Data Mining I
Text Mining

Heiko Paulheim
Outline

1) What is Text Mining?
2) Text Preprocessing
3) Feature Creation
4) Feature Selection
5) Pattern Discovery
6) Processing Text from Social Media
Motivation for Text Mining

- Structured data: databases, excel sheets, XML, ...
- Unstructured data: text, images, audio, video, ...

FIGURE 1
Capacity Growth by Data Type

Unstructured data will account for 80% of all data created in 2020

Source: IDC, 2016
Motivation for Text Mining

• A lot of unstructured data is text, e.g.,
 – Web pages
 – E-mails
 – Chat conversations
 – Technical documents
 – Corporate documents
 – Digital libraries
Text Mining

- The extraction of implicit, previously unknown and potentially useful information from a large amount of **textual resources**
Search Versus Discovery

Search/Query (Goal-oriented)
- Query Processing
- Information Retrieval

Structured Data

Discovery (Opportunistic)
- Data Mining
- Text Mining

Text
Typical Text Mining Applications

• Classification and clustering of news stories or web pages
• Email and news filtering / Spam detection
 – Also: fake review classification
• Sentiment Analysis
• Query suggestion / auto complete
• Gain insights about relations between people, places or organizations described in a document corpus
Examples

APRIL MEYER

Hey, got your SMS. I'm on Facebook and there's a deal for the Coho Winery.

12:38

Do you want to go for

12:36a

dinner

that lunch me

q w e r t y u i o p

a s d f g h j k l

↑ z x c v b n m

&123 , space .

...
Example: Search Query Completion

Google search for "bettina wulff".
Example: Search Result Organization
Example: Sentiment Analysis

- Determine *polarity*
 - Polarity values, e.g.:
 - positive, neutral, negative
 - likert scale (1 to 10)
 - Application examples
 - Document level
 - analysis of tweets about politicians
 - Feature/aspect level
 - analysis of product reviews
Example: Information Extraction

- Automatically extracting structured information from documents
- Subtasks
 - Named Entity Recognition and Disambiguation
 - “The parliament in Berlin has decided …“
 - Which parliament? Which Berlin?
 - Relationship Extraction
 - PERSON works for ORGANIZATION
 - PERSON located in LOCATION
 - Fact Extraction
 - CITY has population NUMBER
 - COMPANY has turnover NUMBER [Unit]
The Text Mining Process

1. Text Preprocessing
 - Syntactic/Semantic analysis

2. Feature Generation
 - e.g., Bag of words

3. Feature Selection
 - Reduce large number of features

4. Data Mining
 - Clustering
 - Classification
 - Association Analysis
Text Preprocessing

1. Tokenization
2. Stopword Removal
3. Stemming
Syntactic / Linguistic Text Analysis

- Simple Syntactic Analysis
 - Text Cleanup (remove punctuation, HTML tags, …)
 - Normalize case
 - Tokenization (break text into single words or N-grams)

- Advanced Linguistic Analysis
 - Word Sense Disambiguation
 - Determine which sense a word is having
 - Normalize synonyms (United States, USA, US)
 - Coreference resolution – normalize pronouns (he, she, it)
 - Part Of Speech (POS) tagging
 - Parse sentences according to grammar
 - Determine function of each term
 - e.g. John (noun) gave (verb) the (det) ball (noun).
• Usually using catalogs
 – such as WordNet

• Example for a large-scale catalog
 – Wikipedia Surface Forms

• Normalized forms: titles of Wikipedia pages
 – e.g., “United States Armed Forces”

• Other forms: anchor texts of links to that page
 – “The music of Nine Inch Nails has reportedly been used by the
 U.S. military as music torture to break down the resolve of detainees.”

Extracted normalization pattern:
“U.S. military” → “United States Armed Forces”
Synonym Normalization & Spelling Correction

• Catalogs work great for common knowledge
 – not so well for special domains
• Possible remedy: string similarity
• Example: edit distance
 – Notion: the minimum number of edits needed to transform one string into the other
 – Allowed edit operations:
 • insert a character into the string
 • delete a character from the string
 • replace one character with a different character
• Examples:
 – levenshtein('John Smith', 'John K. Smith ') = 3 (3 inserts)
 – levenshtein('John Smith', 'Jack Smith') = 3 (3 substitutions)
POS Tagging

• Task
 – determining word classes and syntactic functions
 – finding the structure of a sentence

POS Tagging

- Sometimes, multiple results are possible
 - language is ambiguous!

