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Outline

1) What is Text Mining?

2) Text Preprocessing

3) Feature Creation

4) Feature Selection

5) Pattern Discovery

6) Processing Text from Social Media
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Motivation for Text Mining

• Structured data: databases, excel sheets, XML, …

• Unstructured data: text, images, audio, video, ...
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Motivation for Text Mining

• A lot of unstructured data is text, e.g.,

– Web pages

– E-mails

– Chat conversations

– Technical documents

– Corporate documents

– Digital libraries
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Text Mining

• The extraction of implicit, previously unknown and potentially useful 
information from a large amount of textual resources

Data 
Mining

Text 
Mining

Information 
Retrieval

Computational 
Linguistics & 

NLP

Statistics Web Mining
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Search Versus Discovery

Data 
Mining

Text 
Mining

Query
Processing

Information
Retrieval

Search/Query
(Goal-oriented)

Discovery
(Opportunistic) 

Structured
Data

Text
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Typical Text Mining Applications

• Classification and clustering of news stories or web pages

• Email and news filtering / Spam detection

– Also: fake review classification

• Sentiment Analysis

• Query suggestion / auto complete

• Gain insights about relations between
people, places or organizations 
described in a document corpus
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Examples
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Example: Search Query Completion
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Example: Search Result Organization
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Example: Sentiment Analysis

• Determine polarity

– Polarity values, e.g.:
• positve, neutral, negative

• likert scale (1 to 10)

– Application examples
• Document level

– analysis of tweets 
about politicians

• Feature/aspect level
– analysis of 

product reviews
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Example: Information Extraction

• Automatically extracting structured 
information from documents

• Subtasks
– Named Entity Recognition 

and Disambiguation
• “The parliament in Berlin has decided …“ 

• Which parliament? Which Berlin?

– Relationship Extraction
• PERSON works for ORGANIZATION

• PERSON located in LOCATION

– Fact Extraction
• CITY has population NUMBER

• COMPANY has turnover NUMBER [Unit]
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The Text Mining Process

1. Text Preprocessing
– Syntactic/Semantic analysis 

2. Feature Generation 
– e.g., Bag of words 

3. Feature Selection
– Reduce large number of features

4. Data Mining
– Clustering

– Classification

– Association
Analysis
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1. Tokenization

2. Stopword Removal

3. Stemming

Text Preprocessing
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 Simple Syntactic Analysis

 Text Cleanup (remove punctuation, HTML tags, …)

 Normalize case

 Tokenization (break text into single words or N-grams)

 Advanced Linguistic Analysis

 Word Sense Disambiguation

 Determine which sense a word is having
 Normalize synonyms (United States, USA, US)
 Coreference resolution – normalize pronouns  (he, she, it)

 Part Of Speech (POS) tagging

 Parse sentences according to grammar
 Determine function of each term
  e.g. John (noun) gave (verb) the (det) ball (noun).

Syntactic / Linguistic Text Analysis
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• Usually using catalogs

– such as WordNet

• Example for a large-scale catalog

– Wikipedia Surface Forms

• Normalized forms: titles of Wikipedia pages

– e.g., “United States Armed Forces”

• Other forms: anchor texts of links to that page

– “The music of Nine Inch Nails has reportedly been used by the 
U.S. military as music torture to break down the resolve of detainees.”

Synonym Normalization & Spelling Correction

Extracted normalization pattern:
“U.S. military” → “United States Armed Forces”
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Synonym Normalization & Spelling Correction

• Catalogs work great for common knowledge

– not so well for special domains

• Possible remedy: string similarity

• Example: edit distance

– Notion: the minimum number of edits needed 
to transform one string into the other

– Allowed edit operations:

• insert a character into the string

• delete a character from the string

• replace one character with a different character

• Examples:

– levenshtein('John Smith', 'John K. Smith ') = 3  (3 inserts)

– levenshtein('John Smith', 'Jack Smith') = 3    (3 substitutions)
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POS Tagging

• Task

– determining word classes and syntactic functions

– finding the structure of a sentence

http://cs.oberlin.edu/~jdonalds/333/lecture12.html
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POS Tagging

• Sometimes, multiple results are possible

– language is ambiguous!

Charniak: Statistical techniques for natural language parsing (1997)
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POS Tagging

• Supervised approach

– Use an annotated corpus of text

– i.e., a set of sentences with human-created POS tags

• Note: words may have different functions in different contexts

– I move (VERB) to Mannheim next year.

