
Data Mining I
Text Mining

Heiko Paulheim

10/18/22 Heiko Paulheim 2

Outline

1) What is Text Mining?

2) Text Preprocessing

3) Feature Creation

4) Feature Selection

5) Pattern Discovery

6) Processing Text from Social Media

10/18/22 Heiko Paulheim 3

Motivation for Text Mining

• Structured data: databases, excel sheets, XML, …

• Unstructured data: text, images, audio, video, ...

10/18/22 Heiko Paulheim 4

Motivation for Text Mining

• A lot of unstructured data is text, e.g.,

– Web pages

– E-mails

– Chat conversations

– Technical documents

– Corporate documents

– Digital libraries

10/18/22 Heiko Paulheim 5

Text Mining

• The extraction of implicit, previously unknown and potentially useful
information from a large amount of textual resources

Data
Mining

Text
Mining

Information
Retrieval

Computational
Linguistics &

NLP

Statistics Web Mining

10/18/22 Heiko Paulheim 6

Search Versus Discovery

Data
Mining

Text
Mining

Query
Processing

Information
Retrieval

Search/Query
(Goal-oriented)

Discovery
(Opportunistic)

Structured
Data

Text

10/18/22 Heiko Paulheim 7

Typical Text Mining Applications

• Classification and clustering of news stories or web pages

• Email and news filtering / Spam detection

– Also: fake review classification

• Sentiment Analysis

• Query suggestion / auto complete

• Gain insights about relations between
people, places or organizations
described in a document corpus

10/18/22 Heiko Paulheim 8

Examples

10/18/22 Heiko Paulheim 9

Example: Search Query Completion

10/18/22 Heiko Paulheim 10

Example: Search Result Organization

10/18/22 Heiko Paulheim 11

Example: Sentiment Analysis

• Determine polarity

– Polarity values, e.g.:
• positve, neutral, negative

• likert scale (1 to 10)

– Application examples
• Document level

– analysis of tweets
about politicians

• Feature/aspect level
– analysis of

product reviews

10/18/22 Heiko Paulheim 12

Example: Information Extraction

• Automatically extracting structured
information from documents

• Subtasks
– Named Entity Recognition

and Disambiguation
• “The parliament in Berlin has decided …“

• Which parliament? Which Berlin?

– Relationship Extraction
• PERSON works for ORGANIZATION

• PERSON located in LOCATION

– Fact Extraction
• CITY has population NUMBER

• COMPANY has turnover NUMBER [Unit]

10/18/22 Heiko Paulheim 13

The Text Mining Process

1. Text Preprocessing
– Syntactic/Semantic analysis

2. Feature Generation
– e.g., Bag of words

3. Feature Selection
– Reduce large number of features

4. Data Mining
– Clustering

– Classification

– Association
Analysis

10/18/22 Heiko Paulheim 14

1. Tokenization

2. Stopword Removal

3. Stemming

Text Preprocessing

10/18/22 Heiko Paulheim 15

 Simple Syntactic Analysis

 Text Cleanup (remove punctuation, HTML tags, …)

 Normalize case

 Tokenization (break text into single words or N-grams)

 Advanced Linguistic Analysis

 Word Sense Disambiguation

 Determine which sense a word is having
 Normalize synonyms (United States, USA, US)
 Coreference resolution – normalize pronouns (he, she, it)

 Part Of Speech (POS) tagging

 Parse sentences according to grammar
 Determine function of each term
 e.g. John (noun) gave (verb) the (det) ball (noun).

Syntactic / Linguistic Text Analysis

10/18/22 Heiko Paulheim 16

• Usually using catalogs

– such as WordNet

• Example for a large-scale catalog

– Wikipedia Surface Forms

• Normalized forms: titles of Wikipedia pages

– e.g., “United States Armed Forces”

• Other forms: anchor texts of links to that page

– “The music of Nine Inch Nails has reportedly been used by the
U.S. military as music torture to break down the resolve of detainees.”

