UNIVERSITÄT Mannheim

Regression

- Classification
 - covered in the previous lectures
 - predict a label from a finite collection
 - e.g., true/false, low/medium/high, ...
- Regression
 - predict a *numerical* value
 - from a possibly infinite set of possible values
- Examples
 - temperature
 - sales figures
 - stock market prices

Contents

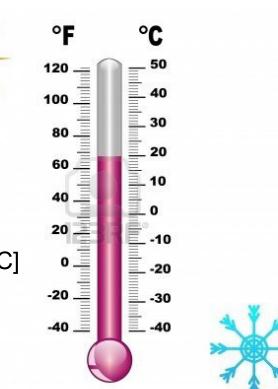
- A closer look at the problem
 - e.g., interpolation vs. extrapolation
 - measuring regression performance
- Revisiting classifiers we already know
 - which can also be used for regression
- Adoption of classifiers for regression
 - model trees
 - support vector machines
 - artificial neural networks
- Other methods of regression
 - linear regression and its regularized variants
 - isotonic regression
 - local regression

The Regression Problem

- Classification
 - algorithm "knows" all possible labels, e.g. yes/no, low/medium/high
 - all labels appear in the training data
 - the prediction is always one of those labels
- Regression
 - algorithm "knows" some possible values, e.g., 18°C and 21°C
 - prediction may also be a value not in the training data, e.g., 20°C

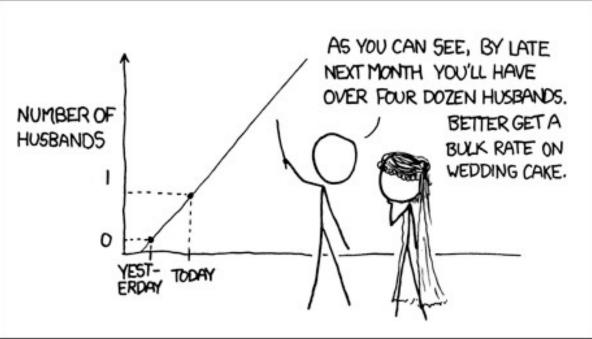
Interpolation vs. Extrapolation

- Training data:
 - weather observations for current day
 - e.g., temperature, wind speed, humidity, .
 - target: temperature on the next day
 - training values between -15°C and 32°C
- Interpolating regression
 - only predicts values from the interval [-15°C,32°C]
- Extrapolating regression
 - may also predict values outside of this interval



Interpolation vs. Extrapolation

- Interpolating regression is regarded as "safe"
 - i.e., only reasonable/realistic values are predicted



http://xkcd.com/605/

Interpolation vs. Extrapolation

- Sometimes, however, only extrapolation is interesting
 - how far will the sea level have risen by 2050?
 - will there be a nuclear meltdown in my power plant?

http://i1.ytimg.com/vi/FVfiujbGLfM/hqdefault.jpg

Baseline Prediction

- For classification: predict most frequent label
- For regression:
 - predict average value
 - or median
 - or mode
 - in any case: only interpolating regression
- often a strong baseline

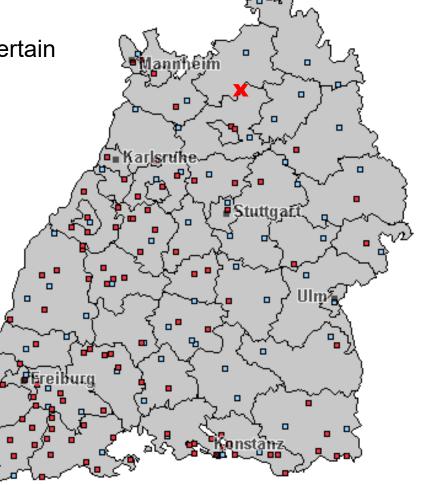
APP STORE PLAYS A LOUD ALERT SOUND WHEN THERE IS A TORNADO WARNING FOR YOUR AREA. RATING USER REVIEWS: ***** GOOD UI! MANY ALERT CHOICES **** RUNNING GREAT, NO CRASHES **** I LIKE HOW YOU CAN SET MULTIPLE LOCATIONS ☆☆ APP DID NOT WARN ME ABOUT TORNADO. THE PROBLEM WITH

AVERAGING STAR RATINGS

http://xkcd.com/937/

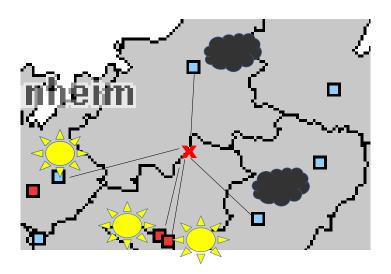
k Nearest Neighbors Revisited

- Problem
 - find out what the weather is in a certain place
 - where there is no weather station
 - how could you do that?



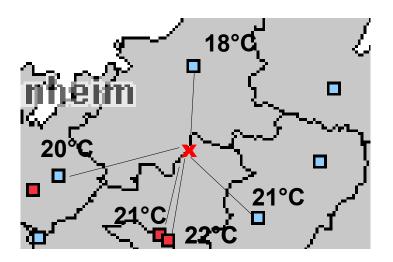
k Nearest Neighbors Revisited

- Idea: use the average of the nearest stations
- Example:
 - 3x sunny
 - 2x cloudy
 - result: sunny
- Approach is called
 - "k nearest neighbors"
 - where k is the number of neighbors to consider
 - in the example: k=5
 - in the example: "near" denotes geographical proximity

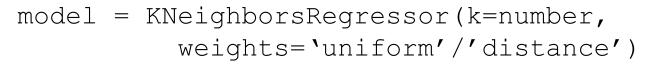


k Nearest Neighbors for Regression

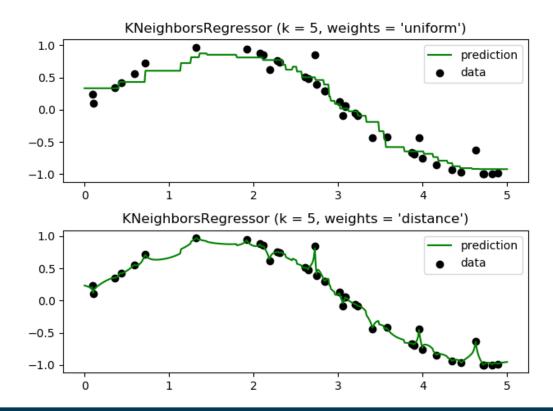
- Idea: use the *numeric* average of the nearest stations
- Example:
 - 18°C, 20°C, 21°C, 22°C, 21°C
- Compute the average
 - again: k=5
 - (18+20+21+22+21)/5
 - prediction: 20.4°C
- Only interpolating regression!



k Nearest Neighbor Regression in Python



model.fit(X,Y)



Performance Measures

• Recap: measuring performance for classification:

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

• If we use the numbers 0 and 1 for class labels, we can reformulate this as $\sum_{\text{Accuracy}} \frac{\sum_{all \text{ examples}} |predicted - actual|}{N}$

Why?

