Classification 2 IE500 Data Mining

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024

Outline

- Decision Trees
- Overfitting
- Evaluation Metrics
- Naïve Bayes
- Support Vector Machines
- Artificial Neural Networks
- Evaluation Methods
- Hyperparameter Selection

Naïve Bayes

- Probabilistic classification technique based on Bayes theorem
 - successful, old-school method for various tasks: NLP, recommendation, ...
- Goal: Estimate the most probable class label for a given record
- Probabilistic formulation of the classification task:
 - consider each attribute and class label as random variables
 - given a record with attributes $(A_1, A_2, ..., A_n)$ the goal is to find the class C that maximizes the conditional probability $P(C | A_1, A_2, ..., A_n)$
- Example: Should we play golf?
 - P(Play=yes | Outlook=rainy, Temperature=cool)
 - P(Play=no | Outlook=rainy, Temperature=cool)
- Question: How to estimate these probabilities given training data?

Bayes Classifier

- Thomas Bayes (1701-1761)
 - British mathematician and priest
 - tried to formally prove the existence of God
- Bayes Theorem
 - important theorem in probability theory
 - was only published after Bayes' death

Bayes Classifier

- Question:
 - How likely is class C, given that we observe attributes A
 - This is called a conditional probability, denoted P(C|A)
 - e.g.: Given some attributes A, what is the likelihood of a certain class C?
- Bayes Theorem

$$P(C|A) = \frac{P(A|C) P(C)}{P(A)}$$

- Computes one conditional probability P(C|A) out of another P(A|C)
- given that the base probabilities P(A) and P(C) are known
- Useful in situations where P(C|A) is unknown
 - while P(A|C), P(A) and P(C) are known or easy to determine/estimate?

Bayes Classifier

• **Prior probability** of class C:

- probability of class C before attributes are seen
- we play golf in 70% of all cases -> P(C) = 0.7
- **Posterior probability** of class C:
 - probability of class C after attributes A is seen
 - evidence: It is windy and raining -> P(C|A) = 0.2

Estimating the Prior Probability P(C)

- The prior probability $P(C_j)$ for each class is estimated by
 - counting the records in the training set that are labeled with class $P(C_j)$
 - dividing the count by the overall number of records
- Example:
 - P(Play=no) = 5/14
 - P(Play=yes) = 9/14

Outlook	Тетр	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Training Data

Estimating the Class-Conditional Probability P(A|C)

- Naïve Bayes assumes that all attributes are **statistically independent**
 - knowing the value of one attribute says nothing about the value of another
 - this independence assumption is almost never correct!
 - but ... this scheme works well in practice
- The **independence assumption** allows the joint probability P(A|C) to be reformulated as the product of the individual probabilities $P(A_i|C_j)$

$$P(A_1, A_2, \dots, A_n | C_j) = P(A_1 | C_j) * P(A_2 | C_j) * \dots * P(A_3 | C_j) = \prod_{i=1}^{n} P(A_i | C_j)$$

P(Outlook=rainy, Temperature=cool | Play=yes) = P(Outlook = rainy |Play = yes) * P(Temperature=cool|Play = yes)

• Result: The probabilities $P(A_i|C_j)$ for all A_i and C_j can be estimated directly from the training data

