• Naïve Bayes uses all data points
 – Naive Bayes is less sensitive to label noise
 – k-NN is less sensitive to outliers

• Redundant attributes
 – are less problematic for kNN

• Irrelevant attributes
 – are less problematic for Naïve Bayes
 – attribute values equally distributed across classes
 → same factor for each class

• In both cases
 – attribute pre-selection makes sense (see Data Mining II)
Lazy vs. Eager Learning

- K-NN is a “lazy” method.
- They do not build an explicit model!
 - “learning” is only performed on demand for unseen records.
- Nearest Centroid and Naive Bayes are simple “eager” methods.
Lazy vs. Eager Learning

• We have seen a technique for lazy learning
 – k nearest neighbors

• ...and two very simple technique for eager learning
 – Nearest Centroids
 – Naïve Bayes

• We will see more eager learning in the next lectures
 – where explicit models are built
 – e.g., decision trees
 – e.g., rule sets
Model Evaluation

- This week: metrics
 - how to measure performance?
 - here: quality of predictions, not: training time
- Next week: evaluation methods
 - how to obtain meaningful and reliable estimates?
Metrics for Performance Evaluation

- Looking at correctly/incorrectly classified instances
- Two class problem (positive/negative class):
 - true positives, false positives, true negatives, false negatives

- Confusion Matrix:

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class=Yes</td>
<td>Class=Yes</td>
</tr>
<tr>
<td>Class=Yes</td>
<td>TP</td>
</tr>
<tr>
<td>Class=No</td>
<td>FP</td>
</tr>
</tbody>
</table>
Metrics for Performance Evaluation

• Most frequently used metrics:

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}
\]

Error Rate = 1 – Accuracy

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class=Yes</td>
<td>Class=Yes</td>
</tr>
<tr>
<td>Class=Yes</td>
<td>TP</td>
</tr>
<tr>
<td>Class=No</td>
<td>FP</td>
</tr>
</tbody>
</table>
What is a Good Accuracy?

• i.e., when are you done?
 – at 75% accuracy?
 – at 90% accuracy?
 – at 95% accuracy?

• Depends on difficulty of the problem!
• Baseline: naive guessing
 – always predict majority class

• Compare
 – Predicting coin tosses with accuracy of 50%
 – Predicting dice roll with accuracy of 50%
 – Predicting lottery numbers (6 out of 49) with accuracy of 50%
Limitation of Accuracy: Unbalanced Data

- Sometimes, classes have very unequal frequency
 - Fraud detection: 98% transactions OK, 2% fraud
 - eCommerce: 99% don’t buy, 1% buy
 - Intruder detection: 99.99% of the users are no intruders
 - Security: >99.99% of Americans are not terrorists

- Consider a 2-class problem:
 - Number of Class 0 examples = 9990, Number of Class 1 examples = 10
 - If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example
Precision and Recall

How many examples that are classified positive are actually positive?

How many examples that are classified negative are actually negative?

Which fraction of all positive examples is classified correctly?

Precision: \(p = \frac{TP}{TP + FP} \)

Recall: \(r = \frac{TP}{TP + FN} \)

All positives

Ignored majority

Classified as positives
Precision and Recall Example

<table>
<thead>
<tr>
<th></th>
<th>Predicted positive</th>
<th>Predicted negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual positive</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>Actual negative</td>
<td>0</td>
<td>1000</td>
</tr>
</tbody>
</table>

- This confusion matrix gives us
 - precision $p = 100\%$ and
 - recall $r = 1\%$
- because we only classified one positive example correctly and no negative examples wrongly
- We want a measure that combines precision and recall
F\(_1\)-Measure

- It is hard to compare two classifiers using two measures
- F\(_1\)-Score combines precision and recall into one measure
 - by using the harmonic mean
 \[
 F_1 = \frac{2}{\frac{1}{p} + \frac{1}{r}} = \frac{2pr}{p+r}
 \]
- The harmonic mean of two numbers tends to be closer to the smaller of the two
- For F\(_1\)-value to be large, both \(p\) and \(r\) must be large
F$_1$-Measure Graph

Low threshold: Low precision, high recall
Restrictive threshold: High precision, low recall

Optimal Threshold
ROC Curves

• Some classification algorithms provide confidence scores
 – how sure the algorithms is with its prediction
 – e.g., Naive Bayes: the probability
 – e.g., k-NN: the fraction of examples of the predicted class among the k neighbors

• Drawing a ROC Curve
 – Sort classifications according to confidence scores
 (e.g.: predicted probabilities in Naive Bayes)
 – Evaluate
 • correct prediction: draw one step up
 • incorrect prediction: draw one step to the right
Interpreting ROC Curves

• Best possible result:
 – all correct predictions have higher confidence than all incorrect ones

• The steeper, the better
 – random guessing results in the diagonal
 – so a decent algorithm should result in a curve significantly above the diagonal

• Comparing algorithms:
 – Curve A above curve B means algorithm A better than algorithm B

• Frequently used criterion
 – area under curve (aka ROC AUC)
 – normalized to 1
Alternative for Unbalanced Data: Cost Matrix

| ACTUAL CLASS | PREDICTED CLASS | C(i|j) | Class=Yes | Class=No |
|--------------|-----------------|-------|-----------|----------|
| Class=Yes | C(Yes|Yes) | C(No|Yes) |
| Class=No | C(Yes|No) | C(No|No) |

\(C(i|j) \): Cost of misclassifying class j example as class i
Computing Cost of Classification

Cost Matrix

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C(i</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Model M_1

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>162</td>
</tr>
<tr>
<td>-</td>
<td>160</td>
</tr>
</tbody>
</table>

Accuracy = 67%
Cost = 3960

Model M_2

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>155</td>
</tr>
<tr>
<td>-</td>
<td>5</td>
</tr>
</tbody>
</table>

Accuracy = 92%
Cost = 4505
Summary

• Classification
 – predicting the class of an example (e.g. yes/no)
 – the number of classes is fixed and known
 – training examples: labeled classes

• Methods: k-NN, nearest centroid, Naive Bayes (more to come)
 – one size fits all approaches do not exist!

• Evaluation
 – accuracy and error rate
 – recall, precision, and F1 score
 – ROC curves
 – cost-based evaluations
Questions?