- the nominator is the sum of all correctly classified examples
 - i.e., the difference of the prediction and the actual label is 0
- the denominator is the total number of examples

Mean Absolute Error

• We have

Accuracy =
$$1 - \frac{\sum_{all examples} |predicted - actual|}{N}$$

• For an arbitrary numerical target, we can define

$$MAE = \frac{\sum_{all \ examples} | predicted - actual |}{N}$$

- Mean Absolute Error
 - intuition: how much does the prediction differ from the actual value on average?

(Root) Mean Squared Error

• Mean Squared Error:

$$MSE = \frac{all \ examples}{N}$$

• Root Mean Squared Error:

$$RMSE = \sqrt{\frac{\sum_{all \ examples} | predicted - actual |^2}{N}}$$

More severe errors are weighted higher by MSE and RMSE

Correlation

- Pearson's correlation coefficient
- Scores well if
 - high actual values get high predictions
 - low actual values get low predictions
- Caution: PCC is scale-invariant!
 - actual income: \$1, \$2, \$3
 - predicted income: \$1,000, \$2,000, \$3,000
 → PCC = 1

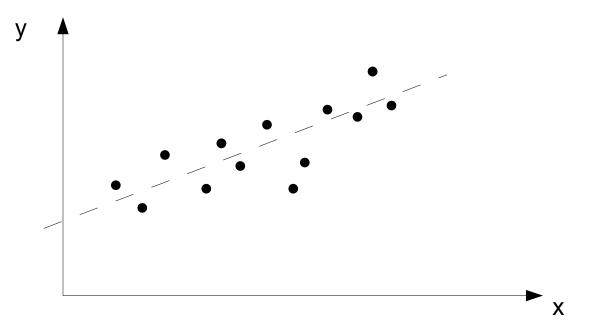
$$PCC = \frac{\sum_{all \ examples} (pred - \overline{pred}) \times (act - \overline{act})}{\sqrt{\sum_{all \ examples} (pred - \overline{pred})^2} \times \sqrt{\sum_{all \ examples} (act - \overline{act})^2}}$$

Evaluation Protocols

- Just as for classification
 - we are interested in performance on *unseen* data
 - we want to avoid overfitting
- Recap
 - split/cross validation
 - hyperparameter tuning in nested cross validation

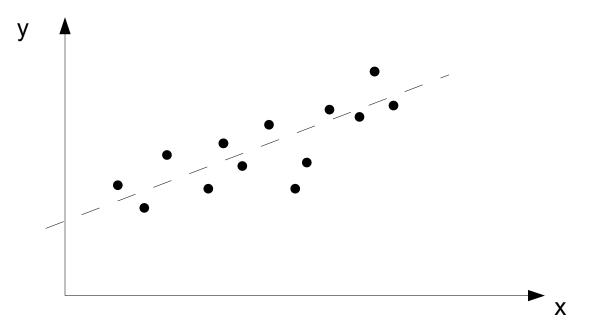
Linear Regression

- Assumption: target variable y is (approximately) linearly dependent on attributes
 - for visualization: one attribute x
 - in reality: $x_1...x_n$



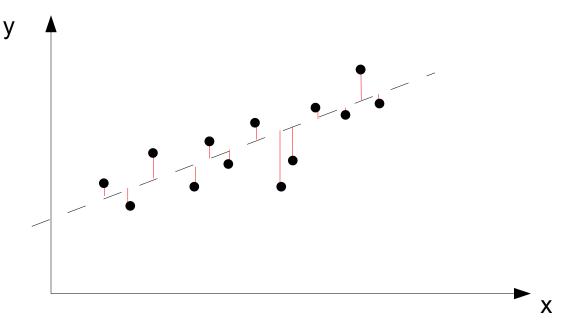
Linear Regression

- Target: find a linear function f: $f(x)=w_0 + w_1x_1 + w_2x_2 + ... + w_nx_n$
 - so that the error is minimized
 - i.e., for all examples $(x_1,...,x_n,y)$, f(x) should be a *correct* prediction for y
 - given a performance measure



Linear Regression

- Typical performance measure used: Mean Squared Error
- Task: find w₀....w_n so that $\sum_{all \ examples} (w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \dots + w_n \cdot x_n y)^2$ is minimized
- note: we omit the denominator N



Linear Regression: Multi Dimensional Example

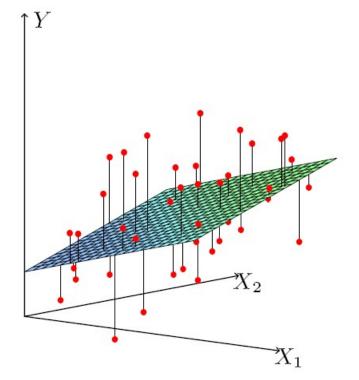
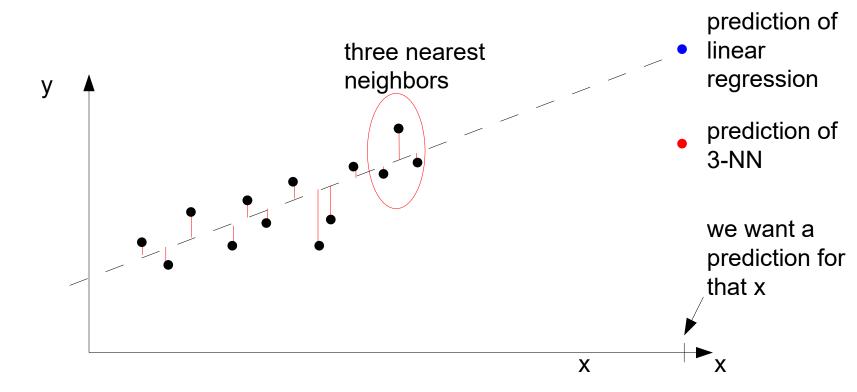