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024

Estimating the Probabilities $P(A_i|C_j)$

Ou	tlook		Temper	ature		Hun	nidity			,	w	indy		Pl	ау
	Yes	No		Yes	No		Yes	No				Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	Fals	e		6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	Tru	5		3	3		
Rainy	3	2	Cool	3	1										
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/	5 Fal	е		6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/	5 Tru	5		3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5										
Ranny	575	2/5		575	1/5				Outlook	Te	emp) ⊢	lumidity	Windy	Play
The probabilities $\mathcal{D}(A \mid C)$ are estimated by									Sunny	inny Ho		H	ligh	False	No
•	ine pr	ODADI	inties P	$(A_i C_j$) are e	stimated b	У		Sunny	nny Hot		High		True	No
	— Со	unt ho	ow often	an att	ribute v	alue co-occ	urs wit	th 🛛	Overcast	vercast Hot		H	High	False	Yes
	cla	ass C.							Rainy	tainy Mil		ŀ	ligh	False	Yes
	Cit					-			Rainy	ainy Cor		Ν	Normal	False	Yes
	– Div	vide by	y the ove	erall nu	mber of	F			Rainy	iny Cool		Ν	Normal	True	No
	exa	ample	s belong	ing to o	class C_j				Overcast	vercast Coo		Ν	Normal	True	Yes
Exar	nnle								Sunny Mi		lild	ŀ	High	False	No
	inpic.			10					Sunny Co		ool	Ν	Normal	False	Yes
"Outl	ook=sur	nny" oc	curs on 2	/9 exam	iples in cl	ass "Yes"			Rainy	м	lild	Ν	Normal	False	Yes
P(Ou	tlook=su	unny Y	es) = 2/9						Sunny	м	lild	Ν	Normal	True	Yes
									Overcast	м	lild	ŀ	ligh	True	Yes
 Count how often an attribute value CO-OCCURS with class C_j Divide by the overall number of examples belonging to class C_j Divide by the overall number of examples belonging to class C_j Cool Normal True Overcast Cool Normal Rainy Cool Normal True Overcast Cool Normal False Rainy Cool Normal True Cool Normal False Rainy Cool Normal False Rainy Cool Normal False Sunny Mild High False Sunny Mild Normal False Sunny Mild Normal False Sunny Mild Normal False Sunny Mild Normal False Mild Mormal False Mild Mormal False Mild Mild Mormal False Mild False Mild Mild Mild Mild Mild Mild False Mild Mild Mild Mild Mild Mild False Mild Mild										Yes					

Rainy

High

Mild

No

True

Classifying a New Record

• Unseen record

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Class-conditional probability of the record

$$P(yes|A) = P(Outlook = Sunny|yes)$$

 $\times P(Temperature = Cool|yes)$

Probability of class "yes" given the evidence $\times P(Humidity = High|yes)$

 $\times P(Windy = True|yes)$

 $\times \frac{P(yes)}{P(A)} \longleftarrow$ Prior probability of class "yes" Prior probability of record

$$=\frac{\frac{2}{9}\times\frac{3}{9}\times\frac{3}{9}\times\frac{3}{9}\times\frac{3}{9}\times\frac{9}{14}}{P(A)}$$

Classifying a New Record

Outlook		Tempe	erature		Hun	nidity		Windy			Play		
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								
· · ·													

• A new day:

Class conditional probability Prior probability

Choose Maximum

OutlookTemp.HumidityWindyPlaySunnyCoolHighTrue?

Likelihood of the two classes

For "yes" = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

For "no" = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Conversion into a probability by normalization:

P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205

P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024

Handling Numerical Attributes

• Option 1:

Discretize numerical attributes before learning classifier.

- Temp= 37°C -> "Hot"
- Temp= 21°C -> "Mild"
- Option 2:

Make assumption that numerical attributes have a **normal distribution** given the class.

- use training data to estimate parameters of the distribution
 - (e.g., mean and standard deviation)
- once the probability distribution is known, it can be used to estimate the conditional probability $P(A_i | C_j)$

Handling Numerical Attributes

The probability density function for the normal distribution is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- It is defined by two parameters:
 - Sample mean $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$

- Standard deviation
$$\sigma = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \mu)^2}$$

• Both parameters can be estimated from the training data

Handling Numerical Attributes

~

Out	look		Temper	rature	Hun	nidity	W	lindy		Pl	ay
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	64, 68,	65, 71,	65, 70,	70, 85,	False	6	2	9	5
Overcast	4	0	69, 70,	72, 80,	70, 75,	90, 91,	True	3	3		
Rainy	3	2	72,	85,	80,	95,					
Sunny	2/9	3/5	μ = 73	μ =75	μ =79	μ = 86	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	<i>σ</i> =6.2	<i>σ</i> =7.9	<i>σ</i> =10.2	<i>σ</i> =9.7	True	3/9	3/5		
Rainy	3/9	2/5									

• Example calculation:

$$f(temp = 66 \mid yes) = \frac{1}{\sqrt{2\pi} * 6.2} e^{-\frac{(66-73)^2}{2*(6.2)^2}} = 0.034$$

Classifying a New Day

•	Unseen record	Outlook	Temp.	Humidity	Windy	Play
		Sunny	66	90	true	?