Synonym Normalization & Spelling Correction

Extracted normalization pattern:
“U.S. military” → “United States Armed Forces”

10/18/22 Heiko Paulheim 17

Synonym Normalization & Spelling Correction

• Catalogs work great for common knowledge

– not so well for special domains

• Possible remedy: string similarity

• Example: edit distance

– Notion: the minimum number of edits needed
to transform one string into the other

– Allowed edit operations:

• insert a character into the string

• delete a character from the string

• replace one character with a different character

• Examples:

– levenshtein('John Smith', 'John K. Smith ') = 3 (3 inserts)

– levenshtein('John Smith', 'Jack Smith') = 3 (3 substitutions)

10/18/22 Heiko Paulheim 18

POS Tagging

• Task

– determining word classes and syntactic functions

– finding the structure of a sentence

http://cs.oberlin.edu/~jdonalds/333/lecture12.html

10/18/22 Heiko Paulheim 19

POS Tagging

• Sometimes, multiple results are possible

– language is ambiguous!

Charniak: Statistical techniques for natural language parsing (1997)

10/18/22 Heiko Paulheim 20

POS Tagging

• Supervised approach

– Use an annotated corpus of text

– i.e., a set of sentences with human-created POS tags

• Note: words may have different functions in different contexts

– I move (VERB) to Mannheim next year.

– He made a clever move (NOUN).

• Naive Algorithm by Charniak (1997)

– Use the most common tag for each word

– Assign NOUN to every unknown word

– Result: 90% accuracy, using a training corpus of 300,000 words

10/18/22 Heiko Paulheim 21

POS Tagging

• Simple algorithm for key phrase extraction

– e.g., annotation of text corpora

• Use all NP of the form ADJ+NOUN*

• Example sentence:

– Text mining refers to the process of deriving
high-quality information from text.

• Key phrases:

– text mining (NOUN+NOUN)

– process (NOUN)

– high-quality information (ADJ NOUN NOUN)

– text (NOUN)

10/18/22 Heiko Paulheim 22

Stop Words Removal

• Many of the most frequent words are likely to be useless

• These words are called stop words

– examples (English): the, of, and, to, an, is, that, …

– typically text contains about 400 to 500 such words

– additional domain specific stop words lists may be constructed

• Why should we remove stop words?

– Reduce data set size

• stop words account for 20-30% of total word counts

– Improve efficiency and effectiveness

• stop words may confuse the mining algorithm

10/18/22 Heiko Paulheim 23

More Examples of Stopwords

10/18/22 Heiko Paulheim 24

Stopword Removal

• Note: words may have different functions in different contexts

– He can (AUX VERB) read.

– The can (NOUN) will rust.

• After removing stopwords naively

– “can” is removed

– We cannot find out that the text is about cans

– We cannot query for texts about cans

– etc.

10/18/22 Heiko Paulheim 25

POS Tagging Revisited

• Improvement over naïve algorithm

– respect transition probabilities

• Improves accuracy to 96-97%

• Upper limit: 98%

Charniak: Statistical techniques for natural language parsing (1997)

10/18/22 Heiko Paulheim 26

Stemming

• Techniques to find out the root/stem of a word.

– Words: User, users, used, using → Stem: use

– Words: Engineering, engineered → Stem: engineer

• Usefulness for Text Mining

– improve effectiveness text mining methods

• matching similar words

– reduce term vector size

• combing words with same roots may reduce
indexing size as much as 40-50%

10/18/22 Heiko Paulheim 27

Lookup-based Stemming

• Create a lookup table with all inflected forms

– e.g. WordNet, Wiktionary

• Example:

Base Form Inflected Forms

move moves, moved, moving

go goes, went, gone, going

apple apples

... ...

10/18/22 Heiko Paulheim 28

Rule-based Stemming

• remove endings

– if a word ends with a consonant other than s,
followed by an s, then delete s (puts → put)

– if a word ends in es, drop the s (uses → use)

– if a word ends in ing, delete the ing unless the
remaining word consists only of one letter or of th (reading → read)

– If a word ends with ed, preceded by a consonant,
delete the ed unless this leaves only a single letter
(founded → found)

– …

• transform words

– if a word ends with ies but not eies or aies then
ies → y (flies → fly)

10/18/22 Heiko Paulheim 29

Stemming Comparison

• Lookup tables

– are accurate

– exceptions are handled easiliy (e.g., went → go)

– consume much space, in particular for highly inflected languages
(e.g., Latin, Greek, Spanish, Baltic languages)

• Rule-based stemming

– low space consumption

– works for emerging words without update (e.g., iPads → iPad)

– prone to overstemming errors, e.g.

