UNIVERSITÄT MANNHEIM

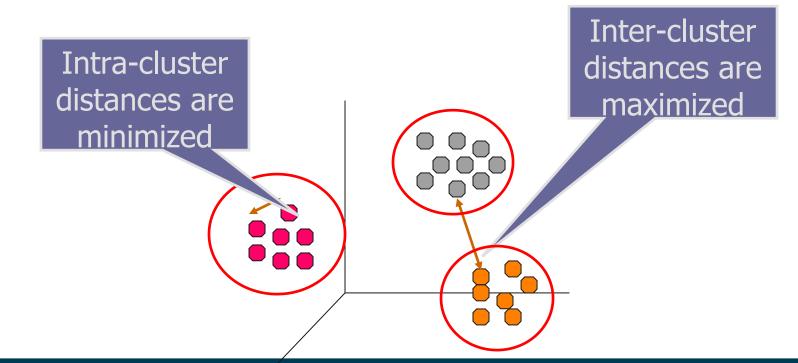
Heiko Paulheim

Outline

- 1. What is Cluster Analysis?
- 2. Applications for Clustering
- 3. k-Means Clustering
- 4. Hierarchical Clustering
- 5. Density-based Clustering
- 6. Proximity Measures

What is Cluster Analysis?

- Finding groups of objects such that
 - the objects in a group will be similar to one another
 - and different from the objects in other groups.
- Goal: Get a better understanding of the data.



Cluster Analysis as Unsupervised Learning

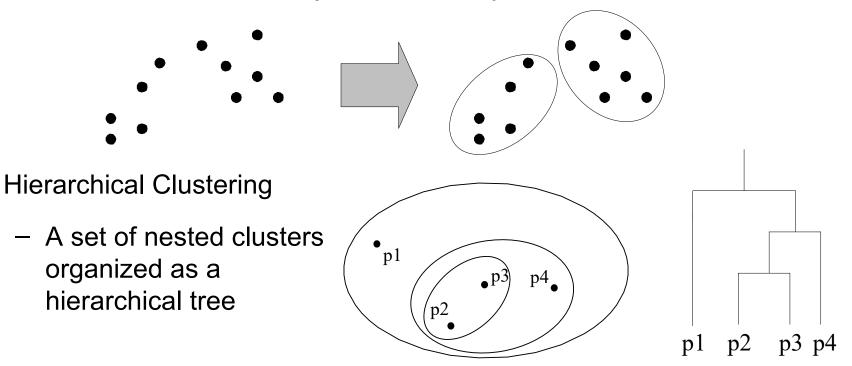
- Supervised learning: Discover patterns in the data that relate data attributes with a target (class) attribute
 - The set of classes <u>is known</u> before
 - Class attributes are usually provided by human annotators
 - Patterns are used for prediction of the target attribute for new data
- Unsupervised learning: The data has no target attribute
 - We want to explore the data to find some intrinsic structures in it
 - The set of classes/clusters is not known before
 - Cluster Analysis and Association Rule Mining are unsupervised learning tasks

Types of Clusterings

• Partitional Clustering

•

 A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset



Aspects of Cluster Analysis

- Clustering algorithm
 - Partitional Algorithms
 - Hierarchical Algorithms
 - Density-based Algorithms

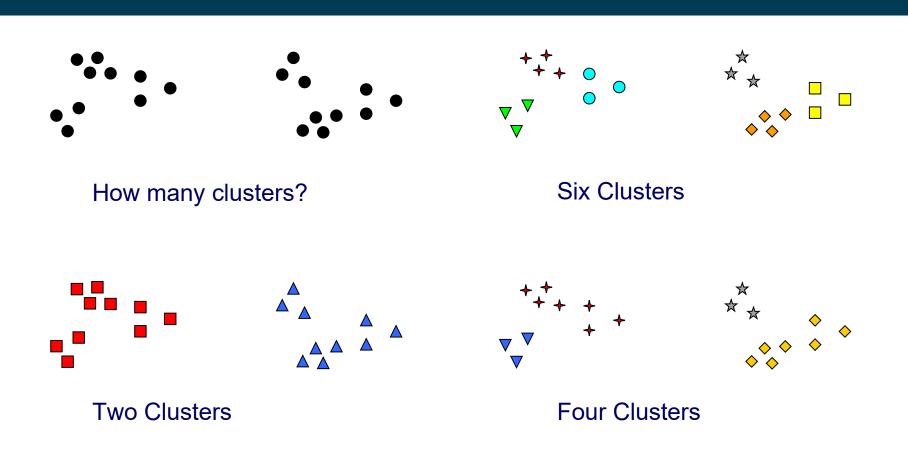
- ...

- Proximity (similarity, or dissimilarity) measure
 - Euclidean Distance
 - Cosine Similarity
 - Domain-specific Similarity Measures

- ...

- Clustering Quality
 - Intra-clusters distance \Rightarrow minimized
 - Inter-clusters distance \Rightarrow maximized

Notion of a Cluster can be Ambiguous



The usefulness of a clustering depends on the goals of the analysis!

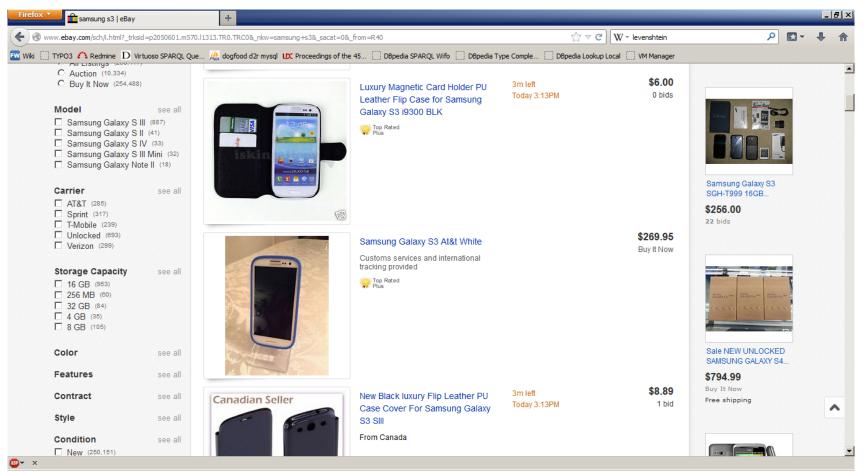
9/13/23 Heiko Paulheim

Applications: Market Research

• Identify different groups of customers

Application: Product Grouping

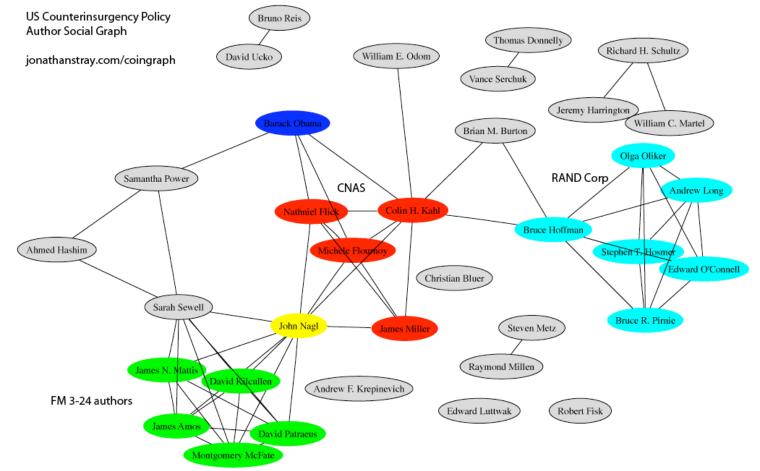
• Identify offers of same (or similar) products, e.g., on ebay