Likelihood of "yes" = $2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036$ Likelihood of "no" = $3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136$ P("yes") = 0.000036 / (0.000036 + 0.000136) = 20.9%P("no") = 0.000136 / (0.000036 + 0.000136) = 79.1%

• But note: Some numeric attributes are not normally distributed, and you may thus need to choose a different probability density function or use discretization

Handling Missing Values

- Missing values may occur in training and in unseen classification records
- **Training:** Record is not included into frequency count for attribute value-class combination
- **Classification:** Attribute will be omitted from calculation

- Example: Unseen record $\begin{array}{|c|c|c|}\hline Outlook & Temp. & Humidity & Windy & Play \\\hline ? & Cool & High & True & ? \\\hline \\ Likelihood of "yes" = 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238 \\Likelihood of "no" = 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343 \\P("yes") = 0.0238 / (0.0238 + 0.0343) = 41\% \\P("no") = 0.0343 / (0.0238 + 0.0343) = 59\% \end{array}$

The Zero-Frequency Problem

- What if an attribute value doesn't occur with every class value? (e.g. no "Outlook = overcast" for class "no")
 - class-conditional probability will be zero! $P(Outlook = Overcast|no) = \frac{0}{5} = 0$
- Problem: Posterior probability will also be zero! P(no|A) = 0
 No matter how likely the other values are!
- Remedy: Add 1 to the count for every attribute value-class combination (Laplace Estimator)
- Result: Probabilities will never be zero! also: stabilizes probability estimates
- Original: $P(A_i|C) = \frac{N_{ic}}{N_c}$

Laplace:
$$P(A_i|C) = \frac{N_{ic}+1}{N_c+C}$$

 N_{C} + C c = number of attribute values of A

Using Conditional Probabilities for Naïve Bayes

UNIVERSITY OF MANNHEIM

Python

from sklearn.naive_bayes import MultinomialNB
from sklearn.naive_bayes import GaussianNB

Train classifier

estimator = MultinomialNB(alpha=1.0)
estimator.fit(preprocessed_training_data, training_labels)

Decision Boundary of Naive Bayes Classifier

- Usually larger coherent areas lacksquare
- Soft margins with uncertain regions
- Arbitrary (often curved) shapes

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024

Naïve Bayes Discussion

- Naïve Bayes works surprisingly well
 - Even if independence assumption is clearly violated
 - Classification doesn't require accurate probability estimates as long as maximum probability is assigned to correct class
- Robust to isolated noise points as they will be averaged out
- Robust to irrelevant attributes as $P(A_i|C)$ distributed uniformly for A_i
- Adding too many redundant attributes can cause problems
 - Solution: Select attribute subset as Naïve Bayes often works better with just a fraction of all attributes
- Technical advantages
 - learning Naïve Bayes classifiers is computationally cheap (probabilities can be estimated doing one pass over the training data)
 - Storing the probabilities does not require a lot of memory

Support Vector Machines

- Support vector machines (SVMs) are algorithms for learning linear classifiers for
 - Two class problems (a positive and a negative class)
 - From examples described by continuous attributes
- SVMs
 - achieve **very good results** especially for high dimensional data
 - invented by V. Vapnik and his co-workers in 1970s in Russia and became known to the West in 1992

Support Vector Machines

• Find a linear hyperplane (decision boundary) that will separate the data

Which Hyperplane is better?

• Which one is better? B1 or B2? How do you define "better"?

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024

Which Hyperplane is better?

• Find hyperplane **maximizes** the margin to the closest points (support vectors) to avoid overfitting => B1 is better than B2

Dealing with Not Linearly Separable Data

 Introduce slack variables in margin computation which result in a penalty for each data point that violates decision boundary

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024

Nonlinear Support Vector Machines

• What if decision boundary is not linear?