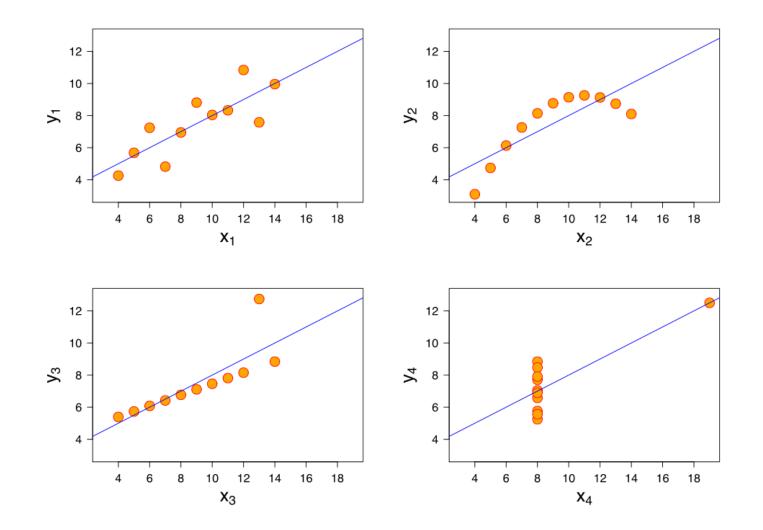
FIGURE 3.1. Linear least squares fitting with $X \in \mathbb{R}^2$. We seek the linear function of X that minimizes the sum of squared residuals from Y.

Linear Regression vs. k-NN Regression

• Recap: Linear regression extrapolates, k-NN interpolates



Linear Regression Examples



Linear Regression and Overfitting

- Given two regression models
 - One using five variables to explain a phenomenon
 - Another one using 100 variables
- Which one do you prefer?
- Recap: Occam's Razor
 - out of two theories explaining the same phenomenon, prefer the smaller one

Ridge Regression

- Linear regression only minimizes the errors on the training data – i.e., $\sum_{all \ examples} (w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \dots + w_n \cdot x_n - y)^2$
- With many variables, we can have a large set of very small wi
 - this might be a sign of overfitting!
- Ridge Regression:
 - introduces regularization
 - create a simpler model by favoring larger factors, minimize

$$\sum_{all \ examples} \left(w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \dots + w_n \cdot x_n - y \right)^2 + \lambda \sum_{all \ variables} w_i^2$$

Ridge & Lasso Regression

• Ridge Regression optimizes

$$\sum_{all \ examples} \left(w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \dots + w_n \cdot x_n - y \right)^2 + \lambda \sum_{all \ variables} w_i^2$$

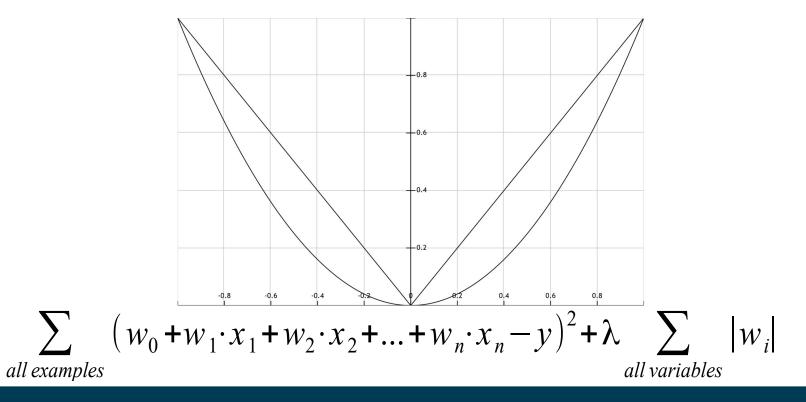
Lasso Regression optimizes

$$\sum_{all \ examples} \left(w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \dots + w_n \cdot x_n - y \right)^2 + \lambda \sum_{all \ variables} |w_i|$$

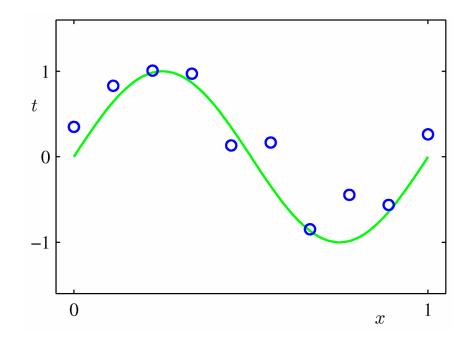
- Observations
 - Ridge Regression yields small, but non-zero coefficients
 - Lasso Regression tends to yield zero coefficients
 - λ =0: no normalization (i.e., ordinary linear regression) \rightarrow overfitting
 - $-\lambda \rightarrow \infty$: all weights will ultimately vanish \rightarrow underfitting

Lasso vs. Ridge Regression

- Lasso: for w_i < close to 0, the contribution to the squared error is often smaller than the contribution to the regularization
 - Hence, minimization pushes small weights down to 0

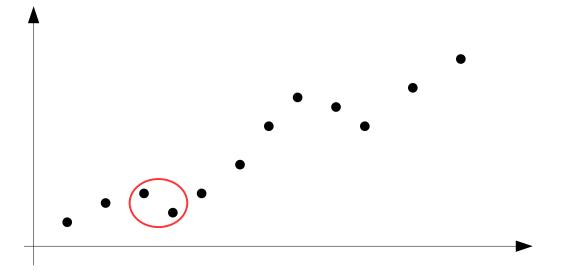


...but what about Non-linear Problems?