Charniak: Statistical techniques for natural language parsing (1997)
POS Tagging

• Supervised approach
 – Use an annotated corpus of text
 – i.e., a set of sentences with human-created POS tags

• Note: words may have different functions in different contexts
 – *I move (VERB) to Mannheim next year.*
 – *He made a clever move (NOUN).*

• Naive Algorithm by Charniak (1997)
 – Use the most common tag for each word
 – Assign NOUN to every unknown word
 – Result: 90% accuracy, using a training corpus of 300,000 words
POS Tagging

- Simple algorithm for key phrase extraction
 - e.g., annotation of text corpora

- Use all NP of the form ADJ+NOUN*

- Example sentence:
 - *Text mining refers to the process of deriving high-quality information from text.*

- Key phrases:
 - *text mining* (NOUN+NOUN)
 - *process* (NOUN)
 - *high-quality information* (ADJ NOUN NOUN)
 - *text* (NOUN)
Stop Words Removal

• Many of the most frequent words are likely to be useless
• These words are called *stop words*
 – examples (English): *the, of, and, to, an, is, that, …*
 – typically text contains about 400 to 500 such words
 – additional domain specific stop words lists may be constructed
• Why should we remove stop words?
 – Reduce data set size
 • stop words account for 20-30% of total word counts
 – Improve efficiency and effectiveness
 • stop words may confuse the mining algorithm
More Examples of Stopwords

a about above across after again against all almost alone along already also although always am among an and another any anybody anyone anything anywhere are area areas aren’t around as ask asked asking asks at away b back backed backing backs become becomes been before began behind being beings below best better between big both but by c came can cannot can’t case cases certain certainly clear clearly come could couldn’t d did didn’t differ different differently do does doesn’t doing done don’t down downed downing downs during e each early either end ended ending ends enough even evenly ever everybody everyone everything everywhere f face faces fact facts far felt few find finds first for four from full fully further furthered furthering furthers g gave general generally get gets give given gives go going good goods got greater greatest group grouped grouping groups h had hadn’t has hasn’t have haven’t having he he’d he’ll her here here’s hers herself he’s high higher highest him himself his his how however how’s i i’d if i’ll i’m important in interest interested interesting interests into is isn’t it its it’s itself i’ve j just k keep keeps kind knew know known knows l large largely last later latest least least let lets let’s like likely long longer longest m made make making man many may me member members men might more most mostly mr mrs much must mustn’t my myself n necessary need needed needing needs never new newer newest next no nobody non noone nor not nothing now nowhere number numbers o of off often old older oldest on once one only open opened opening opens or order ordered ordering orders other others ought our ours ourselves out over own p part parted parting parts per perhaps place places point pointed pointing points possible present presented presenting presents problem problems put puts q quite r rather really right room rooms s said same saw say says second seconds see seem seemed seeming seems sees several shall shan’t she she’d she’ll she’s shouldn’t show showed showing shows side sides since small smaller smallest so some somebody someone something somewhere state states still such sure t take taken than that that’s the their theirs them themselves then there therefore there’s these they they’d they’ll they’re they’ve thing things think thinks this those though thought thoughts three through thus to today together too took toward turn turned turning turns two u under until up upon us use used uses v very w want wanted wanting wants was wasn’t way ways we we’d well we’ll wells went were we’re weren’t we’ve what’s when when’s where where’s whether which while who whole whom who’s whose why why’s will with within without won’t work worked working works would wouldn’t x y year years yes yet you you’d you’ll
Stopword Removal

• Note: words may have different functions in different contexts
 – *He can* (*AUX VERB*) *read.*
 – *The can* (*NOUN*) *will rust.*

• After removing stopwords naively
 – “can” is removed
 – We cannot find out that the text is about cans
 – We cannot query for texts about cans
 – etc.
POS Tagging Revisited

- Improvement over naïve algorithm
 - respect *transition probabilities*

<table>
<thead>
<tr>
<th>The</th>
<th>can</th>
<th>will</th>
<th>rust</th>
</tr>
</thead>
<tbody>
<tr>
<td>det</td>
<td>modal-verb</td>
<td>modal-verb</td>
<td>noun</td>
</tr>
<tr>
<td>noun</td>
<td>verb</td>
<td>noun</td>
<td>verb</td>
</tr>
</tbody>
</table>