Heiko Paulheim

Applications: Social Network Analysis

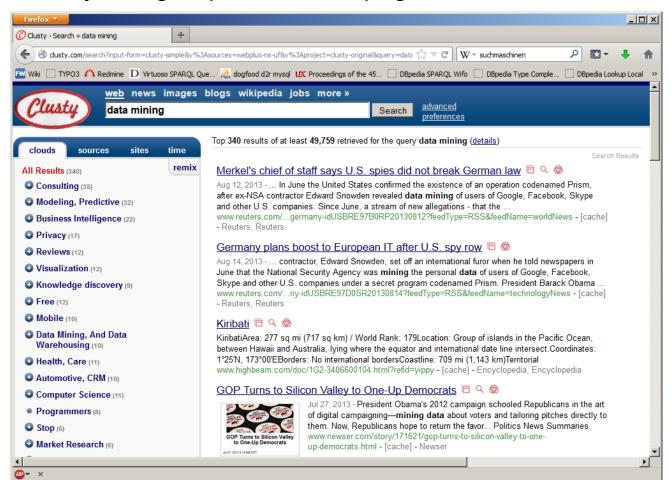
• Identifying communities of people, e.g., with similar interests



9/13/23 Heiko Paulheim

Applications: Grouping Search Engine Results

• Automatically find groups of related pages in the result set



Applications: Image Recognition

• Identify portions of an image that belong to the same object



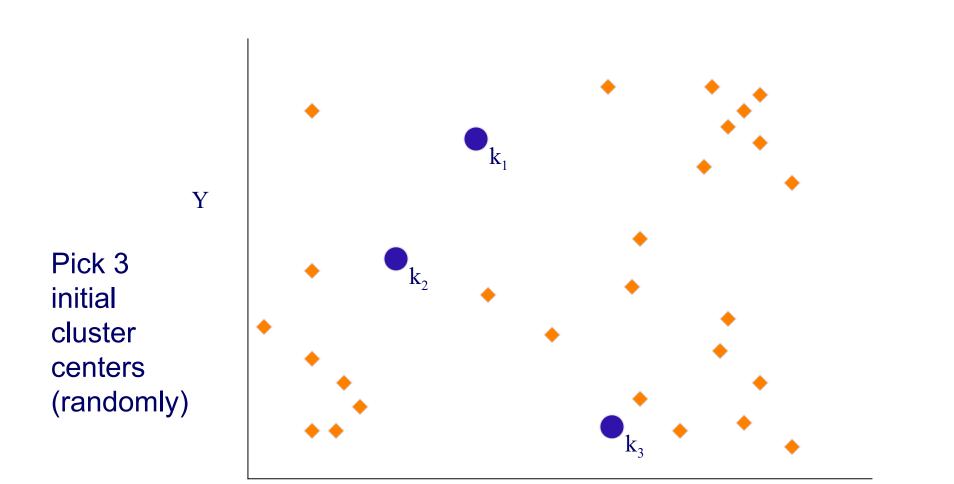
9/13/23

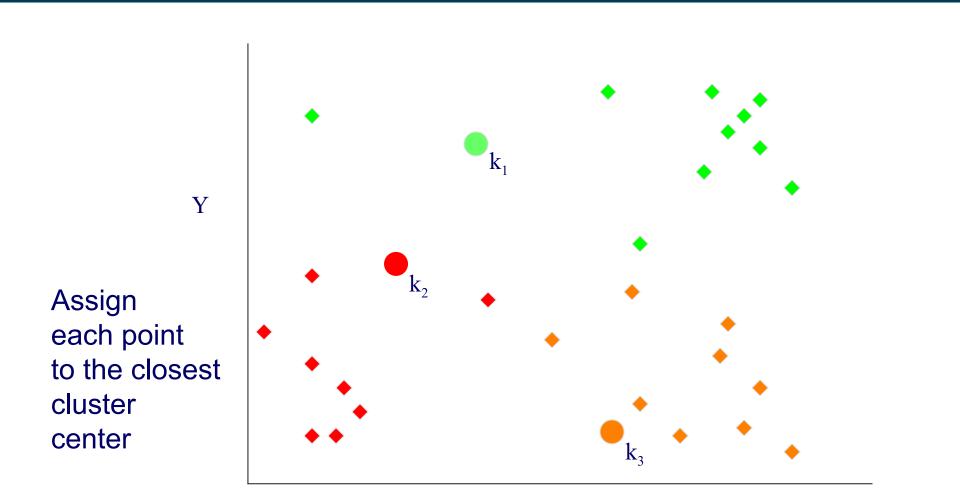
K-Means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified manually

