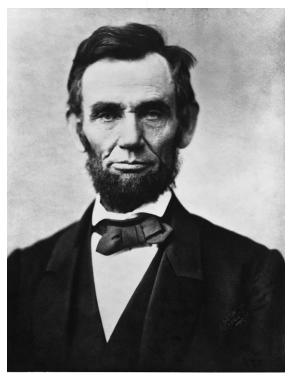
Preprocessing

IE500 Data Mining

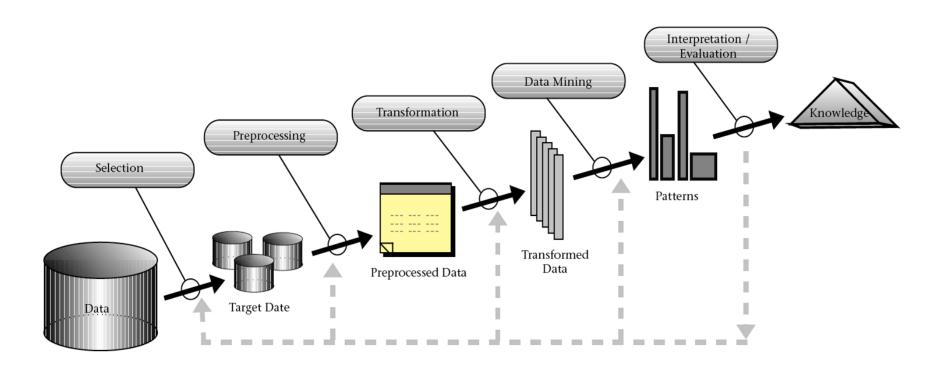
Introduction

 "Give me six hours to chop down a tree and I will spend the first four sharpening the axe."



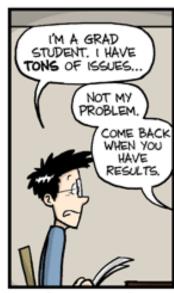
Abraham Lincoln, 1809-1865

Recap: The Data Mining Process



Data Preprocessing

- Your data may have some problems
 - i.e., it may be problematic for the subsequent mining steps
- Fix those problems before going on
- Which problems can you think of?



WWW.PHDCOMICS.COM

Data Preprocessing

- Problems that you may have with your data
 - Errors
 - Missing values
 - Unbalanced distribution
 - Different Scales
 - False predictors
 - Unsupported data types
 - Categorical data and Dates
 - Textual values
 - High dimensionality
 - Feature Subset Selection
 - PCA
 - Sampling

Errors in Data

Sources

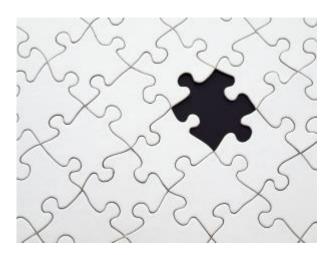
- Malfunctioning sensors
- Errors in manual data processing (e.g., twisted digits)
- Storage/transmission errors
- Encoding problems, misinterpreted file formats
- Bugs in processing code
- **–** ...

Errors in Data

- Simple remedy
 - Remove data points outside a given interval
 - This requires some domain knowledge
- Typical Examples
 - Remove temperature values outside -30 and +50 °C
 - Remove negative durations
 - Remove purchases above 1M Euro
- Advanced remedies
 - Automatically find suspicious data points (Anomaly Detection)

Missing Values

- Possible reasons
 - Failure of a sensor
 - Data loss
 - Information was not collected
 - Customers did not provide their age, sex, marital status, ...
 - **–** ...



Missing Values

Treatments

- Ignore records with missing values in training data
- Replace missing value with...
 - Default or special value (e.g., 0, "missing")
 - Average/median value for numerics
 - Most frequent value for nominals
 - SimpleImputer (missing values=np.nan, strategy='mean')
- Try to predict missing values:
 - Handle missing values as learning problem
 - Target: attribute which has missing values
 - Training data: instances where the attribute is present
 - Test data: instances where the attribute is missing
 - KNNImputer(n neighbors=2, weights="uniform")

Missing Values

- Note: values may be missing for various reasons
 - ...and, more importantly: at random vs. not at random
- Examples for not random
 - Non-mandatory questions in questionnaires
 - e.g., "how often do you drink alcohol?"
 - Values that are only collected under certain conditions
 - e.g., final grade of your university degree (if any)
 - Values only valid for certain data sub-populations
 - e.g., "are you currently pregnant"?
 - Sensors failing under certain conditions
 - e.g., at high temperatures
- In those cases, averaging and imputation causes information loss
 - In other words: "missing" can be information!