- Improves accuracy to 96-97%
- Upper limit: 98%

Charniak: Statistical techniques for natural language parsing (1997)
Stemming

• Techniques to find out the root/stem of a word.
 – Words: User, users, used, using → Stem: use
 – Words: Engineering, engineered → Stem: engineer

• Usefulness for Text Mining
 – improve effectiveness text mining methods
 • matching similar words
 – reduce term vector size
 • combing words with same roots may reduce indexing size as much as 40-50%
Lookup-based Stemming

- Create a lookup table with all inflected forms
 - e.g. WordNet, Wiktionary

- Example:

<table>
<thead>
<tr>
<th>Base Form</th>
<th>Inflected Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>move</td>
<td>moves, moved, moving</td>
</tr>
<tr>
<td>go</td>
<td>goes, went, gone, going</td>
</tr>
<tr>
<td>apple</td>
<td>apples</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Rule-based Stemming

• remove endings
 – if a word ends with a consonant other than s, followed by an s, then delete s (puts → put)
 – if a word ends in es, drop the s (uses → use)
 – if a word ends in ing, delete the ing unless the remaining word consists only of one letter or of th (reading → read)
 – If a word ends with ed, preceded by a consonant, delete the ed unless this leaves only a single letter (founded → found)
 – ...

• transform words
 – if a word ends with ies but not eies or aies then
 ies → y (flies → fly)
Stemming Comparison

- Lookup tables
 - are accurate
 - exceptions are handled easily (e.g., *went* → *go*)
 - consume much space, in particular for highly inflected languages (e.g., Latin, Greek, Spanish, Baltic languages)

- Rule-based stemming
 - low space consumption
 - works for emerging words without update (e.g., *iPads* → *iPad*)
 - prone to *overstemming* errors, e.g.
 - *sling* → *sl*
 - *sled* → *sl*
Text Preprocessing in Python

Simple preprocessing in sklearn:

```python
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.datasets import load_files

# Load documents
docs = load_files('directory_of_files', encoding='utf-8')

# Vectorize documents
vectorizer = CountVectorizer(analyzer='word', stop_words='english')
matrix = vectorizer.fit_transform(docs)
```

Stemming using the Natural Language Toolkit (NLTK) library:

```python
from nltk.stem.porter import PorterStemmer

# Stem tokens
stemmer = PorterStemmer()
tokens = ['Jupiter', 'is', 'the', 'largest', 'gas', 'planet']
stems = []
for item in tokens:
    stems.append(stemmer.stem(item))
```

https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://www.nltk.org/book/ch03.html
Feature Generation
Term-Document Matrix

| Term | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | Σ |
|--------|
| oil | 5 | 12 | 2 | 1 | 1 | 7 | 3 | 3 | 5 | 9 | 5 | 4 | 5 | 4 | 3 | 4 | 5 | 3 | 3 | 1 | 85 |
| price | 5 | 6 | 2 | 2 | 0 | 8 | 1 | 2 | 2 | 10 | 5 | 1 | 5 | 2 | 0 | 3 | 3 | 3 | 3 | 0 | 63 |
| opec | 0 | 15 | 0 | 0 | 0 | 8 | 1 | 2 | 2 | 6 | 5 | 2 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 47 |
| mln | 0 | 4 | 0 | 0 | 2 | 4 | 1 | 0 | 0 | 3 | 9 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 2 | 31 |
| market | 2 | 5 | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 10 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 30 |
| barrel | 2 | 0 | 1 | 1 | 0 | 4 | 0 | 0 | 1 | 3 | 3 | 0 | 1 | 1 | 0 | 3 | 3 | 1 | 0 | 2 | 26 |
| bpd | 0 | 4 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 2 | 8 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 23 |
| dltus | 2 | 0 | 1 | 2 | 2 | 2 | 1 | 0 | 0 | 4 | 2 | 0 | 0 | 0 | 1 | 1 | 5 | 0 | 0 | 23 |
| crude | 2 | 0 | 2 | 3 | 0 | 2 | 0 | 0 | 0 | 5 | 2 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 1 | 21 |
| saudi | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 5 | 7 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 18 |
| kuwait | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 1 | 0 | 3 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 17 |
| offici | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 1 | 0 | 1 | 4 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 17 |
| meet | 0 | 6 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 14 |
| pct | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 14 |
| product| 1 | 6 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 13 |
| accord | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
| futur | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 5 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 12 |
| minist | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 3 | 1 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 12 |
| govern | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
| month | 0 | 1 | 0 | 0 | 0 | 2 | 2 | 0 | 1 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
| report | 0 | 1 | 0 | 0 | 0 | 1 | 8 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
| sheikh | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 5 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 11 |
| industri| 2 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 0 | 10 |
| produc | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 |
| quota | 0 | 2 | 0 | 0 | 0 | 4 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 10 |
| reserv | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 10 |
| world | 0 | 1 | 0 | 0 | 0 | 1 | 3 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 10 |