Nonlinear Support Vector Machines

• Transform data into higher dimensional space

Nonlinear Support Vector Machines

- Transformation in higher dimensional space
 - Uses so-called Kernel function
 - Different variants: polynomial function, radial basis function, ...
- Finding a hyperplane in higher dimensional space
 - is computationally expensive
 - Kernel trick: expensive parts of the calculation can be performed in lower dimensional space

```
from sklearn.svm import SVC
# Train classifier
estimator = SVC(C=1.0, kernel='rbf')
estimator.fit(scaled_training_data, training_labels)
```

- Tuning of SVM
- Normalize all value ranges to [0,1]
- RBF kernel
- C = weight of slack variables (0.03 30000)
- gamma = kernel parameter (0.00003 8)

- Inspiration
 - one of the most powerful super computers in the world

Function fitting the training data:
 Output Y is 1 if at least two of the three inputs are equal to 1

$$Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0)$$

Where $I(z) = \begin{cases} 1 & if z & is true \\ 0 & otherwise \end{cases}$

- Model is an assembly of inter-connected nodes (called neurons) and weighted links
- Output node sums up each of its input values according to the weights of its links
- Classification decision: Compare output node against some threshold t

nodes Black box

$$X_1$$
 W_1 W_1 node
 X_2 W_2 Σ Y
 X_3 t t

Perceptron Model

Input

$$Y = I\left(\sum w_i X_i - t > 0\right)$$

Multi-Layer Artificial Neural Networks

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024

Algorithm for Training ANNs

- 1. Initialize the weights $(w_0, w_1, ..., w_k)$, e.g., random or pre-trained
- 2. Adjust the weights in such a way that the output of ANN is as consistent as possible with class labels of the training examples
 - Objective function: $E = \sum_{i} [Y_i f(w_i, X_i)]^2$
 - Find the weights w_i's that minimize the sum of squared error E
 - using the back propagation
 algorithm
 (see Tan/Steinbach: Chapter 6.7,
 - Gemulla: Machine Learning)
 - Adjustment factor: learning rate

Python

from sklearn.neural_network import MLPClassifier

Train classifier

neuralnet = MLPClassifier(hidden_layer_sizes=(100,), learning_rate_init=.1)
neuralnet.fit(training_data, training_labels)

Overview: Types of Deep Learning Models

- Convolutional Neural Networks
- Pre-Trained Language Models: BERT
- Generative Models: T5, GPT3, DALL·E
- Instruct Models: ChatGPT, LaMDA

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024

36

Convolutional Neural Networks (CNNs)

- Invented in computer vision
- Combine
 - 1. Representation learning (convolutions and pooling)
 - Prediction head (densely connected layers)
- Reduce number of input features via convolutions and pooling
- High capacity of models requires
 - Lots of training data
 - Lots of GPU time

Pre-Trained Language Models

- Introduce pre-training, fine-tuning paradigm
 - Pre-trained on large text corpora
 - Model size: BERT-base 110 million parameters

• Outperform previous models on most NLP tasks

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024

Generative Models

- Use transformer architecture to generate text or images based on embeddings of input sequence
- Models for Text
 - T5, GPT3
- Models for Images
 - DALL·E, Stable Diffusion
- Pretrained on large text and image corpora
 - Web crawls
 - ImageNet, LAION-5B
- Model sizes: 5 to 175 billion parameters
 - accessible mostly via APIs

GPT-3

Instruct Language Models

- After being pre-trained on large text corpora, instruct models are fine-tuned with instruction/output pairs
- Show good few-shot performance on wide range of task
 - BIG-bench collects 200+ tasks
- Models show emergent abilities
 - Can perform tasks they were not directly trained for
- Prompt design and in-context learning determine performance of frozen models

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024 Wei: Emergent Abilities of Large Language Models. TMLR 2022.

Model Evaluation

- Central Question:
 - How good is a model at classifying unseen records? (generalization performance)
- Last week: Evaluation Metrics
 - How to measure the performance of a model?
- This week: Evaluation Methods
 - How to obtain reliable estimates?