– He made a clever move (NOUN).

• Naive Algorithm by Charniak (1997)

– Use the most common tag for each word

– Assign NOUN to every unknown word

– Result: 90% accuracy, using a training corpus of 300,000 words
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POS Tagging

• Simple algorithm for key phrase extraction

– e.g., annotation of text corpora

• Use all NP of the form ADJ+NOUN*

• Example sentence:

– Text mining refers to the process of deriving 
high-quality information from text.

• Key phrases:

– text mining (NOUN+NOUN)

– process (NOUN)

– high-quality information (ADJ NOUN NOUN)

– text (NOUN)



10/18/22 Heiko Paulheim 22 

Stop Words Removal

• Many of the most frequent words are likely to be useless

• These words are called stop words

– examples (English): the, of, and, to, an, is, that, …

– typically text contains about 400 to 500 such words

– additional domain specific stop words lists may be constructed

• Why should we remove stop words?

– Reduce data set size

• stop words account for 20-30% of total word counts

– Improve efficiency and effectiveness

• stop words may confuse the mining algorithm
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More Examples of Stopwords
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Stopword Removal

• Note: words may have different functions in different contexts

– He can (AUX VERB) read.

– The can (NOUN) will rust.

• After removing stopwords naively

– “can” is removed

– We cannot find out that the text is about cans

– We cannot query for texts about cans

– etc.
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POS Tagging Revisited

• Improvement over naïve algorithm

– respect transition probabilities

• Improves accuracy to 96-97%

• Upper limit: 98%

Charniak: Statistical techniques for natural language parsing (1997)
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Stemming

• Techniques to find out the root/stem of a word.
 

– Words: User, users, used, using → Stem: use

– Words: Engineering, engineered → Stem: engineer

• Usefulness for Text Mining

– improve effectiveness text mining methods 

• matching similar words

– reduce term vector size

• combing words with same roots may reduce 
indexing size as much as 40-50%
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Lookup-based Stemming

• Create a lookup table with all inflected forms

– e.g. WordNet, Wiktionary

• Example:

Base Form Inflected Forms

move moves, moved, moving

go goes, went, gone, going

apple apples

... ...



10/18/22 Heiko Paulheim 28 

Rule-based Stemming

• remove endings

– if a word ends with a consonant other than s,
followed by an s, then delete s (puts → put)

– if a word ends in es, drop the s (uses → use)

– if a word ends in ing, delete the ing unless the 
remaining word consists only of one letter or of th (reading → read)

– If a word ends with ed, preceded by a consonant, 
delete the ed unless this leaves only a single letter 
(founded → found)

– …

• transform words

– if a word ends with ies but not eies or aies then 
ies → y (flies → fly)
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Stemming Comparison

• Lookup tables

– are accurate

– exceptions are handled easiliy (e.g., went → go)

– consume much space, in particular for highly inflected languages
(e.g., Latin, Greek, Spanish, Baltic languages)

• Rule-based stemming

– low space consumption

– works for emerging words without update (e.g., iPads → iPad)

– prone to overstemming errors, e.g.

• sling → sl

• sled → sl
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Text Preprocessing in Python

Simple preprocessing in sklearn:

Stemming using the Natural Language Toolkit (NLTK) library:

https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://www.nltk.org/book/ch03.html
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Feature Generation
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Term-Document Matrix
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Feature Generation

• Document is treated as a bag of words (or terms) 

– each word or term becomes a feature.

– order of words/terms is ignored.

• Each document is represented by a vector. 

• Different techniques for vector creation:

1. Binary Term Occurrence: Boolean attributes describe whether 
or not a term appears in the document.

2. Term Occurrence: Number of occurences of a term in the document 
(problematic if documents have different length).

3. Terms frequency: Attributes represent the frequency in which 
a term appears in the document (Number of occurrences / 
Number of words in document)

4. TF-IDF: see next slide
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The TF-IDF Term Weighting Scheme

• The TF-IDF weight (term frequency–inverse document frequency) is 
used to evaluate how important a word is to a corpus of documents.