K-Means Clustering

- Basic Algorithm:
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change



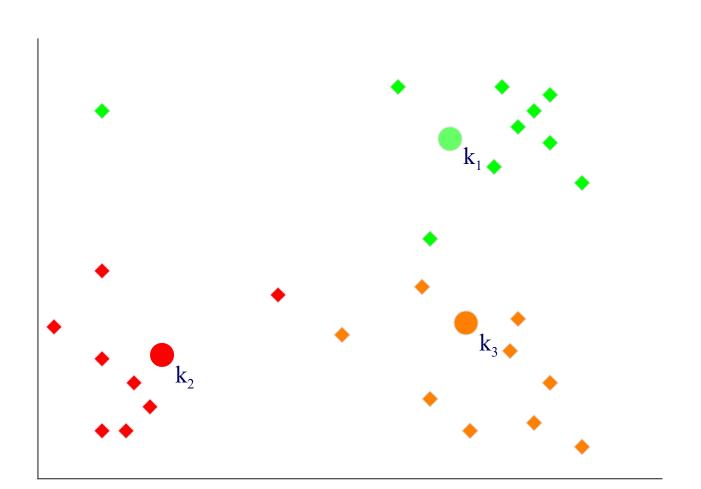


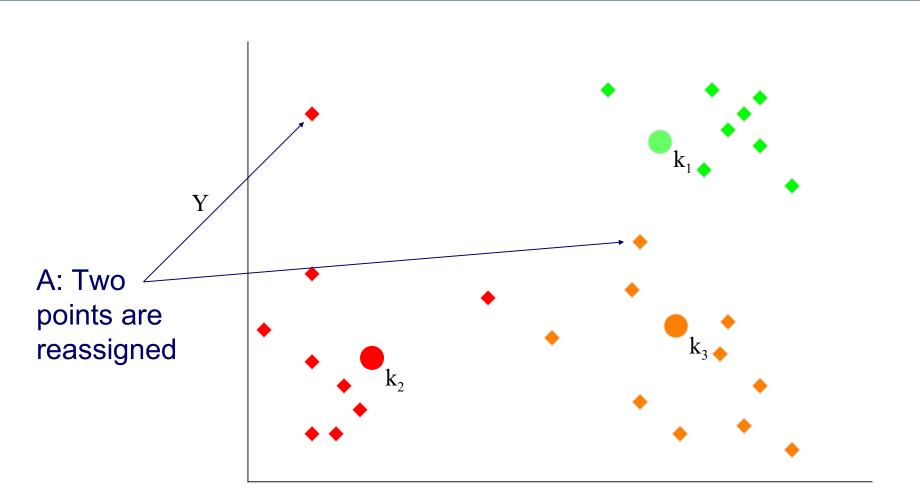
 \mathbf{k}_1 Y Move \mathbf{k}_2 each cluster center k₃ \mathbf{k}_2 to the mean of each cluster k,

K-Means Example, Step 4 ...

Reassign points Y closest to a different new cluster center

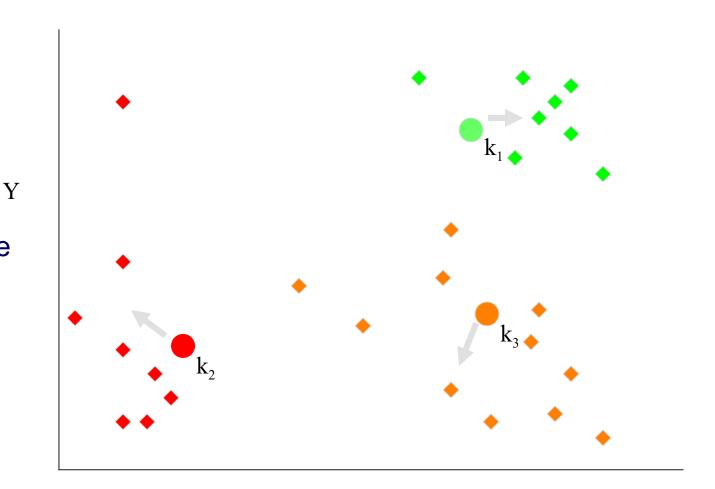
Q: Which points are reassigned?

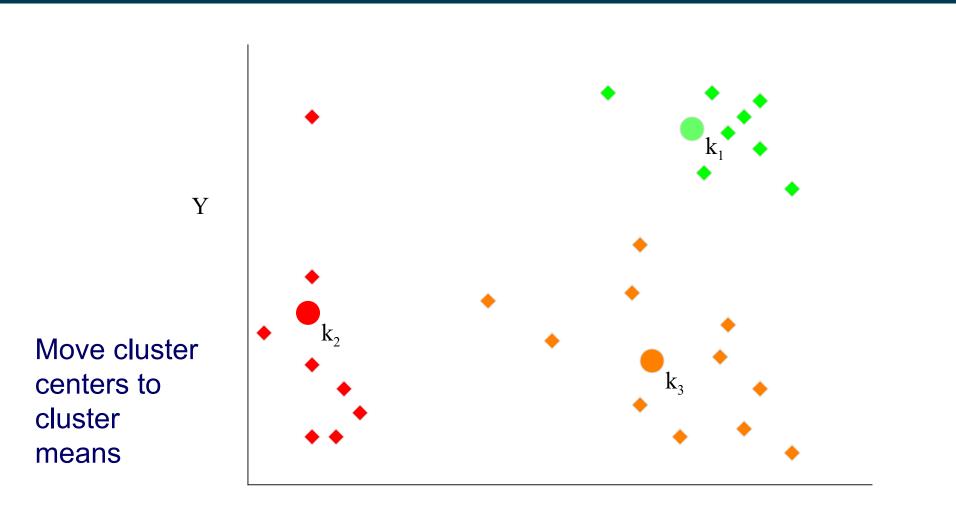




9/13/23 Heiko Paulheim

Re-compute cluster means





9/13/23 Heiko Paulheim

Alternative Convergence Criteria

- no (or minimum) re-assignments of data points to different clusters
- no (or minimum) change of centroids, or
- minimum decrease in the sum of squared errors (SSE)
 - see next slide
- Stop after X iterations

Evaluating K-Means Clusterings

- The most common cohesion measure is the Sum of Squared Errors (SSE)
 - For each point, the error is the distance to the nearest centroid
 - To get SSE, we square these errors and sum them.

$$SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2$$

- C_j is the j-th cluster
- m_j is the centroid of cluster C_j (the mean vector of all the data points in C_j)
- dist(x, m_j) is the distance between data point x and centroid m_j
- Given several clusterings (and a fixed k), we should prefer the one with the smallest SSE

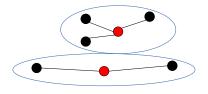
Illustration: Sum of Squared Errors

• Clustering problem given:

- Good solution:
 - i.e., small distances to centroid

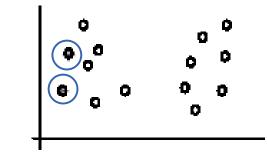


- Not so good solution:
 - i.e., larger distances to centroid

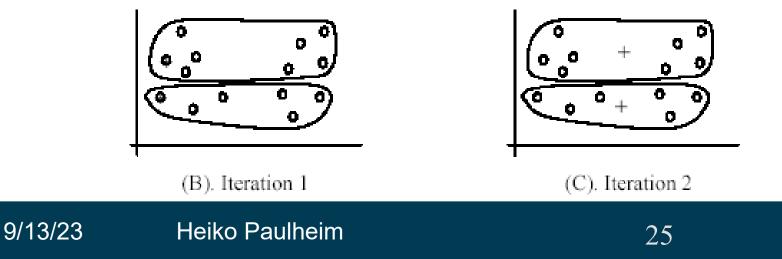


Weaknesses of K-Means: Initial Seeds

• Results can vary significantly depending on initial choice of seeds (number and position)



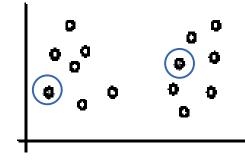
(A). Random selection of seeds (centroids)



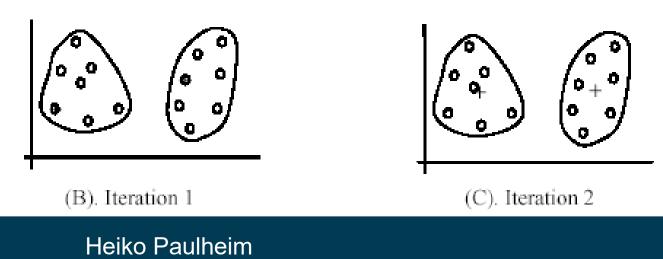
Weaknesses of K-Means: Initial Seeds

• If we use different seeds, we get good results.