| Σ | 48 | 204| 34 | 39 | 46 | 219| 219| 73 | 161| 180| 208| 57 | 61 | 54 | 56 | 68 | 89 | 44 | 147| 32 | 2039 |
Feature Generation

• Document is treated as a bag of words (or terms)
 – each word or term becomes a feature.
 – order of words/terms is ignored.

• Each document is represented by a vector.

• Different techniques for vector creation:
 1. Binary Term Occurrence: Boolean attributes describe whether or not a term appears in the document.
 2. Term Occurrence: Number of occurrences of a term in the document (problematic if documents have different length).
 3. Terms frequency: Attributes represent the frequency in which a term appears in the document (Number of occurrences / Number of words in document)
 4. TF-IDF: see next slide
The TF-IDF Term Weighting Scheme

- The TF-IDF weight (term frequency–inverse document frequency) is used to evaluate how important a word is to a corpus of documents.
 - TF: Term Frequency (see last slide)
 - $T_{f_{ij}}$: term frequency of term i in document j
 - IDF: Inverse Document Frequency
 - N: total number of docs in corpus
 - df_i: the number of docs in which term i appears
 \[idf_i = \log \frac{N}{df_i} \]
 - Gives more weight to rare words
 - Give less weight to common words (domain-specific “stopwords”)

\[tfidf_{ij} = T_{f_{ij}} \times idf_i \]
Feature Generation in Python

- TF-IDF vectors etc. can be created with scikit-learn routines

```python
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer

binary_term_occurrences_vectorizer = CountVectorizer(binary='True')
term_occurrences_vectorizer = CountVectorizer(binary='False')
term_frequency_vectorizer = TfidfVectorizer(use_idf='False')
tf_idf_vectorizer = TfidfVectorizer(use_idf='True')
```
Feature Selection

- Not all features are helpful
- Transformation approaches tend to create lots of features
 - Dimensionality problems!
Pruning Vectors in Python

- Pruning methods
 - Specify if and how too frequent or too infrequent words should be ignored

- Different options:
 - *Percentual*: ignore words that appear in less / more than this percentage of all documents
 - *Absolute*: ignore words that appear in less / more than that many documents
 - *By Rank*: Specifies how many percent of the most infrequent / infrequent words are ignored

```python
vectorizer = TfidfVectorizer(min_df=0.1, max_df=0.3) # Percentual
vectorizer = TfidfVectorizer(min_df=5, max_df=20) # Absolute
```
POS Tagging Revisited

• POS tags may help with feature selection
 – sometimes, certain classes of words may be discarded
 – e.g., modal verbs
 – e.g., adjectives
 • texts about red and blue cars are similar
 • texts about red and blue trousers are similar
 – but
 • texts about red cars and red trousers are not similar

In [1]: import nltk

s = "The red car is standing in the garage"
tokens = nltk.word_tokenize(s)
tags = nltk.pos_tag(tokens)
print(tags)

[('The', 'DT'), ('red', 'JJ'), ('car', 'NN'), ('is', 'VBZ'), ('standing', 'VBG'), ('in', 'IN'), ('the', 'DT'), ('garage', 'NNn')]

In [2]: filtered_tags = [t for t in tags if t[1] == "NN" or t[1] == "VBG"]
print(filtered_tags)

[('car', 'NN'), ('standing', 'VBG'), ('garage', 'NNn')]
Named Entity Recognition and Linking

• Named Entity Recognition (NER):
 – identifying persons, places, organizations, …

• Example:
 – “Stock quote of Apple Inc. expected to exceed $600.”
 → “Stock quote of <ORGANIZATION>Apple Inc.</ORGANIZATION>
 expected to exceed <AMOUNT>$600</AMOUNT>.”