– TF: Term Frequency (see last slide)

• Tf
ij
: term frequency of term i in document j

– IDF: Inverse Document Frequency 
• N: total number of docs in corpus

• df
i
: the number of docs in which term i appears

– Gives more weight to rare words

– Give less weight to common words
(domain-specific “stopwords”)

idf i=log
N
df i

tfidf ij=tf ij×idf i



10/18/22 Heiko Paulheim 35 

Feature Generation in Python

• TF-IDF vectors etc. can be created with scikit-learn routines
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Feature Selection

• Not all features are helpful

• Transformation approaches tend to create
lots of features

– Dimensionality problems!
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Pruning Vectors in Python

• Pruning methods

– Specify if and how too frequent or too infrequent words should be ignored 

• Different options:

– Percentual: ignore words that appear in less / 
more than this percentage of all documents

– Absolute: ignore words that appear in less / 
more than that many documents

– By Rank: Specifies how many percent of the most infrequent / 
infrequent words are ignored  
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POS Tagging Revisited

• POS tags may help with feature selection

– sometimes, certain classes of words may be discarded

– e.g., modal verbs

– e.g., adjectives

• texts about red and blue cars are similar

• texts about red and blue trousers are similar

– but

• texts about red cars and red trousers are not similar
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Named Entity Recognition and Linking

• Named Entity Recognition (NER):

– identifying persons, places, organizations, …

• Example: 

– “Stock quote of Apple Inc. expected to exceed $600.”

→ “Stock quote of <ORGANIZATION>Apple Inc.</ORGANIZATION> 
expected to exceed <AMOUNT>$600</AMOUNT>.”

• The classes of NER may be useful features

– the exact amount of money does not matter

– useful to know that any amount is mentioned
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Named Entity Recognition and Linking

• Named Entity Linking

– Identify named entities in a knowledge base

– e.g., Link to Wikipedia

• May be used to create additional features

– e.g., Wikipedia categories

“Stock quote of <ORGANIZATION 
link=”http://en.wikipedia.org/wiki/Apple_Inc.”>Apple 
Inc.</ORGANIZATION> expected to exceed 
<AMOUNT>$600</AMOUNT>.”

– Categories: Mobile phone manufacturers, Technology companies of the 
United States, ...
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Named Entity Recognition and Linking

• Example: RapidMiner Linked Open Data Extension

– Can use DBpedia
(a structured subset of Wikipedia)

– Named Entity Linking with DBpedia Spotlight

– Feature extraction: e.g., all types of the identified entities
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Named Entity Recognition and Linking

• Example set of texts: 

– “Again crash on I90”

– “Accident on I90”

dbpedia:Interstate_90

Road

type

dbpedia:Interstate_51
type

• Model:
– type=Road → indicates traffic accident

• Applying the model:
– “Two cars crashed on I51” → indicates traffic 

accident

• Note:
– The feature “I90” alone is not as useful!
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• Clustering

• Classification

• Regression

• ...

Pattern Discovery
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• Given a set of documents and a similarity measure among 
documents

• find clusters such that:
– Documents in one cluster are more similar to one another

– Documents in separate clusters are less similar to one another

• Question: Which similarity measures are a good 
choice for comparing document vectors?

Text Mining: Clustering Definition
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Jaro Distance

• Measures the dissimilarity of two strings

• Developed for name comparison in the U.S. Census

• Optimized for comparing person names

• Based on the number of common characters within 
a specific distance

• Example:
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word2vec Distance

• word2vec (and other embedding techniques) 
represent a word by an n-dimensional feature vector

– details: see Data Mining II

• Distance can then be understood as metric distance
in that vector space

http://bionlp-www.utu.fi/wv_demo/



10/18/22 Heiko Paulheim 47 

word2vec distance

http://yamano357.hatenadiary.com/entry/2015/11/04/000332
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n-gram Based Similarity

• Measures the similarity of two strings

• split string into set of trigrams:

– e.g., “similarity” becomes “sim”, “imi”,”mil”,”ila”, “lar”, ..,

• measure overlap of trigrams

– e.g., Jaccard: |common trigrams| / |all trigrams|

• Example: clustering similar product offers on eBay

• “iPhone5 Apple” vs. “Apple iPhone 5”

– common trigrams: “iPh”, “Pho”, “hon”, “one”, “App”, “ppl”, “ple”

– other trigrams: “ne5”, “e5 “, “5 A”, “ Ap” (1), “le “, “e i”, “ iP”, “e 5” (2)

– Jaccard: 7/15 = 0.47
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Jaccard Coefficient

• Asymmetric binary attributes: If one of the states is more important 
or more valuable than the other. 