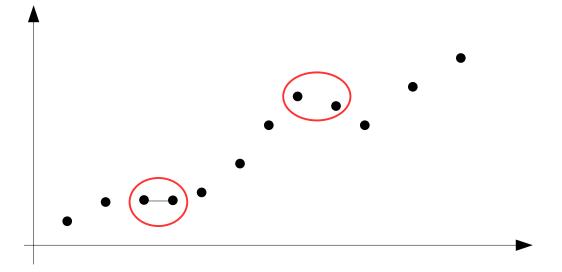


- Special case:
 - Target function is *monotonous*
 - i.e., $f(x_1) \le f(x_2)$ for $x_1 < x_2$
 - For that class of problem, efficient algorithms exist
- Simplest: Pool Adjacent Violators Algorithm (PAVA)

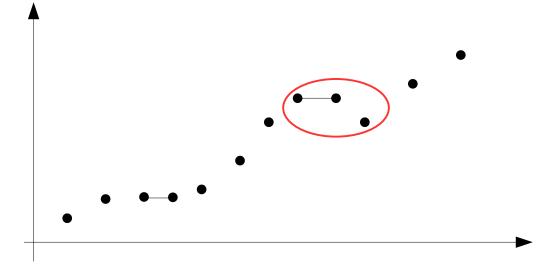
- Identify adjacent violators, i.e., f(x_i)>(x_{i+1})
- Replace them with new values f'(x_i)=f'(x_{i+1}) so that sum of squared errors is minimized
 - ...and pool them, i.e., they are going to be handled as one point
- Repeat until no more adjacent violators are left



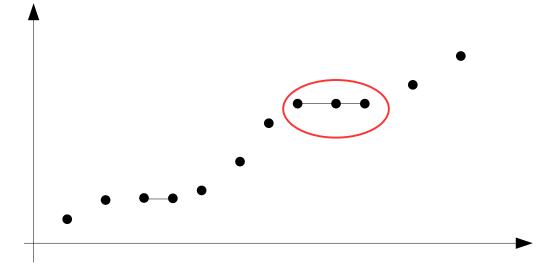
- Identify adjacent violators, i.e., $f(x_i) > (x_{i+1})$
- Replace them with new values f'(x_i)=f'(x_{i+1}) so that sum of squared errors is minimized
 - ...and *pool* them, i.e., they are going to be handled as one point
- Repeat until no more adjacent violators are left



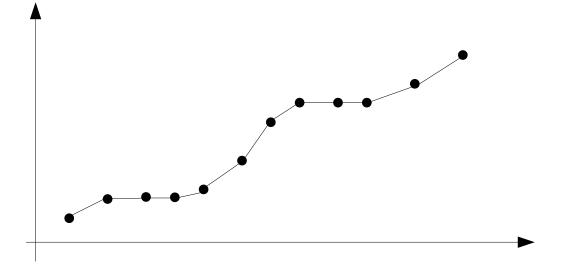
- Identify adjacent violators, i.e., f(x_i)>(x_{i+1})
- Replace them with new values f'(x_i)=f'(x_{i+1}) so that sum of squared errors is minimized
 - ...and *pool* them, i.e., they are going to be handled as one point
- Repeat until no more adjacent violators are left



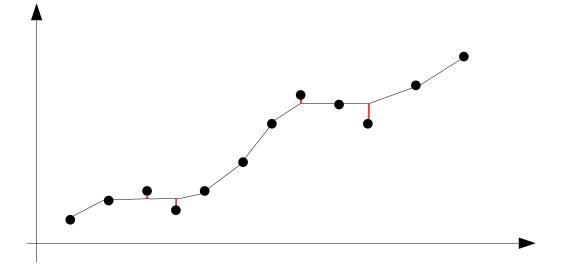
- Identify adjacent violators, i.e., f(x_i)>(x_{i+1})
- Replace them with new values f'(x_i)=f'(x_{i+1}) so that sum of squared errors is minimized
 - ...and *pool* them, i.e., they are going to be handled as one point
- Repeat until no more adjacent violators are left



- After all points are reordered so that $f'(x_i)=f'(x_{i+1})$ holds for every i
 - Connect the points with a piecewise linear function

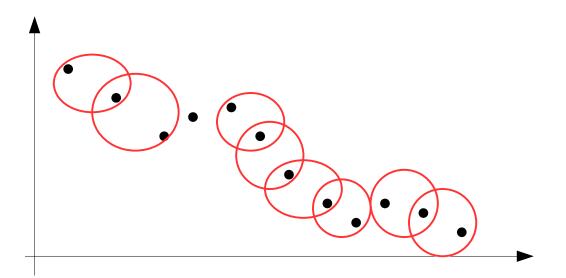


- Comparison to the original points
 - Plateaus exist where the points are not monotonous
 - Overall, the mean squared error is minimized
- **Python:** IsotonicRegression (caution: only increasing case)



Isotonic Regression: Mind the Direction!

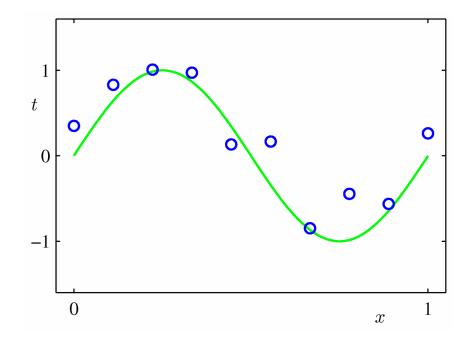
- Thought experiment:
 - What happens if we assume a monotonously increasing function here?
 - We will identify quite a few adjacent violations!



Isotonic Regression: Mind the Direction!

- Thought experiment:
 - What happens if we assume a monotonously increasing function here?
 - We will identify quite a few adjacent violations!
 - Ultimately, they will all be pooled!

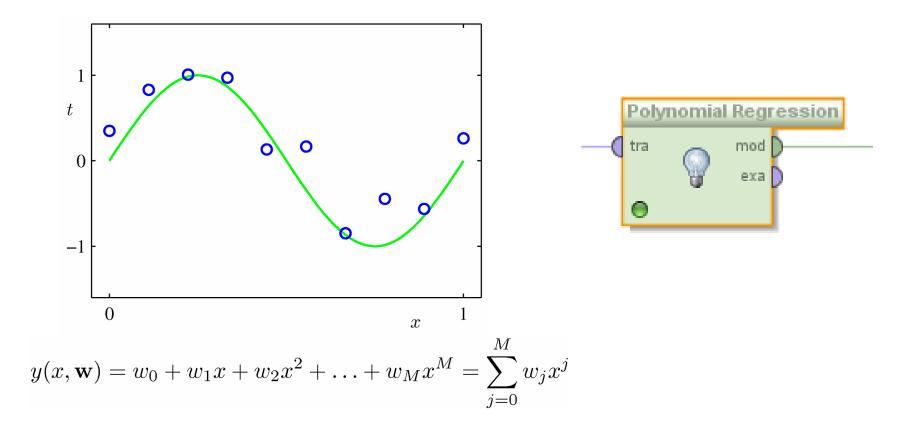
...but what about non-linear, *non-monotonous* Problems?