• The classes of NER may be useful features
 – the exact amount of money does not matter
 – useful to know that any amount is mentioned
Named Entity Recognition and Linking

• Named Entity Linking
 – Identify named entities in a knowledge base
 – e.g., Link to Wikipedia

• May be used to create additional features
 – e.g., Wikipedia categories

 “Stock quote of <ORGANIZATION link=’http://en.wikipedia.org/wiki/Apple_Inc.’>Apple Inc.</ORGANIZATION> expected to exceed <AMOUNT>$600</AMOUNT>.”

 – Categories: Mobile phone manufacturers, Technology companies of the United States, ...
Named Entity Recognition and Linking

- Example: RapidMiner Linked Open Data Extension
 - Can use DBpedia (a structured subset of Wikipedia)
 - Named Entity Linking with DBpedia Spotlight
 - Feature extraction: e.g., all types of the identified entities
Named Entity Recognition and Linking

• Example set of texts:
 – “Again crash on I90”
 – “Accident on I90”

• Model:
 – type=Road → indicates traffic accident

• Applying the model:
 – “Two cars crashed on I51” → indicates traffic accident

• Note:
 – The feature “I90” alone is not as useful!
Pattern Discovery

- Clustering
- Classification
- Regression
- ...

Text Preprocessing
Text Transformation (Feature Generation)
Feature Selection
Data Mining / Pattern Discovery
Interpretation / Evaluation
Text Mining: Clustering Definition

• Given a set of documents and a similarity measure among documents

• find clusters such that:
 – Documents in one cluster are more similar to one another
 – Documents in separate clusters are less similar to one another

• Question: Which similarity measures are a good choice for comparing document vectors?
Jaro Distance

- Measures the dissimilarity of two strings
- Developed for name comparison in the U.S. Census
- Optimized for comparing person names
- Based on the number of common characters within a specific distance
- Example:

```
Prof._John_Doe

Dr._John_Doe
```
word2vec Distance

- word2vec (and other *embedding* techniques) represent a word by an n-dimensional feature vector
 - details: see Data Mining II
- Distance can then be understood as metric distance in that vector space

Nearest words

Given a word, this demo shows a list of other words that are similar to it, i.e. nearby in the vector space.

Rammstein
Show nearest Case sensitive: Top N: 10

Metallica
Megadeth
Nine_Inch_Nails
METALLICA
thrash_metal
Depeche_Mode
Motorhead
Judas_Priest
Iron_Maiden
Limp_Bizkit

http://bionlp-www.utu.fi/wv_demo/
word2vec distance

http://yamano357.hatenadiary.com/entry/2015/11/04/000332
n-gram Based Similarity

• Measures the similarity of two strings
• split string into set of trigrams:
 – e.g., “similarity” becomes “sim”, “imi”, “mil”, “ila”, “lar”, ..,
• measure overlap of trigrams
 – e.g., Jaccard: |common trigrams| / |all trigrams|

• Example: clustering similar product offers on eBay
• “iPhone5 Apple” vs. “Apple iPhone 5”
 – Jaccard: 7/15 = 0.47
Jaccard Coefficient

- **Asymmetric binary attributes**: If one of the states is more important or more valuable than the other.
 - By convention, state 1 represents the more important state
 - 1 is typically the rare or infrequent state
 - Example: Binary Term Occurrences

- **Jaccard coefficient** is a popular measure

\[
dist(x_i, x_j) = \frac{M_{11}}{M_{01} + M_{10} + M_{11}}
\]

Number of 11 matches / number of not-both-zero attributes values
Jaccard Coefficient

• Sample document set:
 – d1 = “Saturn is the gas planet with rings.”
 – d2 = “Jupiter is the largest gas planet.”
 – d3 = “Saturn is the Roman god of sowing.”

• Documents as vectors:
 – Vector structure:
 (Saturn, is, the, gas, planet, with, rings, Jupiter, largest, Roman, god, of, sowing)
 d1: 11111110000000
 d2: 01111001100000
 d3: 11100000011111

• $\text{sim}(d1,d2) = 0.44$
• $\text{sim}(d1,d3) = 0.27$
• $\text{sim}(d2,d3) = 0.18$
Cosine Similarity

- Often used for computing the similarity of documents
- If \(d_1 \) and \(d_2 \) are two document vectors, then

\[
\cos(d_1, d_2) = \frac{d_1 \cdot d_2}{\|d_1\| \times \|d_2\|}
\]

- Intuitive interpretation: \(angle \) of two documents
 - Advantage: length of document does not matter
Cosine Similarity and TF-IDF

• A commonly used combination for text clustering
• Each document is represented by vectors of TF-IDF weights

• Sample document set:
 – “Saturn is the gas planet with rings.”
 – “Jupiter is the largest gas planet.”
 – “Saturn is the Roman god of sowing.”