9/13/23

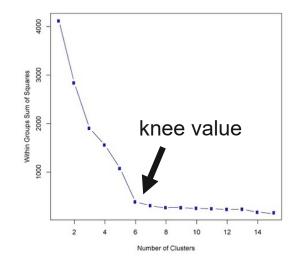


(A). Random selection of k seeds (centroids)



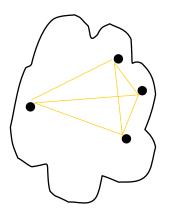
Improving the Clustering Results

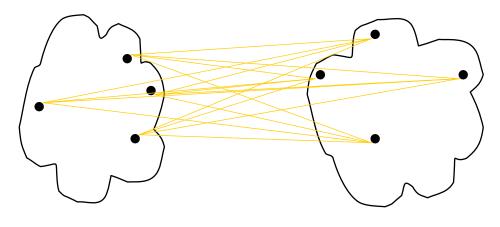
- Restart a number of times with different random seeds (but fixed k)
 - chose the resulting clustering with the smallest sum of squared error (SSE)
- Run k-means with different values of k
 - The SSE for different values of k cannot directly be compared
 - think: what happens for $k \rightarrow$ number of examples?
 - Workarounds
 - Choose k where SSE improvement decreases (knee value of k)
 - Employ X-Means
 - variation of K-Means algorithm that automatically determines k
 - starts with small k, then splits large clusters until improvement decreases



Choosing k – Cluster Evaluation

- Recap: we want to maximize
 - Cohesion: measures how closely related are objects in a cluster
 - Separation: measure how distinct or well-separated a cluster is from other clusters





cohesion

separation

Silhouette Coefficient

- Cohesion a(x): average distance of x to all other vectors in the same cluster.
- Separation b(x): average distance of x to the vectors in other clusters. Find the minimum among the clusters.
- Silhouette s(x):

$$s(x) = \frac{b(x) - a(x)}{\max\{a(x), b(x)\}}$$

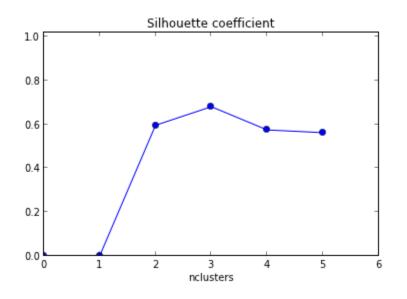
- *s*(*x*) = [-1, +1]: -1=bad, 0=indifferent, 1=good
- Silhouette coefficient (SC):

$$SC = \frac{1}{N} \sum_{i=1}^{N} s(x_i)$$

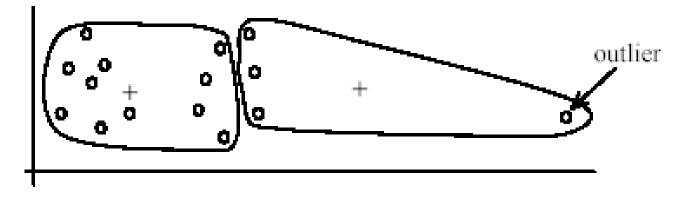
9/13/23 Heiko Paulheim

Selecting k Using the Silhouette Coefficient

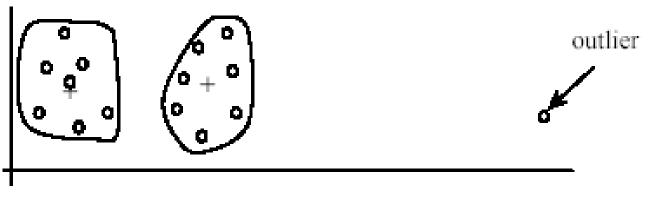
- Approach
 - Run k-means with different k values
 - Plot the Silhouette Coefficient
 - Pick the best (i.e., highest) silhouette coefficient
 - Note: silhouette coefficient does not depend on no. of clusters



Weaknesses of K-Means: Outlier Handling



(A): Undesirable clusters



(B): Ideal clusters

Weaknesses of K-Means: Outlier Handling

- Possible remedy:
 - remove data points far away from centroids
 - to be safe: monitor these possible outliers over a few iterations and then decide to remove them
- Other remedy: random sampling
 - choose a small subset of the data points
 - the chance of selecting an outlier is very small if the data set is large enough
 - after determining the centroids based on samples, assign the rest of the data points
 - also a method for improving runtime performance!

K-Medoids

- K-Medoids is a K-Means variation that uses the medians of each cluster instead of the mean
- Medoids are the most central existing data points in each cluster
- K-Medoids is more robust against outliers as the median is not affected by extreme values:
 - Mean and Median of 1, 3, 5, 7, 9 is 5
 - Mean of 1, 3, 5, 7, 1009 is 205
 - Median of 1, 3, 5, 7, 1009 is 5

K-Means Clustering Summary

Advantages

- Simple, understandable
- Efficient time complexity: O(t*k*n)
 - n: number of data points
 - k: number of clusters
 - t: number of iterations

Disadvantages

- Must pick number of clusters before hand
- All items are forced into a cluster
- Sensitive to outliers
- Sensitve to initial seeds

K-Means Clustering in Python

Python

```
# import KMeans
from sklearn.cluster import KMeans
```

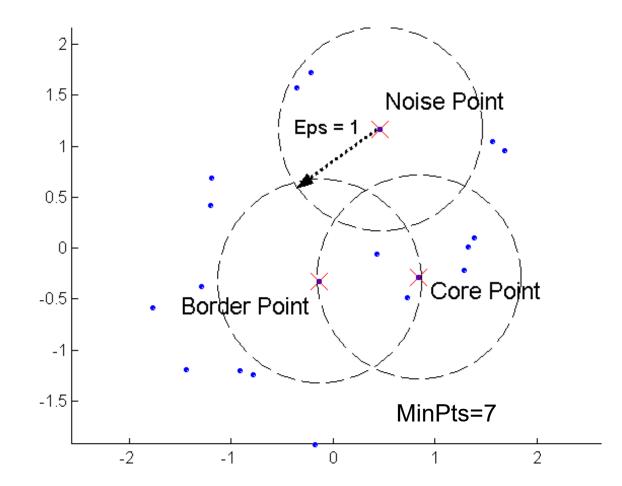
```
# create clusterer
estimator = KMeans(n_clusters = 3)
```

```
# create clustering
cluster_ids = estimator.fit_predict(dataset[['Att1', 'Att2']])
```