Possible Option: new Attributes

- The attributes **X** for linear regression can be:
 - Original attributes X
 - Transformation of original attributes,
 e.g. log, exp, square root, square, etc.
 - Polynomial transformation
 - example: $y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2 + \beta_3 \cdot x^3$
 - Basis expansions
 - Interactions between variables
 - example: $x_3 = x_1 \cdot x_2$
- This allows use of **linear** regression techniques to fit much more complicated non-linear datasets

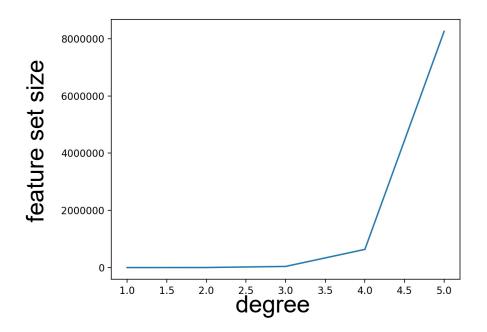
Example with Polynomially Transformed Attributes



Xp = PolynomialFeatures(degree=M).fit_transform(X)

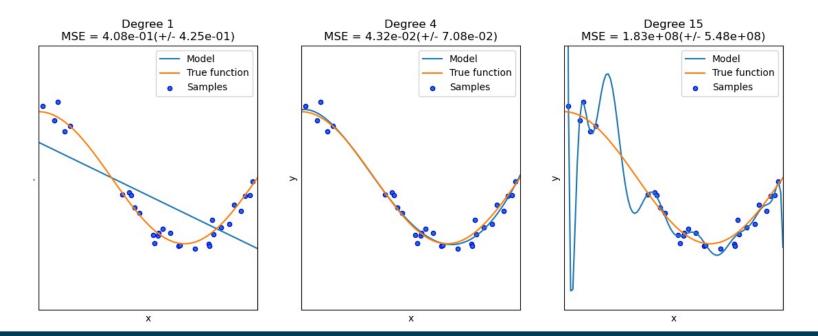
- Creating polynomial features of degree d for a dataset with f features: O(f^d) features
- Consider: three features x,y,z, d=3
 - 6 new features d=2: x^2 , y^2 , z^2 , xy, xz, yz
 - 10 new features d=3: x³, y³, z³, x²y, x²z, y²x, y²z, z²x, z²y, xyz
- With higher values for f and d, we are likely to generate a very large number of additional features

- Creating polynomial features of degree d for a dataset with f features: O(f^d) features
- Example: Sonar dataset (60 features)



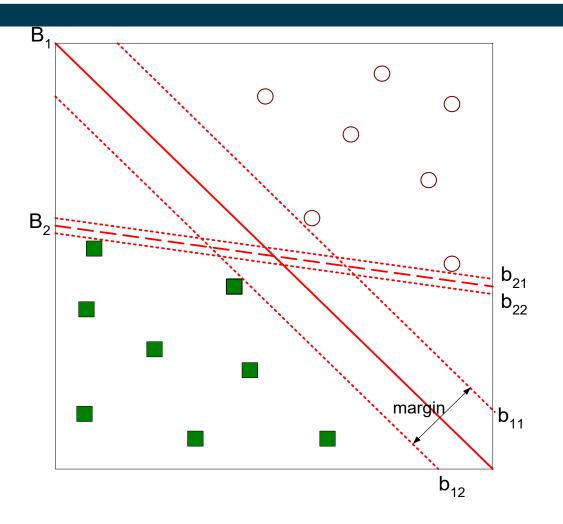
https://machinelearningmastery.com/polynomial-features-transforms-for-machine-learning/

• Larger feature sets lead to higher degrees of overfitting



- Why are larger feature sets dangerous?
 - Think of overfitting as "memorizing"
- With 1k variables and 1k examples
 - we can probably identify each example by a unique feature combination
 - but with 2 variables for 1k examples, the model is forced to abstract
- Rule of thumb
 - Datasets should never be wider than long!

Support Vector Machines Revisited



• Find hyperplane maximizes the margin => B1 is better than B2

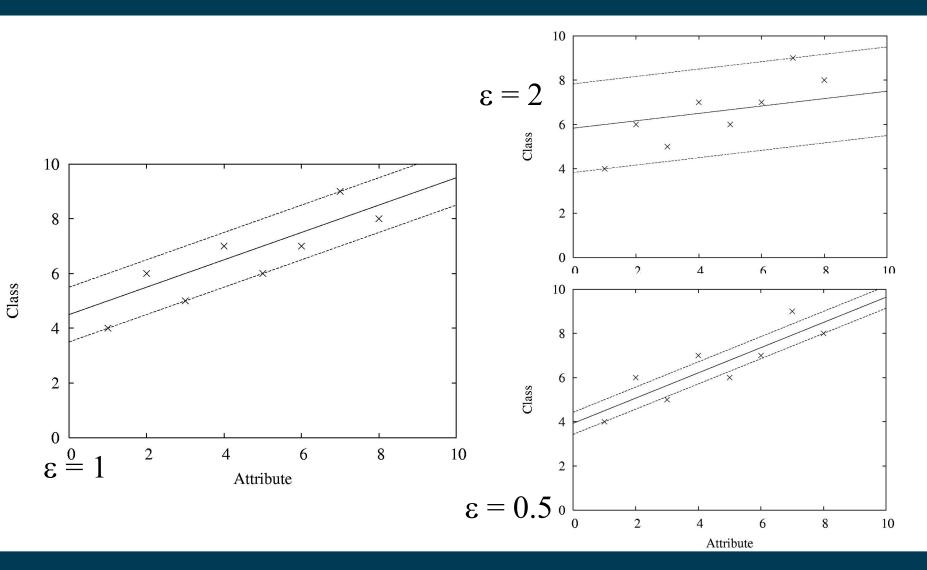
Linear Regression and SVM

- Linear Regression
 - find a linear function that *minimizes* the distance to data points w.r.t. the attribute to predict
- Support Vector Machine
 - find a linear function that *maximizes* the distance to data points (from different classes)
- Both problems are similar
 - hence, many SVMs also support regression

Support Vector Regression

- Maximum margin hyperplane only applies to classification
- However, idea of support vectors and kernel functions can be used for regression
- Basic method same as in linear regression: want to minimize error
 - Difference A: ignore errors smaller than E and use absolute error instead of squared error
 - Difference B: simultaneously aim to maximize flatness of function
- User-specified parameter & defines "tube"