Handling Missing Values: Caveats

- Imagine a medical trial checking for side effects of a particular drug
- In the trial, there are 50 people who know their blood sugar value
 - Out of those, 4/5 have an increased blood sugar value

but people with	e effects are mod an increased blo	od sugar value	side effects					
have a 7	75% risk of side e	ffects	Yes (n=58)	No (n=192)				
	increased blood sugar	Yes (n=40)	30	10				
		No (n=10)	8	2				
		(n=200)	20	180				

- Assume you handle the missing value for increased blood sugar
 - by filling in the majority value ("yes")

and even sligh	e effects are mod	for people	side effects						
with an inc	creased blood sug	gar value	Yes (n=58)	No (n=192)					
	increased	Yes (n=240)	50	190					
	blood sugar	No (n=10)	8	2					

Unbalanced Distribution

Example:

- learn a model that recognizes HIV
- given a set of symptoms

Data set:

 records of patients who were tested for HIV

Class distribution:

- 99.9% negative
- 0.01% positive

Unbalanced Distribution

- Learn a decision tree
 - Purity measure: Gini index
- Recap: Gini index for a given node t :

p(j|t) is the relative frequency of class j at node t

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

- Here, Gini index of the top node is
 1 0.999² 0.001² = 0.002
- It will be hard to find any splitting that significantly improves the purity

Decision tree learned:

Unbalanced Distribution

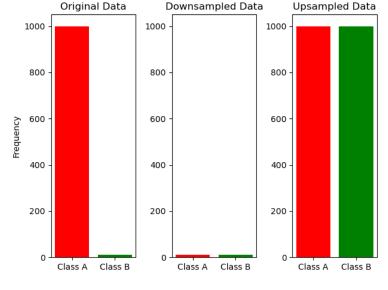
- Model has very high accuracy
 - 99.9%
- ...but 0 recall/precision on positive class
 - which is what we were interested in
- Remedy
 - Re-balance dataset for training
 - But evaluate on unbalanced dataset!

Resampling Unbalanced Data

- Two conflicting goals
 - Use as much training data as possible
 - Use as diverse training data as possible
- Strategies
 - Downsampling larger class
 - Conflicts with goal 1
 - Upsampling smaller class
 - Conflicts with goal 2

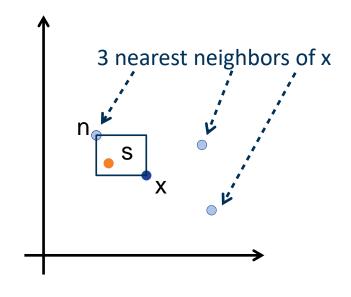
Resampling Unbalanced Data

- Consider an extreme example
 - 1,000 examples of class A
 - 10 examples of class B
- Downsampling
 - does not use 990 examples
- Upsampling
 - creates 100 copies of each example of B
 - likely for the classifier to simply memorize the 10 B cases
- Python:
 - https://imbalanced-learn.org/



Resampling

- SMOTE (Synthetic Minority Over Sampling Technique)
 - Creates synthetic examples of minority class
- Given an example x
 - Choose one neighbor n
 among the k nearest neighbors
 (w/in same class) of x
 - Create synthetic example s
 - For each attribute a
 - s.a \leftarrow x.a + rand(0,1) * (n.a x.a)



Different scales: Normalization

Recap:

- k-NN: Sensitivity to scales
 - e.g. Euclidian distance between first and second entry:

ID	Age	Income
371	25	70,000
433	30	85,000
864	40	90,000

first and second entry:
$$D = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2} \qquad p_i \text{: features of first example}$$

$$= \sqrt{(25 - 30)^2 + (70000 - 85000)^2} = 15000$$

age does not contribute much

Needs normalization

- StandardScaler $z = \frac{x-\mu}{\sigma}$
 - Standardize features by removing the mean and scaling to unit variance

• MinMaxScaler
$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Transform features by scaling each feature to a given range e.g. [0,1]

Preprocessors also Need to be Trained

- Many preprocessing methods also have an internal representation
 - E.g. Mean and variance, minimum and maximum values
 - Do NOT apply it on the whole dataset before splitting etc

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split

golf = pd.read_csv('golf.csv')

scaler = MinMaxScaler()
golf_scaled = scaler.fit_transform(golf[['Temperature', 'Humidity']])

X_train, X_test, y_train, y_test = train_test_split(golf_scaled, golf['Play'], test_size=0.3, random_state=0)
```

https://scikitlearn.org/1.5/modules/compose.html

Preprocessors also Need to be Trained

- Many preprocessing methods also have an internal representation
 - Function fit_transform for training and transform for testing