– By convention, state 1 represents the more important state

– 1 is typically the rare or infrequent state

– Example: Binary Term Occurences

• Jaccard coefficient is a popular measure

  Number of 11 matches / number of not-both-zero attributes values

111001

11
),(

MMM

M
dist ji 

xx
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Jaccard Coefficient

• Sample document set:

– d1 = “Saturn is the gas planet with rings.”

– d2 = “Jupiter is the largest gas planet.”

– d3 = “Saturn is the Roman god of sowing.”

• Documents as vectors:

– Vector structure: 
(Saturn, is, the, gas, planet, with, rings, Jupiter, largest, Roman, god, of, sowing)

d1: 1111111000000

d2: 0111100110000

d3: 1110000001111

• sim(d1,d2) = 0.44

• sim(d1,d3) = 0.27

• sim(d2,d3) = 0.18
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Cosine Similarity

• Often used for computing the similarity of documents

• If d1 and d2 are two document vectors, then

• Intuitive interpretation: 
angle of two documents

– Advantage: length of document
does not matter

cos(d1 ,d2)=
d1∘d2

‖d1‖×‖d2‖



10/18/22 Heiko Paulheim 52 

Cosine Similarity and TF-IDF

• A commonly used combination for text clustering

• Each document is represented by vectors of TF-IDF weights

• Sample document set:

– “Saturn is the gas planet with rings.”

– “Jupiter is the largest gas planet.”

– “Saturn is the Roman god of sowing.”

• First document as TF-IDF vector:

– (1/7 * log(3/2), 1/7*log(3/3), 1/7*log(3/1), …, 0, 0, 0, ...)

Saturn is the Jupiter largest Roman



10/18/22 Heiko Paulheim 53 

Cosine Similarity and TF-IDF

• Sample document set:
– d1 = “Saturn is the gas planet with rings.”

– d2 = “Jupiter is the largest gas planet.”

– d3 = “Saturn is the Roman god of sowing.”

• Documents as vectors:
– Vector structure: 

(Saturn, is, the, gas, planet, with, rings, Jupiter, largest, Roman, god, of, sowing)

– d1 = (0.03, 0, 0, 0.03, 0.03, 0.07, 0.07, 0,      0,      0,      0,      0,      0)

– d2 = (0,      0, 0, 0.03, 0.03, 0,     0,       0.08, 0.08, 0,      0,      0,      0)

– d3 = (0.03, 0, 0, 0,      0,      0,     0,       0,      0,      0.07, 0.07, 0.07, 0.07)

• sim(d1,d2) = 0.13

• sim(d1,d3) = 0.05

• sim(d2,d3) = 0.0
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Alternative Document Representations

• Topic Modeling (e.g., Latent Dirichlet Allocation)

– Each document consists of words

– Words have a certain probability to be used in topics

– Each document belongs to one or more topics to a certain degree

https://towardsdatascience.com/latent-dirichlet-allocation-15800c852699
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Alternative Document Representations

• Topic Modeling (e.g., Latent Dirichlet Allocation)

– A document is represented by a numerical vector of n topics

https://www.datacamp.com/community/tutorials/lda2vec-topic-model



10/18/22 Heiko Paulheim 56 

Alternative Document Representations

• doc2vec

– an extension of word2vec

– each document is projected into a vector space

Dai et al. (2015): Document Embedding with Paragraph Vectors
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Alternative Document Representations

• Today, most approaches use BERT and derivatives

– Similar idea to word2vec, but more refined

– Pre-trained models exist for different languages and genres

– See Text Analytics lectures for details
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• Given: A collection of labeled documents 
(training set)

• Find: A model for the class as a function of the values 
of the features.

• Goal: Previously unseen documents should be 
assigned a class as accurately as possible.

• Classification methods commonly used for text
– Naive Bayes, SVMs

– Neural Networks

– Random Forests (see Data Mining 2)

Text Mining: Classification Definition
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Text Mining: Sentiment Analysis

• A specific classification task

• Given: a text

• Target: a class of sentiments

– e.g., positive, neutral, negative

– e.g., sad, happy, angry, surprised

• Alternative: numerical score (e.g., -5...+5)

• Can be implemented as supervised classification/regression task

– requires training data

– i.e., pairs like <text;sentiment>
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Text Mining: Sentiment Analysis

• Labeling data for sentiment analysis

– is expensive

– like every data labeling task

• Example public data sets for labeling: reviews

• e.g., uclassify: trained on 40,000 Amazon reviews, ~80% accuracy
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Preprocessing for Sentiment Analysis

• Recap – we started our processing with: 
Simple Syntactic Analysis

– Text Cleanup (remove punctuation, HTML tags, …)

– Normalize case

– …

• Suitable for some text processing tasks

• However, reasonable features for sentiment analysis might include

– punctuation: use of “!”, “?”, “?!”