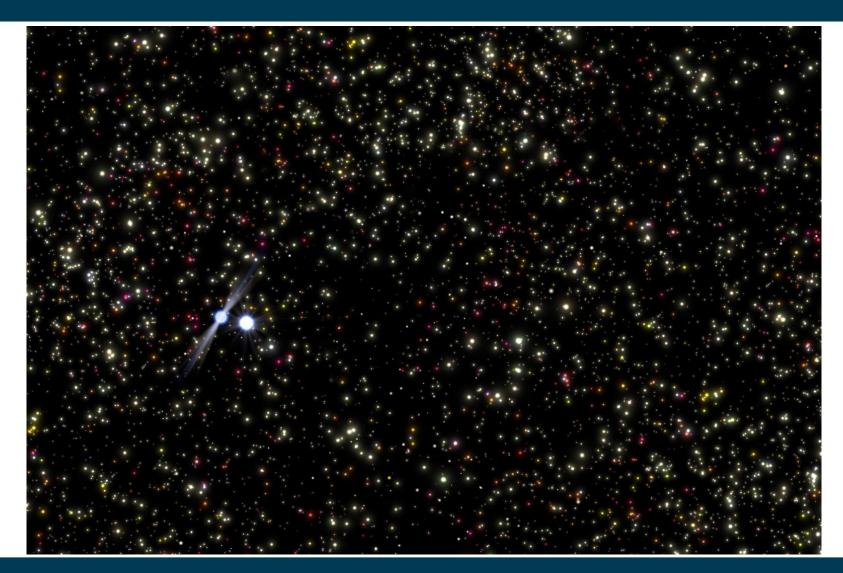
DBSCAN

- DBSCAN is a density-based algorithm
 - Density = number of points within a specified radius (Eps)
- Divides data points in three classes:
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps, including the point itself
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point
 - like a cluster named "other" or "misc."

DBSCAN: Core, Border, and Noise Points



DBSCAN: Illustrative Example



DBSCAN Algorithm

- Eliminate noise points
- Perform clustering on the remaining points

 $current_cluster_label \gets 1$

for all core points \mathbf{do}

 \mathbf{if} the core point has no cluster label \mathbf{then}

 $current_cluster_label \gets current_cluster_label + 1$

perform recursion for all points in the Eps-neighborhood of the point

Label the current core point with cluster label curre_____cluster__label

end if

for all points in the Eps-neighborhood, except i^{th} the point itself do

 ${\bf if}$ the point does not have a cluster label ${\bf then}$

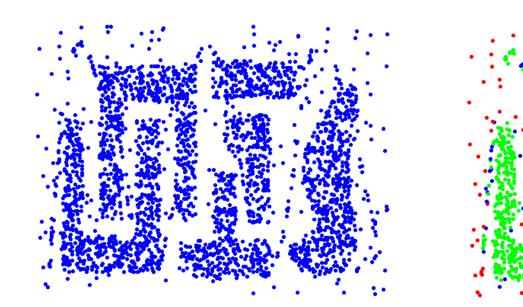
Label the point with cluster label *current_cluster_label*

end if

end for

end for

DBSCAN: Core, Border and Noise Points



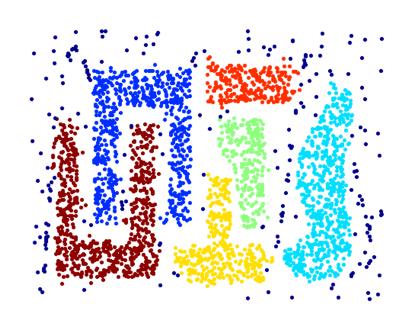
Original Points

Point types: core, border and noise

$$Eps = 10$$
, $MinPts = 4$

When **DBSCAN** Works Well

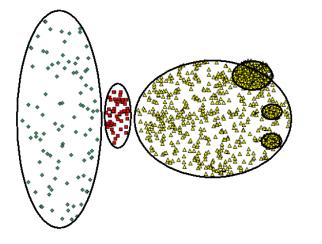




Original Points

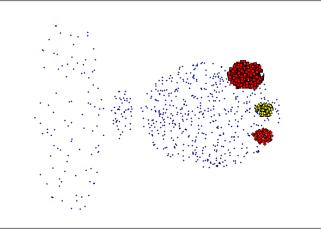
- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well



Original Points

(MinPts=4, Eps=9.92)

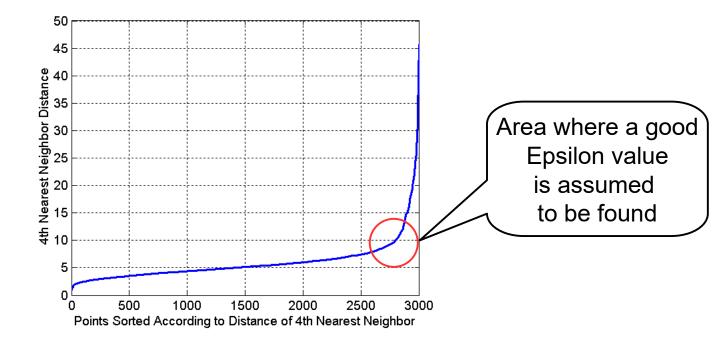


(MinPts=4, Eps=9.75)

- Varying densities
- High-dimensional data

DBSCAN: Determining EPS and MinPts

- Idea: for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- Plot sorted distance of every point to its kth nearest neighbor

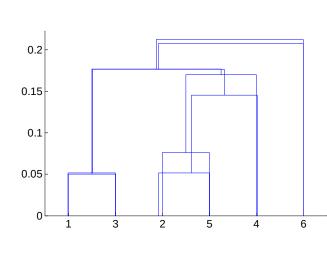


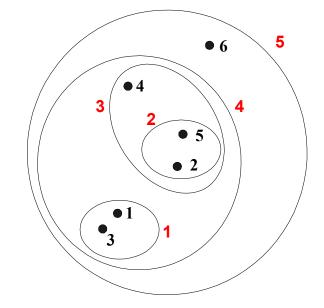
DBScan in Python

```
# import DBSCAN
from sklearn.cluster import DBSCAN
# create the clusterer
clusterer = DBSCAN(min_samples=3, eps=1.5, metric='euclidean')
# create the clusters
clusters = clusterer.fit_predict(dataset[['Att1', 'Att2']])
```