• sling → sl

• sled → sl

10/18/22 Heiko Paulheim 30

Text Preprocessing in Python

Simple preprocessing in sklearn:

Stemming using the Natural Language Toolkit (NLTK) library:

https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://www.nltk.org/book/ch03.html

10/18/22 Heiko Paulheim 31

Feature Generation

10/18/22 Heiko Paulheim 32

Term-Document Matrix

10/18/22 Heiko Paulheim 33

Feature Generation

• Document is treated as a bag of words (or terms)

– each word or term becomes a feature.

– order of words/terms is ignored.

• Each document is represented by a vector.

• Different techniques for vector creation:

1. Binary Term Occurrence: Boolean attributes describe whether
or not a term appears in the document.

2. Term Occurrence: Number of occurences of a term in the document
(problematic if documents have different length).

3. Terms frequency: Attributes represent the frequency in which
a term appears in the document (Number of occurrences /
Number of words in document)

4. TF-IDF: see next slide

10/18/22 Heiko Paulheim 34

The TF-IDF Term Weighting Scheme

• The TF-IDF weight (term frequency–inverse document frequency) is
used to evaluate how important a word is to a corpus of documents.

– TF: Term Frequency (see last slide)

• Tf
ij
: term frequency of term i in document j

– IDF: Inverse Document Frequency
• N: total number of docs in corpus

• df
i
: the number of docs in which term i appears

– Gives more weight to rare words

– Give less weight to common words
(domain-specific “stopwords”)

idf i=log
N
df i

tfidf ij=tf ij×idf i

10/18/22 Heiko Paulheim 35

Feature Generation in Python

• TF-IDF vectors etc. can be created with scikit-learn routines

10/18/22 Heiko Paulheim 36

Feature Selection

• Not all features are helpful

• Transformation approaches tend to create
lots of features

– Dimensionality problems!

10/18/22 Heiko Paulheim 37

Pruning Vectors in Python

• Pruning methods

– Specify if and how too frequent or too infrequent words should be ignored

• Different options:

– Percentual: ignore words that appear in less /
more than this percentage of all documents

– Absolute: ignore words that appear in less /
more than that many documents

– By Rank: Specifies how many percent of the most infrequent /
infrequent words are ignored

10/18/22 Heiko Paulheim 38

POS Tagging Revisited

• POS tags may help with feature selection

– sometimes, certain classes of words may be discarded

– e.g., modal verbs

– e.g., adjectives

• texts about red and blue cars are similar

• texts about red and blue trousers are similar

– but

• texts about red cars and red trousers are not similar

10/18/22 Heiko Paulheim 39

Named Entity Recognition and Linking

• Named Entity Recognition (NER):

– identifying persons, places, organizations, …

• Example:

– “Stock quote of Apple Inc. expected to exceed $600.”

→ “Stock quote of <ORGANIZATION>Apple Inc.</ORGANIZATION>
expected to exceed <AMOUNT>$600</AMOUNT>.”

• The classes of NER may be useful features

– the exact amount of money does not matter

– useful to know that any amount is mentioned

10/18/22 Heiko Paulheim 40

Named Entity Recognition and Linking

• Named Entity Linking

– Identify named entities in a knowledge base

– e.g., Link to Wikipedia

• May be used to create additional features

– e.g., Wikipedia categories

“Stock quote of <ORGANIZATION
link=”http://en.wikipedia.org/wiki/Apple_Inc.”>Apple
Inc.</ORGANIZATION> expected to exceed
<AMOUNT>$600</AMOUNT>.”

– Categories: Mobile phone manufacturers, Technology companies of the
United States, ...

10/18/22 Heiko Paulheim 41

Named Entity Recognition and Linking

• Example: RapidMiner Linked Open Data Extension

– Can use DBpedia
(a structured subset of Wikipedia)

– Named Entity Linking with DBpedia Spotlight

– Feature extraction: e.g., all types of the identified entities

10/18/22 Heiko Paulheim 42

Named Entity Recognition and Linking

• Example set of texts:

– “Again crash on I90”

– “Accident on I90”

dbpedia:Interstate_90

Road

type

dbpedia:Interstate_51
type

• Model:
– type=Road → indicates traffic accident

• Applying the model:
– “Two cars crashed on I51” → indicates traffic

accident

• Note:
– The feature “I90” alone is not as useful!