Examples



Heiko Paulheim

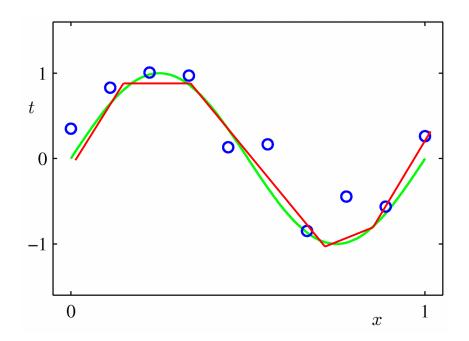
48

SVMs vs. Polynomial Regression

- Polynomial regression:
 - Create polynomial recombinations as additional features
 - Perform linear regression
- Support vector machine
 - Transform vector space with kernel function (e.g., polynomial kernel)
 - Find linear hyperplane

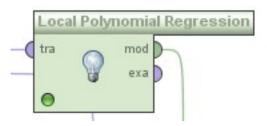
Local Regression

- Assumption: non-linear problems are approximately linear in local areas
 - idea: use linear regression locally
 - only for the data point at hand (lazy learning)



Local Regression

- A combination of
 - k nearest neighbors
 - local regression
- Given a data point
 - retrieve the k nearest neighbors
 - compute a regression model using those neighbors
 - locally weighted regression:
 uses distance as weight for error computation

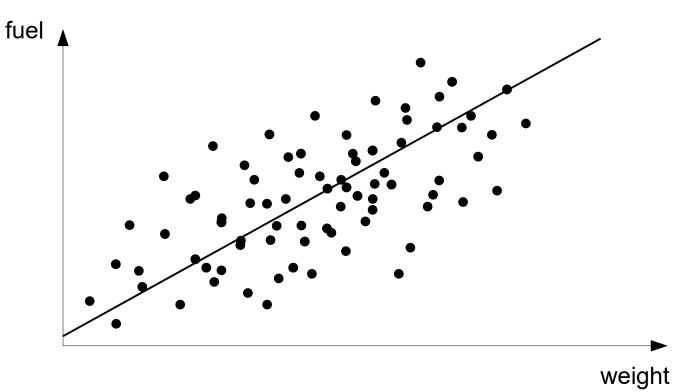


Local Regression

- Advantage: fits non-linear models well
 - good local approximation
 - often more exact than pure k-NN
- Disadvantage
 - runtime
 - for each test example:
 - find k nearest neighbors
 - compute a local model

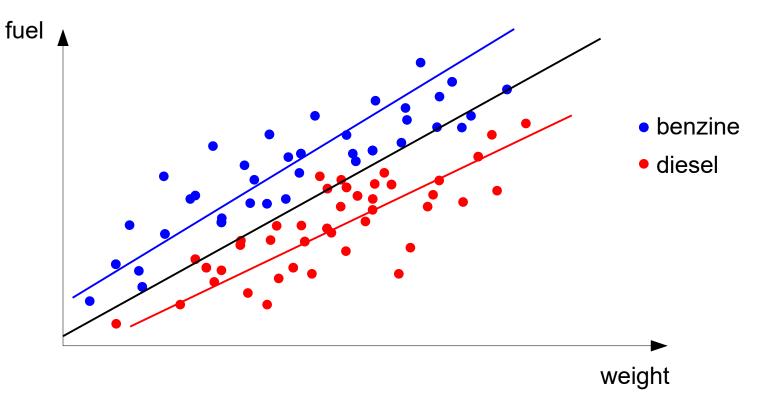
Combining Decision Trees and Regression

- Idea: split data first so that it becomes "more linear"
- example: fuel consumption by car weight



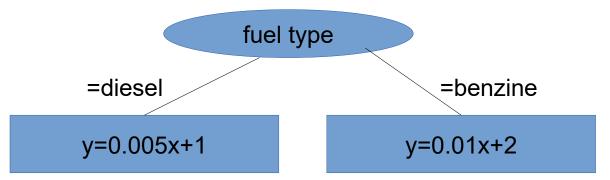
Combining Decision Trees and Regression

- Idea: split data first so that it becomes "more linear"
- example: fuel consumption by car weight



Combining Decision Trees and Regression

- Observation:
 - by cleverly splitting the data, we get more accurate linear models
- Regression trees:
 - decision tree for splitting data
 - constants as leaves
- Model trees:
 - more advanced
 - linear functions as leaves



Regression Trees

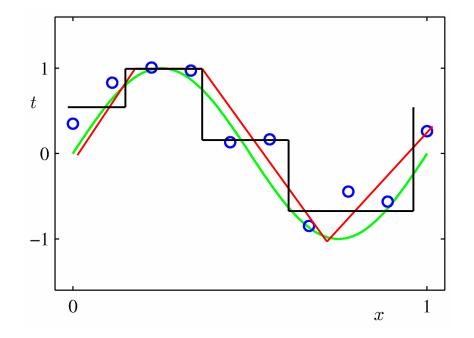
- Differences to classification decision trees:
 - Splitting criterion: minimize intra-subset variation
 - Termination criterion: standard deviation becomes small
 - Pruning criterion: based on numeric error measure
 - Prediction: Leaf predicts average class values of instances
- Easy to interpret
- Resulting model: piecewise *constant* function

Model Trees

- Build a regression tree
 - For each leaf \Rightarrow learn linear regression function
- Need linear regression function at each node
- Prediction: go down tree, then apply function
- Resulting model: piecewise *linear* function

Local Regression and Regression/Model Trees

- Assumption: non-linear problems are approximately linear in local areas
 - idea: use linear regression locally
 - only for the data point at hand (lazy learning)



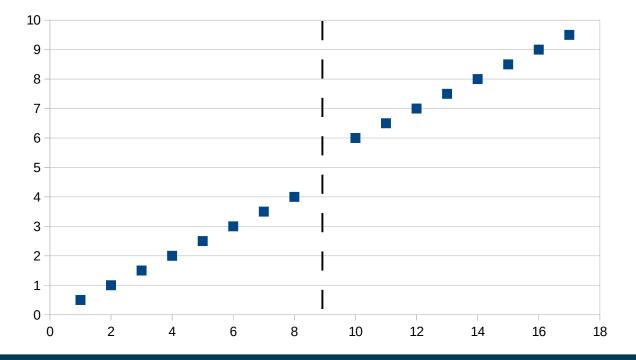
piecewise linear (model tree)

piecewise constant (regression tree)