```
golf = pd.read_csv('golf.csv')
X_train, X_test, y_train, y_test = train_test_split(golf, golf['Play'], test_size=0.3, random_state=0)
scaler = MinMaxScaler()
golf_scaled = scaler.fit_transform(X_train[['Temperature', 'Humidity']], y_train)
golf_test_scaled = scaler.transform(X_test[['Temperature', 'Humidity']])
```

Preprocessors also Need to be Trained

- How to compose multiple components
 - Pipeline

```
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
estimators = [
    ('scale', MinMaxScaler()),
    ('clf', SVC())
]
pipe = Pipeline(estimators)
pipe.fit(X_train, y_train)
pipe.score(X_test, y_test)
```

How to apply tranformations to only a few columns

```
from sklearn.compose import ColumnTransformer
ColumnTransformer
                             from sklearn.preprocessing import OneHotEncoder
                             column trans = ColumnTransformer(
                                  [('categories', OneHotEncoder(dtype='int'), ['Outlook']),
                     Name
                                 ('scale', MinMaxScaler(), ['Temperature'])],
                                 remainder='drop'
                                                                       Columns
                                                 Component
                              estimators = [
                                 ('preprocessing', column_trans),
                                 ('clf', SVC())
                              pipe = Pipeline(estimators)
                             pipe.fit(X train, y train)
                             pipe.score(X test, y test)
```

False Predictors

- ~100% accuracy are a great result
 - ...and a result that should make you suspicious!
- A tale from the road
 - Working with our Linked Open Data extension
 - Trying to predict the world university rankings
 - With data from DBpedia

- Goal:
 - Understand what makes a top university

False Predictors

- The Linked Open Data extension
 - Extracts additional attributes from public knowledge graphs
 - e.g., DBpedia

- Unsupervised (i.e., attributes are created fully automatically)
- Model learned: THE<20 → TOP=true
 - False predictor: target variable was included in attributes
- Other examples
 - Mark<5 → passed=true
 - Sales>1000000 → bestseller=true

Recognizing False Predictors

- By analyzing models
 - Rule sets consisting of only one rule
 - Decision trees with only one node
- Process: learn model, inspect model, remove suspect, repeat
 - until the accuracy drops
 - Tale from the road example: there were other indicators as well
- By analyzing attributes
 - Compute correlation of each attribute with label
 - Correlation near 1 (or -1) marks a suspect

- Caution: there are also strong (but not false) predictors
 - it's not always possible to decide automatically!

Unsupported Data Types

- Not every learning operator supports all data types
 - Some (e.g., SVM) cannot handle categorical data
 - Some (e.g., ID3) cannot handle numeric data
 - Dates are difficult for most learners
 - Textual values need to be transformed

Solutions

- Convert categorical to numeric data
- Convert numeric to nominal data (discretization, binning)
- Extract valuable information from dates
- Transform textual attributes to vector representations

Conversion: Categorical to Numeric

- Two common ways to encode categorical attributes:
 - For ordinal attributes (order is important)
 - e.g. Grade=A, A-, B+, B, B-, C+, C, C-
 - Assign each distinct value a corresponding number preserving the order

ID	Grade		ID	Grade	•••
371	A-		371	7	
433	В		433	5	

- Using such a coding schema allows learners to learn valuable rules, e.g.
 - grade>6 → excellent_student=true
- Python: OrdinalEncoder

Conversion: Categorical to Numeric

- Two common ways to encode categorical attributes:
 - For nominal attributes (no order)
 - e.g. Color=Red, Orange,..., Violet
 - One Hot Encoding: For each value v, create a binary "flag" variable C_v,
 which is 1 if Color=v, 0 otherwise

ID	Color	•••	ID	Color_red	Color_orange	Color_yellow	
371	red		371	1	0	0	
433	yellow		433	0	0	1	

- Python: <u>OneHotEncoder</u>
- Special case: Binary attribute e.g. student=yes, no
 - Student = yes → student binary = 0
 - Student = no → student_binary = 1

Conversion: Categorical to Numeric

- Many values:
 - US State Code (50 values)
 - Profession Code (7,000 values, but only few frequent)

Approaches:

- manual, with background knowledge
 - e.g., group US states
- Use binary attributes
 - then apply dimensionality reduction (see later today)

Conversion: Numeric to Ordinal

- Remember: Discretization for decision tree
 - Values of the attribute, e.g., age of a person:
 - 0, 4, 12, 16, 16, 18, 24, 26, 28
 - Equal-interval binning for bin width of e.g., 10:

• Bin 1: 0, 4

[-∞,10) bin

• Bin 2: 12, 16, 16, 18 [10,20] bin

• Bin 3: 24, 26, 28 [20,+∞) bin

- Equal-frequency binning for bin density of e.g., 3:
 - Bin 1: 0, 4, 12

[-, 14) bin

• Bin 2: 16, 16, 18 [14, 21) bin

• Bin 3: 24, 26, 28 [21,+] bin

Dealing with Date Attributes

- Dates (and times) can be formatted in various ways
 - first step: normalize and parse
- Dates have lots of interesting information in them
- Example: analyzing shopping behavior
 - time of day
 - weekday vs. weekend
 - begin vs. end of month
 - month itself
 - quarter, season
- Python: use, e.g., datetime

- Preprocessing
 - Text Cleanup (remove punctuation and HTML tags)
 - Tokenization (break text into single words or N-grams)
 - Stopword Removal (e.g. the, of, and, to, an, is, that, ...)
 - Stemming (find the stem of a word)
 - User, users, used, using → Stem: use