• First document as TF-IDF vector:
 – \((\frac{1}{7} \times \log(3/2), \frac{1}{7}\log(3/3), \frac{1}{7}\log(3/1), \ldots, 0, 0, 0, \ldots)\)
Cosine Similarity and TF-IDF

- Sample document set:
 - d_1 = “Saturn is the gas planet with rings.”
 - d_2 = “Jupiter is the largest gas planet.”
 - d_3 = “Saturn is the Roman god of sowing.”

- Documents as vectors:
 - Vector structure:
 (Saturn, is, the, gas, planet, with, rings, Jupiter, largest, Roman, god, of, sowing)
 - d_1 = (0.03, 0, 0, 0.03, 0.03, 0.07, 0.07, 0, 0, 0, 0, 0)
 - d_2 = (0, 0, 0, 0.03, 0.03, 0, 0, 0.08, 0.08, 0, 0, 0, 0)
 - d_3 = (0.03, 0, 0, 0, 0, 0, 0, 0.07, 0.07, 0.07, 0.07)

- $\text{sim}(d_1,d_2) = 0.13$
- $\text{sim}(d_1,d_3) = 0.05$
- $\text{sim}(d_2,d_3) = 0.0$
Alternative Document Representations

• Topic Modeling (e.g., Latent Dirichlet Allocation)
 – Each document consists of words
 – Words have a certain probability to be used in topics
 – Each document belongs to one or more topics to a certain degree

https://towardsdatascience.com/latent-dirichlet-allocation-15800c852699
Alternative Document Representations

- **Topic Modeling (e.g., Latent Dirichlet Allocation)**
 - A document is represented by a numerical vector of \(n \) topics

https://www.datacamp.com/community/tutorials/lda2vec-topic-model

Document 1
Text representation
Director James Lee discussed the impact of cinema on film...
Bag of word representation
0 2 ...

Document 2
Text representation
The school director decided the students should not leave school...
Bag of word representation
1 0 ...

https://www.datacamp.com/community/tutorials/lda2vec-topic-model
Alternative Document Representations

- **doc2vec**
 - an extension of word2vec
 - each document is projected into a vector space

Alternative Document Representations

- Today, most approaches use BERT and derivatives
 - Similar idea to word2vec, but more refined
 - Pre-trained models exist for different languages and genres
 - See Text Analytics lectures for details
Text Mining: Classification Definition

- Given: A collection of labeled documents (training set)
- Find: A model for the class as a function of the values of the features.
- Goal: Previously unseen documents should be assigned a class as accurately as possible.

- Classification methods commonly used for text
 - Naive Bayes, SVMs
 - Neural Networks
 - Random Forests (see Data Mining 2)
Text Mining: Sentiment Analysis

- A specific classification task
- Given: a text
- Target: a class of sentiments
 - e.g., positive, neutral, negative
 - e.g., sad, happy, angry, surprised
- Alternative: numerical score (e.g., -5...+5)

- Can be implemented as supervised classification/regression task
 - requires training data
 - i.e., pairs like <text;sentiment>
Text Mining: Sentiment Analysis

• Labeling data for sentiment analysis
 – is expensive
 – like every data labeling task

• Example public data sets for labeling: reviews

 173 of 213 people found the following review helpful

 ⭐⭐⭐⭐⭐ Listen Closer
 Trent Reznor should just release an album with a new title, new artwork, and new song titles. But instead of actual new material, it should all just be the songs from The Downward Spiral.

 It can be called There You Go, ****heads.

 After all, it's what everyone wants.

 I remember the day I bought The Downward Spiral. My first thought after...

 Read the full review >
 Published 1 month ago by Philip Atherton

 Vs.

 19 of 21 people found the following review helpful

 ⭐⭐⭐⭐⭐ Good, But Not Their Best
 Its funny how immediately after an established band that's been around for a while comes out with a new album all the fan-boys give reviews saying it's the greatest thing ever. I am a Nine Inch Nails fan too and have all their albums, so I'd thought I'd give my review which I hope is a little more fair.