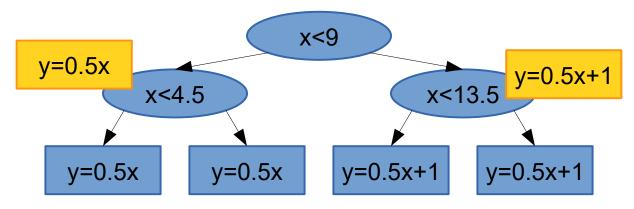
Building the Tree

- Splitting: standard deviation reduction $SDR = sd(T) - \sum_{i} |\frac{T_{i}}{T}| \times sd(T_{i})$
- Termination:
 - Standard deviation < 5% of its value on full training set
 - Too few instances remain (e.g. < 4)
- Pruning:
 - Proceed bottom up:
 - Compute LR model at internal node
 - Compare LR model error to error of subtree
 - Prune if the subtree's error is not significantly smaller
 - Heavy pruning: single model may replace whole subtree

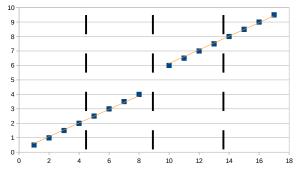
- Standard deviation of complete value set: 3.08
- Standard deviation of two subsets after split x>9: 1.22
 - Standard deviation reduction: 1.86
 - This is the best split



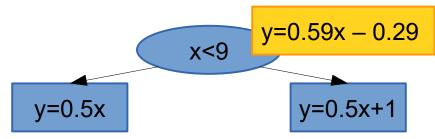
- Assume that we have split further (min. 4 instances per leaf)
 - Standard deviation reduction for the new splits is still 0.57
- Resulting model tree:



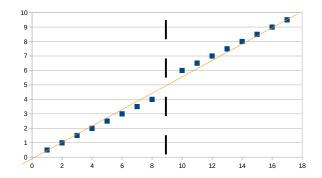
 The error of the inner nodes is the same as for the root nodes → prune

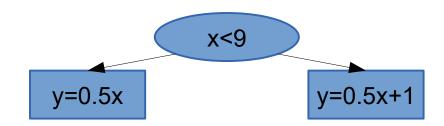


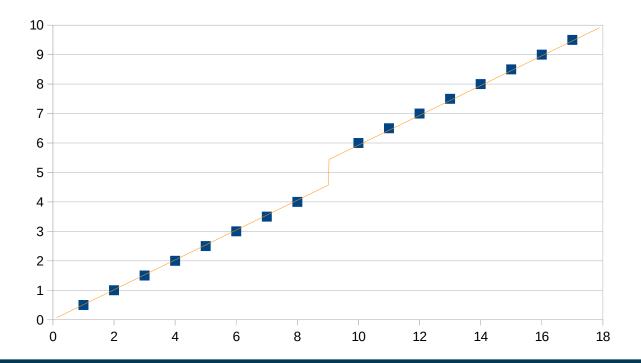
- Assume that we have split further (min. 4 instances per leaf)
 - Standard deviation reduction for the new splits is still 0.57
- Resulting model tree:



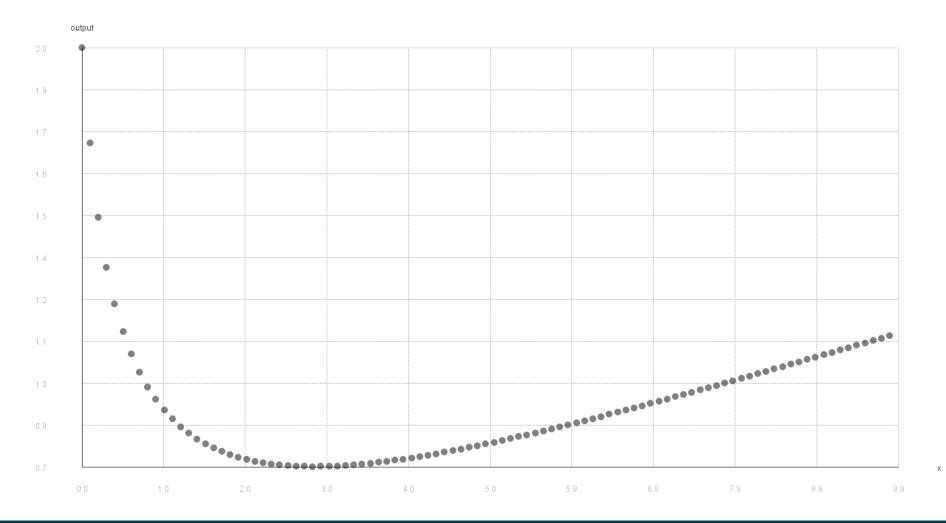
 The error of the root node is larger than that of the leaf nodes → keep leaf nodes







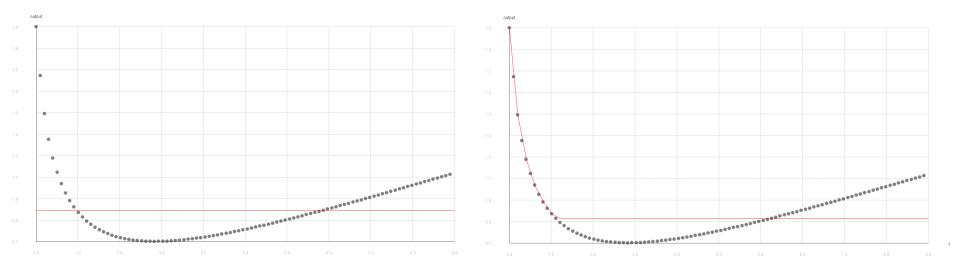
Comparison



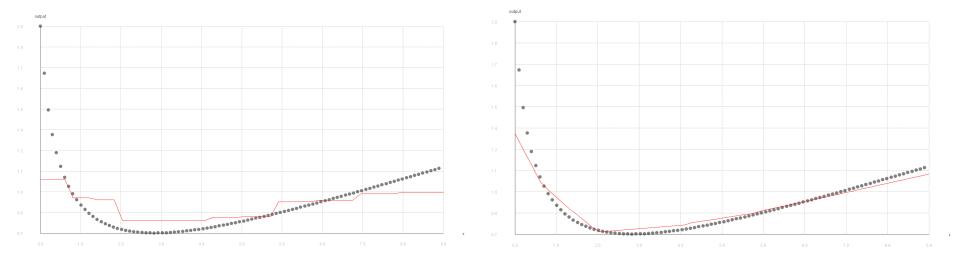
Heiko Paulheim

64

Comparison – Linear and Isotonic Regression



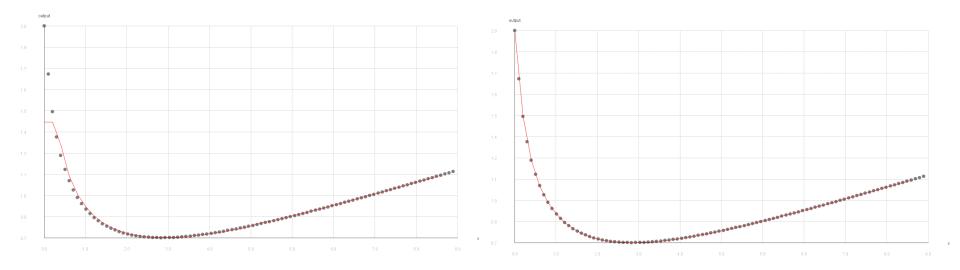
Comparison – M5' Regression and Model Tree