```
from nltk.stem.porter import PorterStemmer

# Stem tokens
stemmer = PorterStemmer()
tokens = ['Jupiter', 'is', 'the', 'largest', 'gas', 'planet']
stems = []
for item in tokens:
    stems.append(stemmer.stem(item))
```


- Feature Generation: Bag-of-Words
 - Each word/term becomes a feature
 - Order of words/terms is ignored

Each document is represented by a vector

	l								[Dokum	ent										
Term	Α	В	C	D	E	F	G	Н	- 1	J	K	L	М	N	0	Р	Q	R	S	Т	Σ
oil	5	12	2	1	1	7	3	3	5	9	5	4	5	4	3	4	5	3	3	1	85
price	5	6	2	2	0	8	1	2	2	10	5	1	5	2	0	3	3	3	3	0	63
opec	0	15	0	0	0	8	1	2	2	6	5	2	2	4	0	0	0	0	0	0	47
mln	0	4	0	0	2	4	1	0	0	3	9	0	0	0	0	3	3	0	0	2	31
market	2	5	0	0	0	3	0	2	0	10	1	2	2	0	0	0	0	0	3	0	30
barrel	2	0	1	1	0	4	0	0	1	3	3	0	1	1	0	3	3	1	0	2	26
bpd	0	4	0	0	0	7	0	0	0	2	8	0	0	2	0	0	0	0	0	0	23
dlrs	2	0	1	2	2	2	1	0	0	4	2	0	0	0	0	1	1	- 5	0	0	23
crude	2	0	2	3	0	2	0	0	0	0	5	2	0	2	0	0	0	2	0	1	21
saudi	0	0	0	0	0	0	0	1	0	5	7	1	4	0	0	0	0	0	0	0	18
kuwait	0	0	0	0	0	10	0	1	0	3	0	1	0	2	0	0	0	0	0	0	17
offici	0	0	0	0	0	5	1	1	0	1	4	3	1	0	0	0	0	0	1	0	17
meet	0	6	0	0	0	3	0	1	0	1	0	1	0	2	0	0	0	0	0	0	14
pct	0	0	0	0	2	0	2	2	2	1	0	0	1	0	0	1	1	0	0	2	14
product	1	6	0	0	0	1	0	0	0	0	4	0	0	0	0	0	0	0	0	1	13
accord	0	0	0	0	0	0	0	0	0	5	1	0	2	0	0	0	0	0	4	0	12
futur	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	9	0	12
minist	0	0	0	0	0	3	0	0	1	3	1	2	1	1	0	0	0	0	0	0	12
govern	0	0	0	0	0	0	5	0	6	0	0	0	0	0	0	0	0	0	0	0	11
month	0	1	0	0	0	2	2	0	1	0	5	0	0	0	0	0	0	0	0	0	11
report	0	1	0	0	0	1	8	0	0	0	0	1	0	0	0	0	0	0	0	0	11
sheikh	0	0	0	0	0	3	0	0	5	2	0	0	0	1	0	0	0	0	0	0	11
industri	0	2	0	0	0	1	1	1	1	0	0	0	0	0	0	1	2	0	1	0	10
produc	0	0	0	0	0	4	1	1	0	3	0	0	0	0	0	0	0	0	0	1	10
quota	0	2	0	0	0	4	0	0	1	1	1	0	0	1	0	0	0	0	0	0	10
reserv	0	0	0	0	3	0	0	0	1	0	0	0	0	0	0	3	3	0	0	0	10
world	0	1	0	0	0	1	3	0	1	1	0	0	1	1	0	0	0	0	1	0	10
:																					
Σ	48	204	34	39	46	219	219	73	161	180	208	57	61	54	56	68	89	44	147	32	2039

- Different techniques for vector creation:
 - Binary Term Occurrence: Boolean attributes describe whether or not a term appears in the document (one-hot encoding)
 - Python: <u>CountVectorizer(binary=true)</u>
 - Term Occurrence: Number of occurrences of a term in the document (problematic if documents have different length)
 - Python: CountVectorizer(binary=false)
 - Terms Frequency: Attributes represent the frequency in which a term appears in the document (number of occurrences / number of words in document)
 - Python: <u>TfidfVectorizer(use_idf=False)</u>
 - TF-IDF: see next slide
 - Python: <u>TfidfVectorizer</u>

- The TF-IDF weight (term frequency—inverse document frequency) is used to evaluate how important a word is to a corpus of documents.
 - TF: Term Frequency (see last slide)

$$w_{ij} = tf_{ij} * idf_i$$
$$idf_i = \log(\frac{N}{df_i})$$

IDF: Inverse Document Frequency.