10/18/22 Heiko Paulheim 43

• Clustering

• Classification

• Regression

• ...

Pattern Discovery

10/18/22 Heiko Paulheim 44

• Given a set of documents and a similarity measure among
documents

• find clusters such that:
– Documents in one cluster are more similar to one another

– Documents in separate clusters are less similar to one another

• Question: Which similarity measures are a good
choice for comparing document vectors?

Text Mining: Clustering Definition

10/18/22 Heiko Paulheim 45

Jaro Distance

• Measures the dissimilarity of two strings

• Developed for name comparison in the U.S. Census

• Optimized for comparing person names

• Based on the number of common characters within
a specific distance

• Example:

10/18/22 Heiko Paulheim 46

word2vec Distance

• word2vec (and other embedding techniques)
represent a word by an n-dimensional feature vector

– details: see Data Mining II

• Distance can then be understood as metric distance
in that vector space

http://bionlp-www.utu.fi/wv_demo/

10/18/22 Heiko Paulheim 47

word2vec distance

http://yamano357.hatenadiary.com/entry/2015/11/04/000332

10/18/22 Heiko Paulheim 48

n-gram Based Similarity

• Measures the similarity of two strings

• split string into set of trigrams:

– e.g., “similarity” becomes “sim”, “imi”,”mil”,”ila”, “lar”, ..,

• measure overlap of trigrams

– e.g., Jaccard: |common trigrams| / |all trigrams|

• Example: clustering similar product offers on eBay

• “iPhone5 Apple” vs. “Apple iPhone 5”

– common trigrams: “iPh”, “Pho”, “hon”, “one”, “App”, “ppl”, “ple”

– other trigrams: “ne5”, “e5 “, “5 A”, “ Ap” (1), “le “, “e i”, “ iP”, “e 5” (2)

– Jaccard: 7/15 = 0.47

10/18/22 Heiko Paulheim 49

Jaccard Coefficient

• Asymmetric binary attributes: If one of the states is more important
or more valuable than the other.

– By convention, state 1 represents the more important state

– 1 is typically the rare or infrequent state

– Example: Binary Term Occurences

• Jaccard coefficient is a popular measure

 Number of 11 matches / number of not-both-zero attributes values

111001

11
),(

MMM

M
dist ji 

xx

10/18/22 Heiko Paulheim 50

Jaccard Coefficient

• Sample document set:

– d1 = “Saturn is the gas planet with rings.”

– d2 = “Jupiter is the largest gas planet.”

– d3 = “Saturn is the Roman god of sowing.”

• Documents as vectors:

– Vector structure:
(Saturn, is, the, gas, planet, with, rings, Jupiter, largest, Roman, god, of, sowing)

d1: 1111111000000

d2: 0111100110000

d3: 1110000001111

• sim(d1,d2) = 0.44

• sim(d1,d3) = 0.27

• sim(d2,d3) = 0.18

10/18/22 Heiko Paulheim 51

Cosine Similarity

• Often used for computing the similarity of documents

• If d1 and d2 are two document vectors, then

• Intuitive interpretation:
angle of two documents

– Advantage: length of document
does not matter

cos(d1 ,d2)=
d1∘d2

‖d1‖×‖d2‖

10/18/22 Heiko Paulheim 52

Cosine Similarity and TF-IDF

• A commonly used combination for text clustering

• Each document is represented by vectors of TF-IDF weights

• Sample document set:

– “Saturn is the gas planet with rings.”

– “Jupiter is the largest gas planet.”

– “Saturn is the Roman god of sowing.”

• First document as TF-IDF vector:

– (1/7 * log(3/2), 1/7*log(3/3), 1/7*log(3/1), …, 0, 0, 0, ...)

Saturn is the Jupiter largest Roman

10/18/22 Heiko Paulheim 53

Cosine Similarity and TF-IDF

• Sample document set:
– d1 = “Saturn is the gas planet with rings.”

– d2 = “Jupiter is the largest gas planet.”

– d3 = “Saturn is the Roman god of sowing.”