Model Evaluation

- How to obtain a reliable estimate of the generalization performance?
- General approach: Split labeled records into a training set and a test set
- Never ever test a model on data that was used for training!
 - Because model has been fit to training data, evaluating on training data does not result in a suitable estimate of the performance on unseen data
 - We need to keep training set and test set strictly separate
- Which labeled records to use for training and which for testing?
- Alternative splitting approaches:
 - Holdout Method
 - Random Subsampling
 - Cross Validation

Learning Curve

- The learning curve shows how accuracy changes with growing training set size
- Conclusion:
 - If model performance is low and unstable, get more training data
 - Use labeled data rather for training than testing
- Problem:
 - Labeling additional data is often expensive due to manual effort involved

Holdout Method

- The **holdout method** reserves a certain amount of the labeled data for testing and uses the remainder for training
 - applied when lots of sample data is available
- Usually: 2/3 for training , 1/3 for testing (or even better 80% / 20%)

Training Set

Test Set

- For imbalanced datasets, random samples might not be representative
 - few or no records of the minority class (aka positive class) in training or test set

Stratified Sampling

- Stratified sample: Sample each class independently, so that records of the minority class are present in each sample
 - Make sure that each class is represented with approximately equal proportions in both subsets
 - Other attributes may also be considered for stratification
 - e.g., gender, age, ...

Random Subsampling

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for training
 - The performance of the different iterations is averaged

- Still not optimal as the different test sets may overlap
 - Problem: some outliers might always end up in the test sets
 - Problem: important records for learning (red tree) might always be in test sets

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024

Leave One Out

- Iterate over all examples
 - Train a model on all examples but the current one
 - Evaluate on the current one
- Yields a very accurate estimate
- Uses as much data for training as possible
 - But is computationally infeasible in most cases
- Imagine: a dataset with a million instances
 - One minute to train a single model
 - Leave one out would take almost two years

Cross-Validation

- Compromise of Leave One Out and decent runtime
- Cross-validation avoids overlapping test sets
 - First step: data is split into k subsets of equal size
 - Stratification may be applied
 - Second step: each subset in turn is used for testing and the remainder for training
- This is called k-fold cross-validation
- The error estimates are averaged to yield an overall error estimate

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024

Cross-Validation

- Frequently used value for k : 10
 - Why ten? Extensive experiments have shown that this is the good choice to get an accurate estimate
 - Often the subsets are generated using stratified sampling (to deal with class imbalance)
 - Recent works on very large models have lead to a tendency of lowering that value (default value in scikit-learn is 5)

Python

```
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
# Specify how examples are split
cross_val = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
# Run cross-validation and caclulate performance metric
accuracy = cross_val_score(estimator, data, target, cv=cross_val, scoring='accuracy')
```

Hyperparameter Selection

- A hyperparameter is a parameter which influences the learning process and whose value is set before the learning begins
 - pruning thresholds for trees and rules
 - gamma and C for SVMs
 - learning rate, hidden layers for ANNs
- By contrast, **parameters** are learned during training / from training data
 - weights in an ANN, probabilities in Naïve Bayes, splits in a tree
- Many methods work poorly with the default hyperparameters 🙁
- How to determine good hyperparameters?
 - Manually play around with different hyperparameter settings
 - Have your machine automatically test many different settings (hyperparameter optimization)

Hyperparameter Optimization

- Goal: Find the combination of hyperparameter values that results in learning the model with the lowest generalization error
- How to determine the parameter value combinations to be tested?
 - Grid Search: Test all combinations in user-defined ranges
 - **Random Search**: Test combinations of random parameter values
- Paper from 2012 (Bergstra and Bengio):
 - Grid search may easily miss best parameters
 - some hyperparameters are pretty sensitive e.g., 0.02 is a good value, but 0 and 0.05 are not
 - Random search often yields better results

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024 Bergstra & Bengio: Random Search for Hyper-Parameter Optimization, JMLR, 2012

Hyperparameter Optimization

- Evolutionary Search
 - Keep specific parameter values that worked well
- Bayesian optimization
 - Hyperparameter tuning as a learning problem:
 - Given a set of hyperparameters p, predict evaluation score s of model
 - The prediction model is referred to as a surrogate model or oracle
 - Training and evaluating an actual model is costly

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024 https://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/tutorials/tut8_adams_slides.pdf

Hyperparameter Optimization

- Done:
 - Which hyperparameter combinations should be tested
 - Often hundreds of combinations are tested
 - reason for cloud computing
- Now:
 - Model Selection: From all learned models M, select the model m_{best} that is expected to generalize best to unseen records
 - On which data should the model be tested?