Hierarchical Clustering

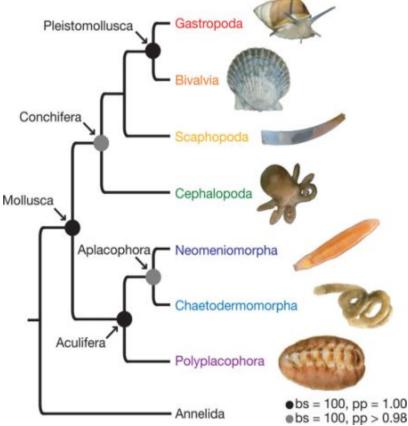
- Produces a set of nested clusters organized as a hierarchical tree.
- Can be visualized as a Dendrogram
 - A tree like diagram that records the sequences of merges or splits.
 - The y-axis displays the former distance between merged clusters.





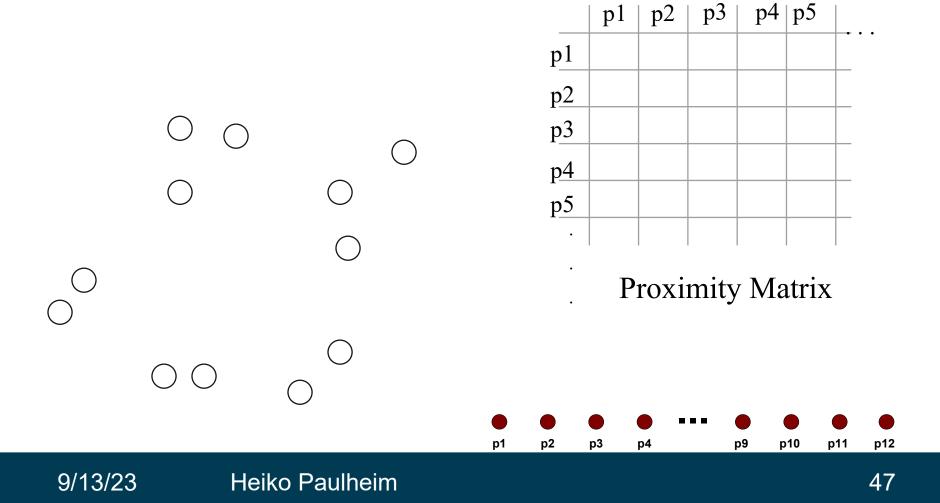
Strengths of Hierarchical Clustering

- We do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- May be used to look for meaningful taxonomies
 - taxonomies in life sciences
 - taxonomy of customer groups



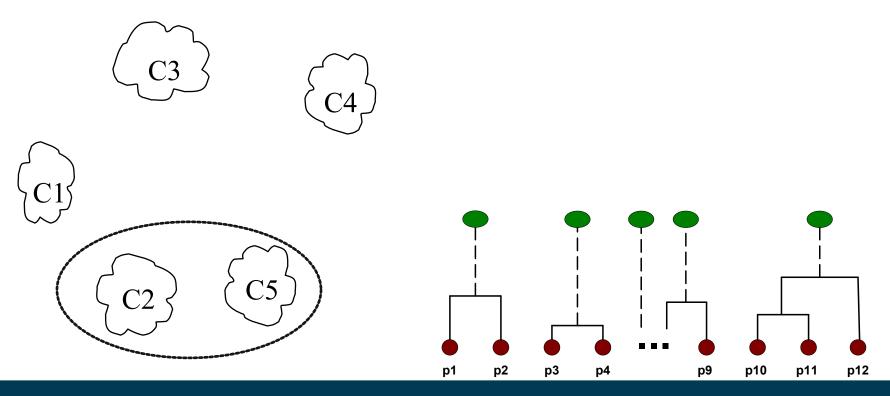
Starting Situation

• Start with clusters of individual points and a proximity matrix

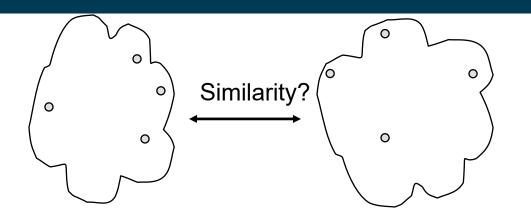


Intermediate Situation

- After some merging steps, we have a number of clusters
- We want to keep on merging the two closest clusters (C2 and C5?)



How to Define Inter-Cluster Similarity?



Possible approaches:

- Single Link (MIN)
- Complete Link (MAX)
- Group Average
- Distance Between Centroids

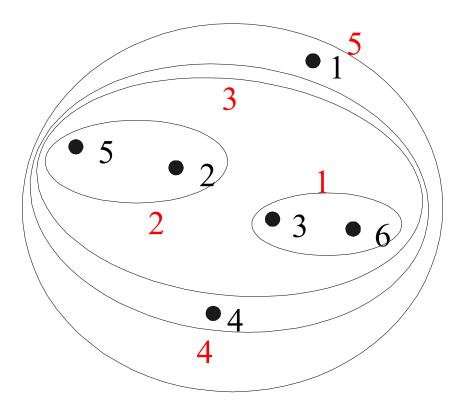
Cluster Similarity: Single Link

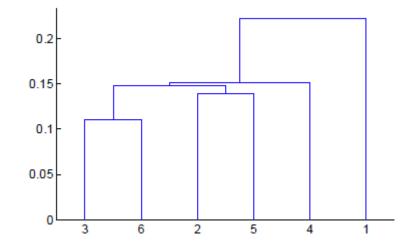


- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - i.e., there is only one single link between the two clusters with this distance

(all others have a higher distance)

Example: Single Link

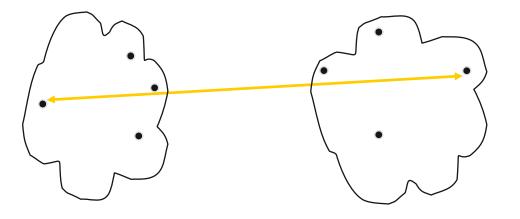




Nested Clusters

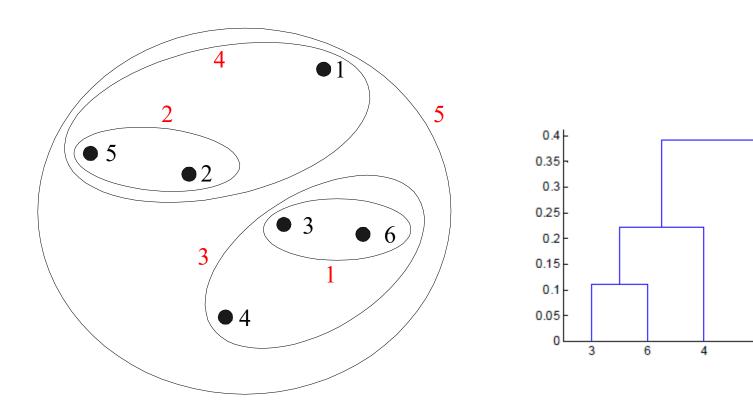
Dendrogram

Cluster Similarity: Complete Linkage



- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
- For each pair of points in the two clusters, the distance is an upper bound
 - i.e., the linkage with that distance is *complete* with respect to all data points