N: total number of docs in corpus

 df_i : the number of docs in which t_i appears

- Gives more weight to rare words
- Give less weight to common words (domain-specific stopwords)

In scikit-learn:

$$idf_i = \log\left(\frac{1+N}{1+df_i}\right) + 1$$

Similarity of Documents

- Jaccard Coefficient
 - Similarity measure for vectors consisting of asymmetric binary attributes

$$Jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{M_{11}}{M_{01} + M_{10} + M_{11}}$$

- Used together with binary term occurrence vectors (one-hot vectors)
 - 1 represents occurrence of specific word
 - 0 represents absence of specific word
 - most values are 0 as only small subset of the vocabulary is used in a document

Similarity of Documents

Jaccard Coefficient

Similarity measure for vectors consisting of asymmetric binary attributes

$$Jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{M_{11}}{M_{01} + M_{10} + M_{11}}$$

	Saturn	is	the	gas	planet	with	rings	Jupiter	largest	Roman	god	of	sowing
d1	1	1	1	1	1	1	1	0	0	0	0	0	0
d2	0	1	1	1	1	0	0	1	1	0	0	0	0
d3	1	1	1	0	0	0	0	0	0	1	1	1	1

Jaccard similarities between the documents

-
$$Jaccard(d_1, d_2) = \frac{4}{9} = 0.44$$
 $Jaccard(d_2, d_3) = \frac{2}{11} = 0.18$

-
$$Jaccard(d_1, d_3) = \frac{3}{11} = 0.27$$

Similarity of Documents

Cosine similarity

 Similarity measure for comparing weighted document vectors such as term-frequency or TF-IDF vectors

$$\cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \|d_2\|}$$

Example

$$d_1 = 3205000200$$

 $d_2 = 1000000102$

where • indicates vector dot product

$$a \bullet b = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

and ||d|| is the length of the vector

$$||d|| = \sqrt{\sum_{i=1}^n d_i^2}$$

$$d_1 \bullet d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_1|| = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_2|| = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.245$$

$$\cos(d_1, d_2) = 0.3150$$

Dense and Sparse Representation

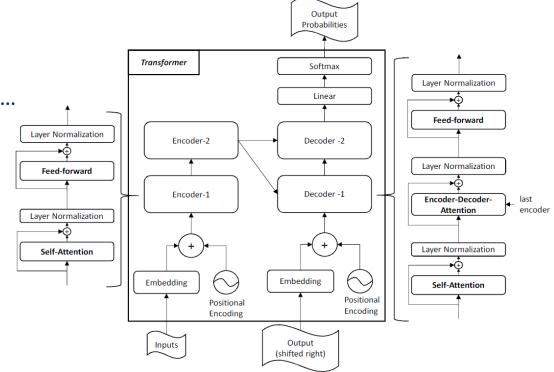
- Bag of Words is sparse
 - Vector dimension is tens of thousands
 - Most are zero

	I								[Ookum	ent										
Term	Α	В	C	D	Е	F	G	Н	- 1	J	K	L	M	N	0	P	Q	R	S	Т	Σ
oil	5	12	2	1	1	7	3	3	5	9	5	4	5	4	3	4	5	3	3	1	85
price	5	6	2	2	0	8	1	2	2	10	5	1	5	2	0	3	3	3	3	0	63
opec	0	15	0	0	0	8	1	2	2	6	5	2	2	4	0	0	0	0	0	0	47
mln	0	4	0	0	2	4	1	0	0	3	9	0	0	0	0	3	3	0	0	2	31
market	2	5	0	0	0	3	0	2	0	10	1	2	2	0	0	0	0	0	3	0	30
barrel	2	0	1	1	0	4	0	0	1	3	3	0	1	1	0	3	3	1	0	2	26
bpd	0	4	0	0	0	7	0	0	0	2	8	0	0	2	0	0	0	0	0	0	23
dlrs	2	0	1	2	2	2	1	0	0	4	2	0	0	0	0	1	1	- 5	0	0	23
crude	2	0	2	3	0	2	0	0	0	0	5	2	0	2	0	0	0	2	0	1	21
saudi	0	0	0	0	0	0	0	1	0	5	7	1	4	0	0	0	0	0	0	0	18
kuwait	0	0	0	0	0	10	0	1	0	3	0	1	0	2	0	0	0	0	0	0	17
offici	0	0	0	0	0	5	1	1	0	1	4	3	1	0	0	0	0	0	1	0	17
meet	0	6	0	0	0	3	0	1	0	1	0	1	0	2	0	0	0	0	0	0	14