• Documents as vectors:
– Vector structure:

(Saturn, is, the, gas, planet, with, rings, Jupiter, largest, Roman, god, of, sowing)

– d1 = (0.03, 0, 0, 0.03, 0.03, 0.07, 0.07, 0, 0, 0, 0, 0, 0)

– d2 = (0, 0, 0, 0.03, 0.03, 0, 0, 0.08, 0.08, 0, 0, 0, 0)

– d3 = (0.03, 0, 0, 0, 0, 0, 0, 0, 0, 0.07, 0.07, 0.07, 0.07)

• sim(d1,d2) = 0.13

• sim(d1,d3) = 0.05

• sim(d2,d3) = 0.0

10/18/22 Heiko Paulheim 54

Alternative Document Representations

• Topic Modeling (e.g., Latent Dirichlet Allocation)

– Each document consists of words

– Words have a certain probability to be used in topics

– Each document belongs to one or more topics to a certain degree

https://towardsdatascience.com/latent-dirichlet-allocation-15800c852699

10/18/22 Heiko Paulheim 55

Alternative Document Representations

• Topic Modeling (e.g., Latent Dirichlet Allocation)

– A document is represented by a numerical vector of n topics

https://www.datacamp.com/community/tutorials/lda2vec-topic-model

10/18/22 Heiko Paulheim 56

Alternative Document Representations

• doc2vec

– an extension of word2vec

– each document is projected into a vector space

Dai et al. (2015): Document Embedding with Paragraph Vectors

10/18/22 Heiko Paulheim 57

Alternative Document Representations

• Today, most approaches use BERT and derivatives

– Similar idea to word2vec, but more refined

– Pre-trained models exist for different languages and genres

– See Text Analytics lectures for details

10/18/22 Heiko Paulheim 58

• Given: A collection of labeled documents
(training set)

• Find: A model for the class as a function of the values
of the features.

• Goal: Previously unseen documents should be
assigned a class as accurately as possible.

• Classification methods commonly used for text
– Naive Bayes, SVMs

– Neural Networks

– Random Forests (see Data Mining 2)

Text Mining: Classification Definition

10/18/22 Heiko Paulheim 59

Text Mining: Sentiment Analysis

• A specific classification task

• Given: a text

• Target: a class of sentiments

– e.g., positive, neutral, negative

– e.g., sad, happy, angry, surprised

• Alternative: numerical score (e.g., -5...+5)

• Can be implemented as supervised classification/regression task

– requires training data

– i.e., pairs like <text;sentiment>

10/18/22 Heiko Paulheim 60

Text Mining: Sentiment Analysis

• Labeling data for sentiment analysis

– is expensive

– like every data labeling task

• Example public data sets for labeling: reviews

• e.g., uclassify: trained on 40,000 Amazon reviews, ~80% accuracy

10/18/22 Heiko Paulheim 61

Preprocessing for Sentiment Analysis

• Recap – we started our processing with:
Simple Syntactic Analysis

– Text Cleanup (remove punctuation, HTML tags, …)

– Normalize case

– …

• Suitable for some text processing tasks

• However, reasonable features for sentiment analysis might include

– punctuation: use of “!”, “?”, “?!”

– smileys (usually encoded using punctuation: ;-))

– use of visual markup, where available (red color, bold face, ...)

– amount of capitalization (“screaming”)

10/18/22 Heiko Paulheim 62

Sentiment Analysis for Aspects

• Example product review:

– “The image quality is good, but the zoom sucks.”

• Putting the pieces together:

– POS tagging

– Keyphrase extraction

– Marking sentiment words

S

S S

NP NPVP VP

CC

DET N NN V ADJ VDET N

The image quality is good the zoom sucks.

but

10/18/22 Heiko Paulheim 63

Sentiment Analysis Approaches

• Word lists for classic approaches

– Bing Liu‘s List
http://www.cs.uic.edu/~liub/FBS/
opinion-lexicon-English.rar

– AFINN: A list of ~2.5k sentiment
conveying words with scores

• Python package afinn

• afinn.score(“Interesting lecture”) → 2.0

• afinn.score(“Boring lecture”) → –0.3

• Encoders for modern approaches

– e.g., BERT, fine-tuned on movie reviews

https://towardsdatascience.com/sentiment-analysis-in-10-minutes-with-bert-and-
hugging-face-294e8a04b671

10/18/22 Heiko Paulheim 64

Text Classification: Identifying Fake Reviews

• Useful features (besides text):

– length of review

– use of positive sentiment words (e.g., SentiWordNet)

– …

• However, text classification alone only yields a low accuracy

Other ways to go:

– include other reviews of the same reviewer, find typical patterns

– review frequency

– typical rating behavior

– similarity of product description and review

– ...