– smileys (usually encoded using punctuation: ;-))

– use of visual markup, where available (red color, bold face, ...)

– amount of capitalization (“screaming”)
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Sentiment Analysis for Aspects

• Example product review:

– “The image quality is good, but the zoom sucks.”

• Putting the pieces together:

– POS tagging

– Keyphrase extraction

– Marking sentiment words

S

S S

NP NPVP VP

CC

DET N NN V ADJ VDET N

The image quality      is     good        the zoom sucks.

but
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Sentiment Analysis Approaches

• Word lists for classic approaches

– Bing Liu‘s List
http://www.cs.uic.edu/~liub/FBS/
opinion-lexicon-English.rar

– AFINN: A list of ~2.5k sentiment 
conveying words with scores

• Python package afinn

• afinn.score(“Interesting lecture”) → 2.0

• afinn.score(“Boring lecture”) → –0.3

• Encoders for modern approaches

– e.g., BERT, fine-tuned on movie reviews

https://towardsdatascience.com/sentiment-analysis-in-10-minutes-with-bert-and-
hugging-face-294e8a04b671
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Text Classification: Identifying Fake Reviews

• Useful features (besides text):

– length of review

– use of positive sentiment words (e.g., SentiWordNet)

– …

• However, text classification alone only yields a low accuracy

Other ways to go:

– include other reviews of the same reviewer, find typical patterns

– review frequency

– typical rating behavior

– similarity of product description and review

– ...
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Query Completion Revisited
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Query Completion Revisited

• How to refine a query?

– Terms that frequently co-occur with the terms entered
(corpus: documents)

– Terms that are frequently searched together with the terms entered
(corpus: query logs)

• Given some terms entered: t1, t2

– look for t3 so that t1, t2, t3 is a frequent pattern

• Approach: use a corpus of texts

– represent them as binary vectors

– look for frequent patterns (see next lecture)
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Auto-complete Revisited

• Method: sequential pattern mining

– find frequent sequences that start with
a given root

– see lecture Data Mining II
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Auto-complete Revisited

• Google hosts a corpus of frequent patterns

• mined from Google books

• see http://books.google.com/ngrams/ 

http://books.google.com/ngrams/
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Autocomplete 2022

• Modern models like GPT-3 
use complex neural network architectures

• They are also usable as Q&A systems

– Recent hype topic: prompt engineering
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Issues with GPT-3

• Every model (neural or non-neural) uses training data

– ...and replicates stereotypes, biases etc. in that training data
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Processing Text from Social Media

• An interesting source of knowledge

– e.g., market research

– e.g., opinion mining

• However, challenging to process 
with standard methods

• Example (a real tweet):

– “ikr smh he asked fir yo last name 
so he can add u on fb lololol”
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Processing Text from Social Media

• Respect special characters

– e.g., hashtags and user mentions

– may be treated separately

• Normalizing

– unfolding abbreviations (“2moro” → “tomorrow”)

– replacing slang words with standard English

– spelling corrections
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Processing Text from Social Media

• POS Tagging

– the POS tagger by Charniak was trained on news texts

– will work very poorly on social media data

– there are specialized POS taggers trained, e.g., on Twitter data

• Named Entity Recognition

– often relies on capitalized words

• “The document was signed by the US congress.”

• The document was signed by us.”

– there are particular NER tools for social media
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Summary

• Main task: Preprocessing of text in order be able to apply classic 
known Data Mining algorithms

• There are lots of alternative preprocessing techniques
• Mind the task!

• Text Mining is tricky, but “ok”-ish results are easily achieved

• Modern neural approaches have brought massive improvements
– But for many tasks, plain TF-IDF can be a strong baseline!

• If you want to hear more

– visit lectures on Text Analytics  and
Web Search and Information Retrieval (Ponzetto, Strohmaier & 
colleagues)
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Questions?
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