Model Selection Using a Validation Set

- Keep data used for model selection strictly separate from data used for model evaluation, otherwise:
 - Selected model m_{best} will overfit to test set
 - Estimate of generalization error is too optimistic
- Method to find the best model:
 - 1. Split training set D_{train} into validation set D_{val} and training set D_{tr}
 - 2. Learn models m_i on D_{tr} using different hyperparameter value combinations p_i
 - 3. Select best parameter values p_{best} by testing each model m_i on the validation set D_{val}
 - 4. Learn final model m_{best} on complete D_{train} using the parameter values p_{best}
- 5. Evaluate m_{best} on test set in order to get an unbiased estimate of its generalization performance University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024

Parameter p₂ Train D

Train D

Train D

Train D₂

Make sure that all examples are used for validation once 1.

- 2. Use as much labeled data as possible for training

But wait, we want to

Both goals are met by using cross-validation for model selection $F_1 = 0.91$

Model Selection Using Cross-Validation

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024

Train D

Train D

Parameter p_n

used to train new model

on D_{train}

avg. $F_1 = 0.85$

Nested Cross-Validation

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024

Nested Cross-Validation in Python

Python

```
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC
# Specify hyperparameter combinations for search
parameter_grid = {"C": [1, 10, 100, 1000], "gamma": [.001, .01, .1, 1]}
# Create SVM
estimator_svm = SVC(kernel='rbf')
# Create the grid search for model selection
estimator_gs = GridSearchCV(estimator_svm, parameter_grid, scoring='accuracy', cv=5)
# Run nested cross-validation for model evaluation
accuracy cv = cross val score(estimator gs, dataset, labels, cv=5, scoring='accuracy')
```

scikit-learn Documentation: Tuning the hyper-parameters of an estimator

https://scikit-learn.org/stable/modules/grid_search.html

scikit-learn Documentation: Nested versus non-nested cross-validation https://scikit-learn.org/stable/auto examples/model selection/plot nested cross validation iris.html

Model Selection - Overview

- For model evaluation with validation set and cross validation
 Use the test set only once to get one final estimate of the error!
- The more models you train, the better estimate of the error

- Setting: 100 parameter combinations, 5 fold cross validation (inner and outer)
 - Validation set: |P|+1 = 101 models learned
 - Cross Validation: |folds| * |P| + 1 = 5 * 100 + 1 = 501 models learned
 - Nested Cross Validation: |folds_{Outer}| * ((|folds_{Inner}| * |P|) + 1) =

5*((5*100)+1) = 2505 models learned

Feature Selection

- Some classification methods automatically select the relevant feature subset as part of the learning process
 - e.g. Decision Trees, Random Forests, ANNs, SVMs
- The performance of other methods depends on the subset of the features provided
 - e.g. KNN, Naïve Bayes
- Automated feature selection approaches
 - Backward selection: start using all features, remove features, test again
 - Forward selection: Find best single feature, add further features, test again
- Use nested cross-validation to estimate the generalization error

Summary: Hyperparameter and Feature Selection

- Hyperparameter selection
 - Default: Always run hyperparameter optimization!
 - Otherwise you cannot say that a method does not work for a task
- Feature selection
 - Default: Check if classification method requires feature selection
 - If yes, run automated feature selection
- Model selection
 - Default: Use nested cross-validation
 - If computation takes too long: use better hardware, reduce number of folds, reduce parameter search space, sample data to reduce size
 - If exact replicability of results is required: Use single train, validation, test split
- If your dataset is imbalanced
 - don't forget to **balance your training set**, not your test set!

Additional material

- This week additional material is about
 - Model Validation
 - Comparison of Classifiers
 - Statistical Testing
 - Z Test
 - Sign Test
 - Feature Importance
- Additional material is exercise and exam relevant

Questions?

University of Mannheim | IE500 Data Mining | Classification 2 | Version 1.09.2024

Literature for this Slideset

- Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar: Introduction to Data Mining. 2nd Edition. Pearson.
- Chapter 6.4: Naïve Bayes
- Chapter 6.9: Support Vector Machines
- Chapter 6.7 and 6.8: Artificial Neural Networks
- Chapter 3.5: Model Selection
- Chapter 3.7: Presence of Hyper-Parameters

Introduction to Data Mining

SECOND EDITION

Pang-Ning Tan • Michael Steinbach • Anuj Karpatne • Vipin Kumar