pct	0	0	0	0	2	0	2	-	2	1	0	0	1	0	0	1	1	0	0	2	14
product	1	6	0	0	0	1	0	0	0	0	4	0	0	0	0	0	0	0	0	1	13
accord	0	0	0	0	0	0	0	0	0	5	1	0	2	0	0	0	0	0	4	0	12
futur	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	9	0	12
minist	0	0	0	0	0	3	0	0	1	3	1	2	1	1	0	0	0	0	0	0	12
govern	0	0	0	0	0	0	5	0	6	0	0	0	0	0	0	0	0	0	0	0	11
month	0	1	0	0	0	2	2	0	1	0	5	0	0	0	0	0	0	0	0	0	11
report	0	1	0	0	0	1	8	0	0	0	0	1	0	0	0	0	0	0	0	0	11
sheikh	0	0	0	0	0	3	0	0	5	2	0	0	0	1	0	0	0	0	0	0	11
industri	0	2	0	0	0	1	1	1	1	0	0	0	0	0	0	1	2	0	1	0	10
produc	0	0	0	0	0	4	1	1	0	3	0	0	0	0	0	0	0	0	0	1	10
quota	0	2	0	0	0	4	0	0	1	1	1	0	0	1	0	0	0	0	0	0	10
reserv	0	0	0	0	3	0	0	0	1	0	0	0	0	0	0	3	3	0	0	0	10
world	0	1	0	0	0	1	3	0	1	1	0	0	1	1	0	0	0	0	1	0	10
		•			•																
Σ	48	204	34	39	46	219	219	73	161	180	208	57	61	54	56	68	89	44	147	32	2039

- Dense representation
 - Word embeddings
 - Vector of a few hundred dimensions

Transformer Architecture

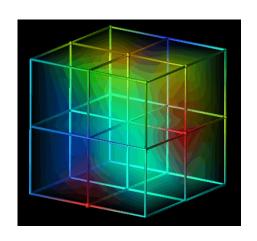
- Encoder-only:
 - BERT, ALBERT (a lite version of BERT),
 RoBERTa (A Robustly Optimized BERT Pretraining Approach)
- Decoder-only:
 - LLMs like GPT, LLaMa, ...
- Seq2Seq:
 - T-5 (Text-to-TextTransfer Transformer)
 - BART



High Dimensionality

- Datasets with large number of attributes
- Examples:
 - Text classification
 - Image classification
 - Genome classification
 - **—** ...

e.g., decision tree:
 search all attributes for determining one single split



- Preprocessing step
- Idea: only use valuable features
 - "feature": machine learning terminology for "attribute"
- Basic heuristics: remove nominal attributes...
 - Which have more than p% identical values
 - Example: millionaire=false
 - Which have more than p% different values
 - Example: names, IDs
- Basic heuristics: remove numerical attributes
 - Which have little variation, i.e., standard deviation <s

- Basic Distinction: Filter vs. Wrapper Methods
- Filter methods
 - Use attribute weighting criterion, e.g., Chi², Information Gain, ...
 - Select attributes with highest weights
 - Fast (linear in no. of attributes), but not always optimal
- Example:
 - X_f = SelectKBest(chi2, k=20).fit_transform(X, y)

- Remove redundant attributes
 - e.g., temperature in °C and °F
 - e.g., textual features "Barack" and "Obama"

Method:

- compute pairwise correlations between attributes
- remove highly correlated attributes

Recap:

- Naive Bayes requires independent attributes
- Will benefit from removing correlated attributes

- Wrapper methods
 - Use classifier internally
 - Run with different feature sets
 - Select best feature set
- Advantages
 - Good feature set for given classifier
- Disadvantages
 - Expensive (naively: at least quadratic in number of attributes)
 - Heuristics can reduce number of classifier runs

Forward selection:

```
start with empty attribute set
do {
   for each attribute {
     add attribute to attribute set
     compute performance (e.g., accuracy)
   }
   use attribute set with best performance
} while performance increases
```

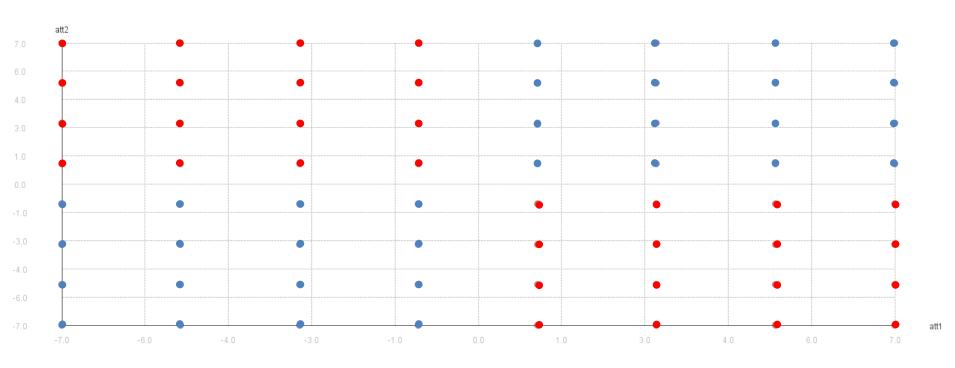
- An learning algorithm is used for computing the performance
 - Cross validation is advised

Backward elimination:

```
start with full attribute set
do {
   for each attribute in attribute set {
      remove attribute to attribute set
      compute performance (e.g., accuracy)
   }
   use attribute set with best performance
} while performance increases
```

- An learning algorithm is used for computing the performance
 - Cross validation is advised

- The checkerboard dataset
 - Recap: Decision tree learners can perfectly learn this!
 - But what happens if we apply forward selection here?



- Python:
 - Forward selection:<u>SequentialFeatureSelector(direction='forward')</u>
 - Backward elimination:SequentialFeatureSelector(direction=backward')
 - If estimator has feature importances:
 - <u>RFECV</u> (Recursive feature elimination with cross-validation)
 - Just one selection step based on feature importances
 - <u>SelectFromModel</u>

- Further approaches
 - Brute Force search
 - Evolutionary algorithms
- Trade-off
 - Simple heuristics are fast
 - But may not be the most effective
 - Brute-force is most effective
 - But the slowest
 - Forward selection, backward elimination, and evolutionary algorithms
 - Are often a good compromise

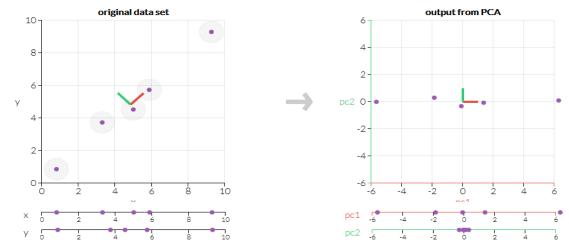
Principal Component Analysis (PCA)

- So far, we have looked at feature selection methods
 - We select a subset of attributes
 - No new attributes are created
- PCA creates a (smaller set of) new attributes
 - Artificial linear combinations of existing attributes
 - As expressive as possible
- Dates back to the pre-computer age
 - Invented by Karl Pearson (1857-1936)
 - Also known for Pearson's correlation coefficient



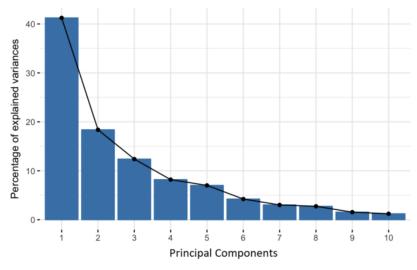
Principal Component Analysis (PCA)

- Idea: transform coordinate system so that each new coordinate (principal component) is as expressive as possible
 - Expressivity: variance of the variable
 - The 1st, 2nd, 3rd... PC should account for as much variance as possible
 - further PCs can be neglected



Principal Component Analysis (PCA)

- Principal components
 - Are *linear* combinations of the existing features
- General approach:
 - The first component should have as much variance as possible
 - The subsequent ones should also have as much variance as possible
 - And be perpendicular to the first one



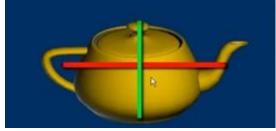
Principle Component Analysis illustrated

Example by James X. Li, 2009

Which 2D projection conveys most information about the

teapot?

- Approach:
 - Find longest axis first
 - In practice: use average/median diameter to limit effect of outliers
 - Fix that axis, find next longest



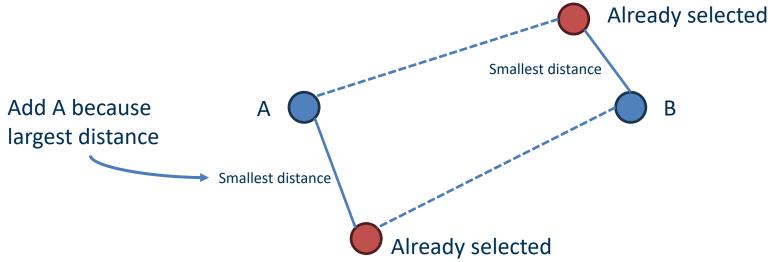
Sampling revisited

- Feature Subset Selection reduces the width of the dataset
- Sampling reduces the height of the dataset
 - i.e., the number of instances
- Trade-off
 - Maximum usage of information
 - Fast computation
- Notes
 - Stratified sampling respects class distribution
 - Kennard-Stone sampling tries to select heterogenous points

Kennard-Stone Sampling

- 1) Compute pairwise distances of points
- 2) Add points with largest distance from one another
- 3) While target sample size not reached
 - 1) For each candidate, find smallest distance to any point in the sample

2) Add candidate with largest of those smallest distances

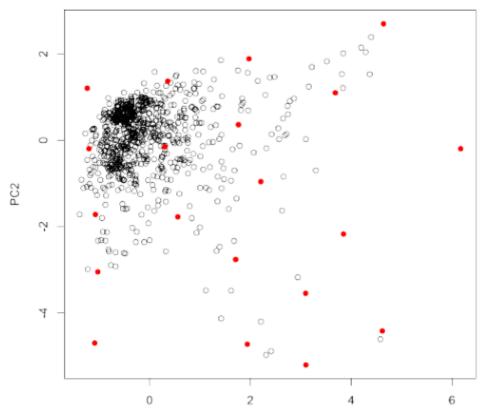


Kennard-Stone Sampling

- This guarantees that heterogeneous data points are added
 - i.e., sample gets more diverse
 - Includes more corner cases
 - But potentially also more outliers
 - Distribution may be altered
- Python: Not included in scikit-learn by default
 - Need to install separate package "kennard-stone"
 - https://pypi.org/project/kennard-stone/

Kennard-Stone Sampling (Example)

- Pro: a lot of rare cases covered
- Con: original distribution gets lost



Sampling Strategies and Learning Algorithms

- There are interaction effects
- Some learning algorithms rely on distributions
 - e.g., Naive Bayes
 - Usually, stratified sampling works better
- Some rely less on distributions
 - And may work better if they see more corner cases
 - e.g., Decision Trees

Titanic Dataset
Filter: 50 training examples

	Decision Tree	Naive Bayes
Stratified	.727	.752
Kennard Stone	.742	.721

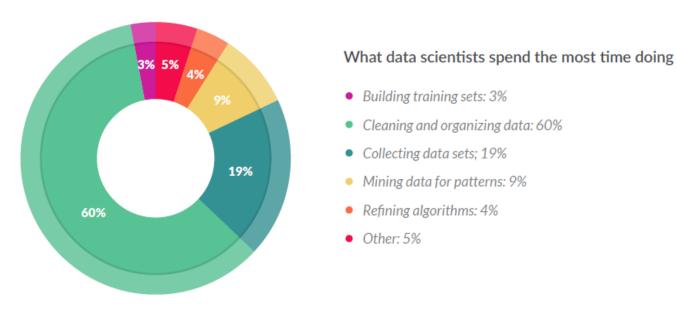
A Note on Sampling

- Often, the training data in a real-world project is already a sample
 - e.g., sales figures of last month
 - To predict the sales figures for the rest of the year
- How representative is that sample?
 - What if last month was December? Or February?
- Effect known as selection bias
 - Example: phone survey with 3,000 participants, carried out Monday, 9-17
 - Thought experiment: effect of selection bias for prediction,
 e.g., with a Naive Bayes classifier

Summary Data Preprocessing

- Raw data has many problems
 - Missing values
 - Errors
 - High dimensionality
 - **—** ...
- Good preprocessing is essential for good data mining
 - One of the first steps in the pipeline
 - Requires lots of experimentation and fine-tuning
 - often the most time consuming step of the pipeline

Prepare Your Data



Source: CrowdFlower Data Science Report 2016: http://visit.crowdflower.com/data-science-report.html

Additional material

- This week additional material is about
 - Word embedding
 - Encoders

Additional material is exercise and exam relevant

Questions?

Literature for this Slideset

Python:

- Imputation
 - https://scikit-learn.org/1.5/modules/impute.html
- Preprocessing
 - https://scikit-learn.org/1.5/modules/preprocessing.html
- Text feature extraction
 - https://scikit-learn.org/1.5/modules/feature_extraction.html# text-feature-extraction
- Feature Selection
 - https://scikit-learn.org/1.5/modules/feature_selection.html