 It's an electronic based album with some guitar, bass,...

 Read the full review >
 Published 1 month ago by JKat

• e.g., uclassify: trained on 40,000 Amazon reviews, ~80% accuracy
Preprocessing for Sentiment Analysis

• Recap – we started our processing with:
 Simple Syntactic Analysis
 – Text Cleanup (remove punctuation, HTML tags, …)
 – Normalize case
 – …

• Suitable for some text processing tasks

• However, reasonable features for sentiment analysis might include
 – punctuation: use of “!”, “?”,”?!”
 – smileys (usually encoded using punctuation: ;-))
 – use of visual markup, where available (red color, bold face, …)
 – amount of capitalization (“screaming”)
Sentiment Analysis for Aspects

• Example product review:
 – “The image quality is good, but the zoom sucks.”

• Putting the pieces together:
 – POS tagging
 – Keyphrase extraction
 – Marking sentiment words

```
The image quality is good, but the zoom sucks.
```

```
The image quality is good, the zoom sucks.
```
Sentiment Analysis Approaches

- Word lists for classic approaches
 - Bing Liu‘s List
 http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar
 - AFINN: A list of ~2.5k sentiment conveying words with scores
 - Python package afinn
 - afinn.score(“Interesting lecture”) → 2.0
 - afinn.score(“Boring lecture”) → −0.3

- Encoders for modern approaches
 - e.g., BERT, fine-tuned on movie reviews

Text Classification: Identifying Fake Reviews

• Useful features (besides text):
 – length of review
 – use of positive sentiment words (e.g., SentiWordNet)
 – ...

• However, text classification alone only yields a low accuracy

Other ways to go:
 – include other reviews of the same reviewer, find typical patterns
 – review frequency
 – typical rating behavior
 – similarity of product description and review
 – ...

SponsoredReviews.com
Bloggers Earn Cash, Advertisers Build Buzz!
Query Completion Revisited
Query Completion Revisited

• How to refine a query?
 – Terms that frequently co-occur with the terms entered (corpus: documents)
 – Terms that are frequently searched together with the terms entered (corpus: query logs)

• Given some terms entered: t1, t2
 – look for t3 so that t1, t2, t3 is a frequent pattern

• Approach: use a corpus of texts
 – represent them as binary vectors
 – look for frequent patterns (see next lecture)
Auto-complete Revisited

- Method: sequential pattern mining
 - find frequent *sequences* that start with a given root
 - see lecture Data Mining II
Auto-complete Revisited

- Google hosts a corpus of frequent patterns
- mined from Google books
- see http://books.google.com/ngrams/
Modern models like GPT-3 use complex neural network architectures. They are also usable as Q&A systems. Recent hype topic: *prompt engineering*
Issues with GPT-3

- Every model (neural or non-neural) uses training data
 - ...and replicates stereotypes, biases etc. in that training data
Processing Text from Social Media

• An interesting source of knowledge
 – e.g., market research
 – e.g., opinion mining

• However, challenging to process with standard methods

• Example (a real tweet):
 – “ikr smh he asked fir yo last name so he can add u on fb lololol”
Processing Text from Social Media

• Respect special characters
 – e.g., hashtags and user mentions
 – may be treated separately

• Normalizing
 – unfolding abbreviations (“2moro” → “tomorrow”)
 – replacing slang words with standard English
 – spelling corrections
Processing Text from Social Media

• POS Tagging
 – the POS tagger by Charniak was trained on news texts
 – will work very poorly on social media data
 – there are specialized POS taggers trained, e.g., on Twitter data

• Named Entity Recognition
 – often relies on capitalized words
 • “The document was signed by the US congress.”
 • The document was signed by us.”
 – there are particular NER tools for social media
Summary

- Main task: *Preprocessing* of text in order to be able to apply classic known Data Mining algorithms

- There are lots of alternative preprocessing techniques
 - Mind the task!

- Text Mining is tricky, but “ok”-ish results are easily achieved

- Modern neural approaches have brought massive improvements
 - But for many tasks, plain TF-IDF can be a strong baseline!

- If you want to hear more
 - visit lectures on *Text Analytics* and *Web Search and Information Retrieval* (Ponzetto, Strohmaier & colleagues)
Questions?