Example: Complete Linkage



Dendrogram

Nested Clusters

5

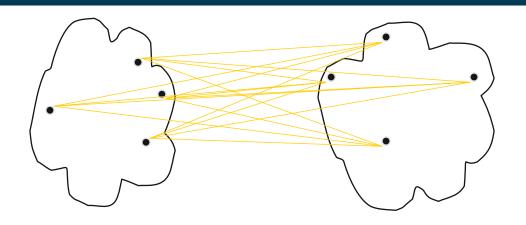
2

1

Single Link vs. Complete Linkage

- Single Link:
 - Pro: Can handle non-elliptic shapes
 - Con: Sensitive to outliers
- Complete Linkage:
 - Pro: Less sensitive to noise and outliers
 - Con: biased towards globular clusters
 - Con: tends to break large clusters

Cluster Similarity: Group Average

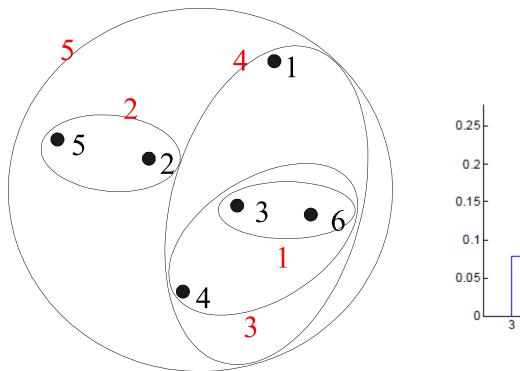


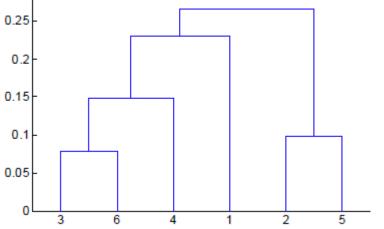
• Proximity of two clusters is the average of pair-wise proximity between points in the two clusters.

proximity(Cluster_i,Cluster_j) =
$$\frac{\sum_{\substack{p_i \in Cluster_i \\ p_j \in Cluster_j}} \sum_{\substack{p_i \in Cluster_i \\ p_i \in Cluster_i \\ p_i \in Cluster_i } \sum_{\substack{p_i \in Cluster_i \\ p_i \in Cluster_i } \sum_{\substack{p_i \in Cluster_i \\ p_i \in Cluster_i \\ p_i \in Cluster_i } \sum_{\substack{p_i \in Cluster_i \\ p_i \in Cluster_i } \sum_{\substack{p_i \in Cluster_i \\ p_i \in Cluster_i } \sum_{$$

 Need to use average connectivity for scalability since total proximity favors large clusters

Example: Group Average





Nested Clusters

Dendrogram

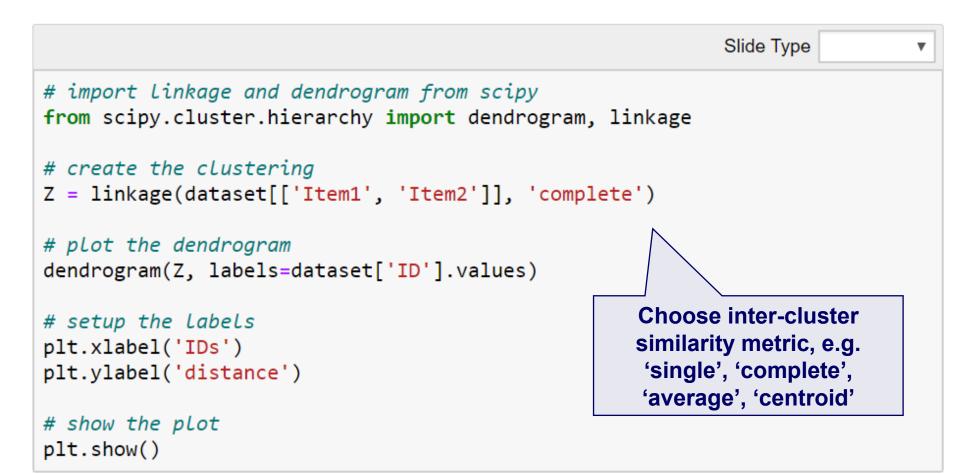
Hierarchical Clustering: Group Average

- Compromise between Single and Complete Link
- Strengths
 - Less susceptible to noise and outliers
- Limitations
 - Biased towards globular clusters

Hierarchical Clustering: Problems & Limitations

- Greedy algorithm:
 - decision taken (i.e., merge two clusters) cannot be undone
- Different variants have problems with one or more of the following
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters
- High Space and Time Complexity
 - O(N²) space since it uses the proximity matrix (N: number of data points)
 - O(N³) time in many cases
 - N steps procesing the similarity matrix (N²)
 - Complexity can be reduced to O(N log(N)) time for some approaches

Agglomerative Clustering in Python



Proximity Measures

- So far, we have seen different clustering algorithms
 - all of which rely on distance (proximity, similarity, ...) measures
- Similarity
 - Numerical measure of how alike two data objects are (higher: more alike)
 - Often falls in the range [0,1]
- Dissimilarity (or distance)
 - Numerical measure of how different are two data objects (higher: less alike)
 - Minimum dissimilarity is often 0
 - Upper limit varies
- A wide range of different measures is used depending on the requirements of the application