10/18/22 Heiko Paulheim 65

Query Completion Revisited

10/18/22 Heiko Paulheim 66

Query Completion Revisited

• How to refine a query?

– Terms that frequently co-occur with the terms entered
(corpus: documents)

– Terms that are frequently searched together with the terms entered
(corpus: query logs)

• Given some terms entered: t1, t2

– look for t3 so that t1, t2, t3 is a frequent pattern

• Approach: use a corpus of texts

– represent them as binary vectors

– look for frequent patterns (see next lecture)

10/18/22 Heiko Paulheim 67

Auto-complete Revisited

• Method: sequential pattern mining

– find frequent sequences that start with
a given root

– see lecture Data Mining II

10/18/22 Heiko Paulheim 68

Auto-complete Revisited

• Google hosts a corpus of frequent patterns

• mined from Google books

• see http://books.google.com/ngrams/

http://books.google.com/ngrams/

10/18/22 Heiko Paulheim 69

Autocomplete 2022

• Modern models like GPT-3
use complex neural network architectures

• They are also usable as Q&A systems

– Recent hype topic: prompt engineering

10/18/22 Heiko Paulheim 70

Issues with GPT-3

• Every model (neural or non-neural) uses training data

– ...and replicates stereotypes, biases etc. in that training data

10/18/22 Heiko Paulheim 71

Processing Text from Social Media

• An interesting source of knowledge

– e.g., market research

– e.g., opinion mining

• However, challenging to process
with standard methods

• Example (a real tweet):

– “ikr smh he asked fir yo last name
so he can add u on fb lololol”

10/18/22 Heiko Paulheim 72

Processing Text from Social Media

• Respect special characters

– e.g., hashtags and user mentions

– may be treated separately

• Normalizing

– unfolding abbreviations (“2moro” → “tomorrow”)

– replacing slang words with standard English

– spelling corrections

10/18/22 Heiko Paulheim 73

Processing Text from Social Media

• POS Tagging

– the POS tagger by Charniak was trained on news texts

– will work very poorly on social media data

– there are specialized POS taggers trained, e.g., on Twitter data

• Named Entity Recognition

– often relies on capitalized words

• “The document was signed by the US congress.”

• The document was signed by us.”

– there are particular NER tools for social media

10/18/22 Heiko Paulheim 74

Summary

• Main task: Preprocessing of text in order be able to apply classic
known Data Mining algorithms

• There are lots of alternative preprocessing techniques
• Mind the task!

• Text Mining is tricky, but “ok”-ish results are easily achieved

• Modern neural approaches have brought massive improvements
– But for many tasks, plain TF-IDF can be a strong baseline!

• If you want to hear more

– visit lectures on Text Analytics and
Web Search and Information Retrieval (Ponzetto, Strohmaier &
colleagues)

10/18/22 Heiko Paulheim 75

Questions?

	Folie 1
	Outline
	Folie 3
	Folie 4
	Folie 5
	Search Versus Discovery
	PowerPoint-Präsentation
	Folie 8
	Folie 9
	Mixture of Document Clustering and Classification
	Folie 11
	Folie 12
	The Text Mining Process
	Folie 14
	Syntactic / Linguistic Text Analysis
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Stopwords Removal
	More Examples of Stopwords
	Folie 24
	Folie 25
	Stemming
	Folie 27
	Some Basic Stemming Rules
	Folie 29
	Text Preprocessing in Python
	Folie 31
	Term-Document Matrix
	Feature Generation
	The TF-IDF Term Weighting Scheme
	Folie 35
	Folie 36
	Pruning Document Vectors in RapidMiner
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	5.1 Text Mining: Clustering Definition
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Jaccard Coefficient
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	5.2 Text Mining: Classification Definition
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Questions?