Heiko Paulheim

66

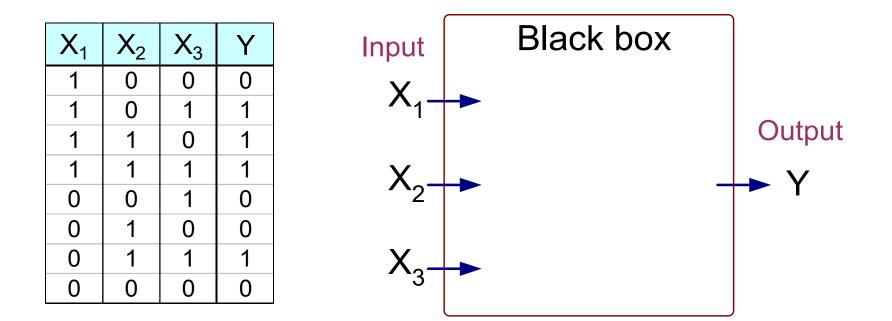
k-NN and Local Polynomial Regression (k=7)



Heiko Paulheim

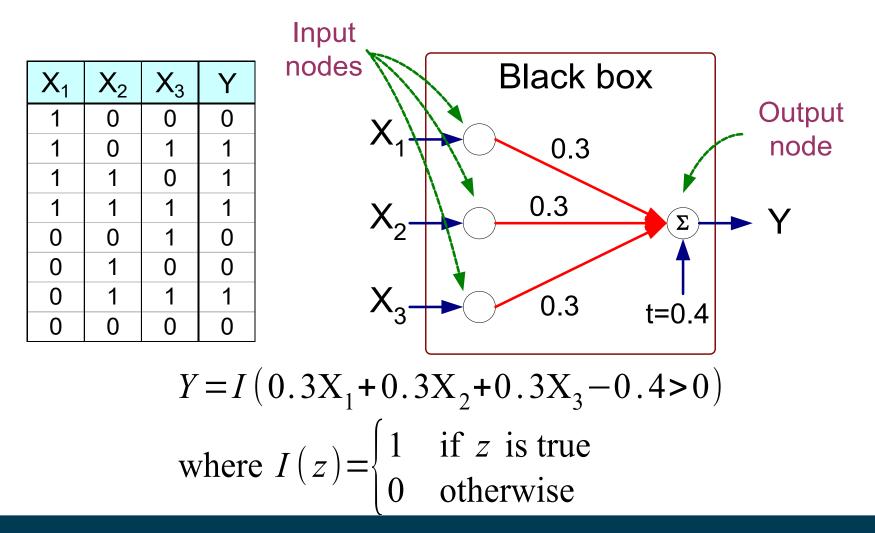
67

Artificial Neural Networks Revisited



Output Y is 1 if at least two of the three inputs are equal to 1.

Artificial Neural Networks Revisited



Artificial Neural Networks Revisited

• This final function was used to separate two classes:

$$Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0)$$

where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

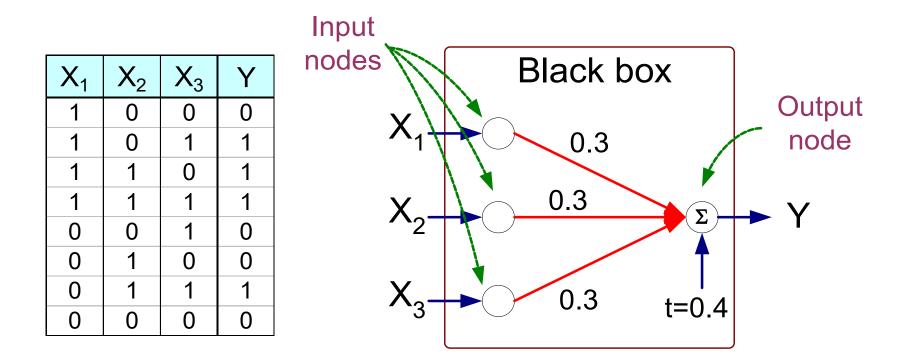
 However, we may simply use it to predict a numerical value (between 0 and 1) by changing it to:

$$Y = 0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4$$

Artificial Neural Networks for Regression

- What has changed:
 - we do not use a cutoff for 0/1 predictions
 - but leave the numbers as they are
- Training examples:
 - attribute vectors not with a class label, but numerical target
- Error measure:
 - Not classification error, but mean squared error

Artificial Neural Networks for Regression



$$Y = 0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4$$

Artificial Neural Networks for Regression

• Given that our target formula is of the form

 $Y = 0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4$

- we can learn only linear problems
 - i.e., the target variable is a linear combination the input variables
- More complex regression problems can be approximated
 - by combining several perceptrons
 - in neural networks: hidden layers
 - with non-linear activation functions!
 - this allows for arbitrary functions
- Hear more about ANNs in Data Mining 2!

From Classification to Regression and Back

- We have got to known classification first
 - and asked: how can we get from classification to regression?
- Turning the question upside down:
 - can we use regression algorithms for classification?
- Transformation:
 - for binary classification: encode true as 1.0 and false as 0.0
 - learn regression model
 - predict false for $(-\infty, 0.5]$ and true for $(0.5, \infty)$
 - similarly for ordinal (e.g., good, medium, bad)
 - non-ordinal multi-class problems are trickier

Summary

- Regression
 - predict numerical values instead of classes
- Performance measuring
 - absolute or relative error, correlation, ...
- Methods
 - k nearest neighbors
 - linear regression and regularized variants
 - polynomial regression
 - isotonic regression
 - model trees
 - artificial neural networks

- ...

Questions?