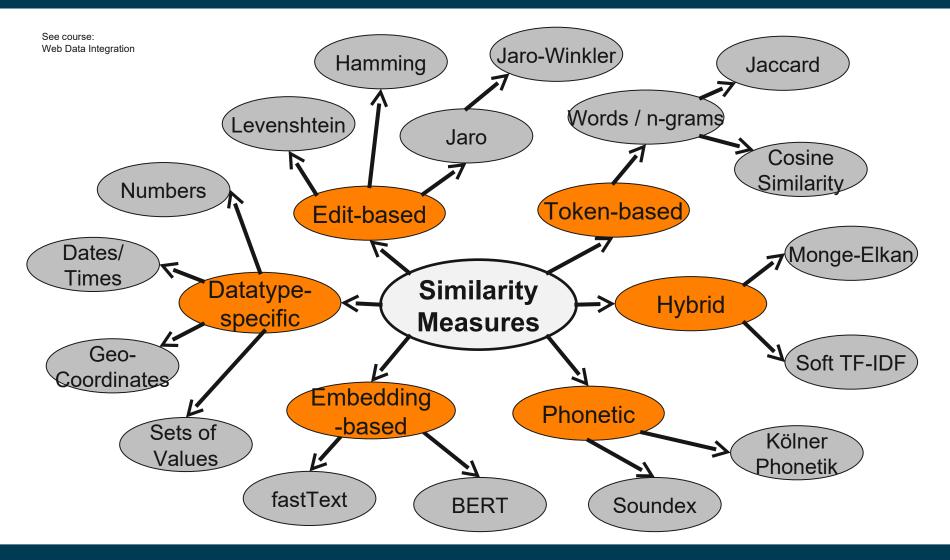
Proximity of Single Attributes

Attribute	Dissimilarity	Similarity
Туре		
Nominal	$egin{array}{cccc} d = \left\{ egin{array}{cccc} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$egin{array}{cccc} s = \left\{ egin{array}{cccc} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p - q	$s = -d, \ s = \frac{1}{1+d}$ or
		$\begin{vmatrix} s = -d, s = \frac{1}{1+d} \text{ or} \\ s = 1 - \frac{d - min_d}{max_d - min_d} \end{vmatrix}$

Similarity and dissimilarity for simple attributes

p and q are the attribute values for two data objects

Similarity Functions: an Overview



Proximity of Data Points

- All those measures cover the proximity of single attribute values
- But we usually have data points with many attributes
 - e.g., age, height, weight, sex...
- Thus, we need proximity measures for data points

Euclidean Distance

• Definition:

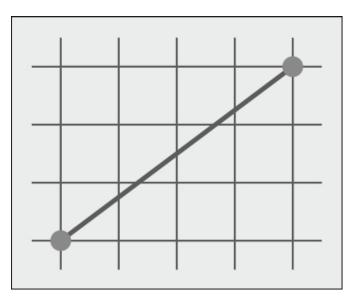
$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

- Where n is the number of dimensions (attributes) and p_k and q_k are the kth attributes of data objects p and q.
- More generally: L_p norm:

$$dist = \left(\sum_{k=1}^{n} (p_k - q_k)^p\right)^{\frac{1}{p}}$$

L₁ vs. L₂ Norm

- L₁ norm: also called Manhattan distance
 - minimum distance to go from one crossing to another
 - in a squared city (like Manhattan)
- L₂ norm: Euclidean Distance
- Example:
 - $L_1 = 7$
 - $L_2 = 5$



Caution: Pitfalls!

- Let us try to cluster the German federal states
- We have to determine the (semantic) distance, e.g., between
 - Baden-Württemberg
 - population = 10,569,111
 - area = 35,751.65 km²
 - Bavaria
 - population = 12,519,571
 - area = 70,549.44 km²
- Euclidean = $\sqrt{(10,569,111-12,591,571)^2 + (35,751.65-70,549.44)^2}$

9/13/23

Heiko Paulheim

Caution: Pitfalls!

- Let us try to cluster the German federal states
- We have to determine the distance, e.g., between
 - Baden-Württemberg
 - population = 10,569,111
 - area = 35,751,650,000 m²
 - Bavaria
 - population = 12,519,571
 - area = 70,549,440,000 m²
- Euclidean =

 $\sqrt{(10,569,111-12,591,571)^2 + (35,751,650,000-70,549,440,000)^2}$

 $=\sqrt{4.090.344.451.600}$ (1.210.886.188.884.100.000.000)

Caution: Pitfalls!

- We are easily comparing apples and oranges
 - and changing units of measurement changes the clustering result!
 - imagine: the same dataset processed in Europe (metric units) and the US (imperial units)
- Recommendation:
 - use *normalization* before clustering
 - generally: for all data mining algorithms involving *distances*

Normalization in Python

Python # import min-max scaler from sklearn import preprocessing.MinMaxScaler() # create scaler scaler = MinMaxScaler() # normalize the relevant attributes dataset[['Att1', 'Att2']] = scaler.fit_transform(dataset[['Att1', 'Att2']])

Similarity of Binary Attributes

- Common situation is that objects, p and q, have only binary attributes
 - e.g., customer bought an item (yes/no)
- Compute similarities using the following quantities
 - M01 = the number of attributes where p was 0 and q was 1
 - M10 = the number of attributes where p was 1 and q was 0
 - M00 = the number of attributes where p was 0 and q was 0
 - M11 = the number of attributes where p was 1 and q was 1

Symmetric Binary Attributes

- A binary attribute is symmetric if both of its states (0 and 1) have equal importance, and carry the same weights, e.g., male and female of the attribute Gender
- Similarity measure: Simple Matching Coefficient

$$SMC(x_i, x_j) = \frac{M_{11} + M_{00}}{M_{01} + M_{10} + M_{11} + M_{00}}$$

Number of matches / number of all attributes values

Asymmetric Binary Attributes

- Asymmetric: If one of the states is more important or more valuable than the other.
 - By convention, state 1 represents the more important state.
 - 1 is typically the rare or infrequent state.
 - Example: Shopping Basket, Word/Document Vector
- Similarity measure: Jaccard Coefficient

$$J(x_i, x_j) = \frac{M_{11}}{M_{01} + M_{10} + M_{11}}$$

Number of 11 matches / number of not-both-zero attributes values

SMC versus Jaccard: Example

 $M_{01} = 2$ (the number of attributes where p was 0 and q was 1) $M_{10} = 1$ (the number of attributes where p was 1 and q was 0) $M_{00} = 7$ (the number of attributes where p was 0 and q was 0) $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

SMC = $(M_{11}+M_{00})/(M_{01}+M_{10}+M_{11}+M_{00}) = (0+7)/(2+1+0+7) = 0.7$ J = $(M_{11}) / (M_{01}+M_{10}+M_{11}) = 0/(2+1+0) = 0$

> J: same items bought \rightarrow similar customers SMC: same items *not* bought \rightarrow similar customers

SMC vs. Jaccard

- Which of the two measures would you use
 - ...for a dating agency?
 - hobbies
 - favorite bands
 - favorite movies
 - ...
 - ...for the Wahl-O-Mat
 - (dis-)agreement with political statements
 - recommendation for voting

Take Home Messages

- Clustering groups similar objects
 - for analyzing the data at hand
- We know partitional and hierarchical clustering
- All clustering methods rely on distances
 - there are different distance functions
 - normalization is essential

Questions?

