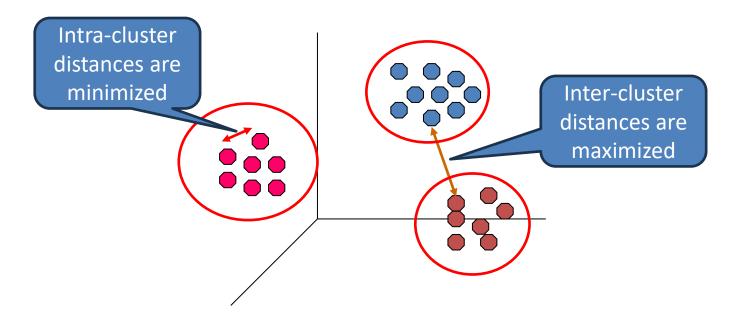
ClusteringIE500 Data Mining

Outline

- What is Cluster Analysis?
- K-Means Clustering
- Density-based Clustering
 - DBSCAN
- Proximity Measures
- Anomaly Detection
 - Statistical Approaches
 - Distance-based Approaches

What is Cluster Analysis?

- Finding groups of objects such that the objects in a group
 - will be similar to one another
 - and different from the objects in other groups
- Goal: Get a better understanding of the data

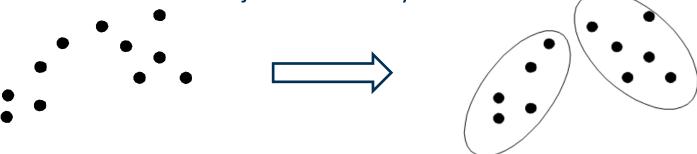


- Supervised learning: Discover patterns in the data that relate data attributes with a target (class) attribute
 - The set of classes is known before
 - Class attributes are usually provided by human annotators
 - Patterns are used for prediction of the target attribute for new data
- Unsupervised learning: The data has no target attribute
 - We want to explore the data to find some intrinsic structures in it
 - The set of classes/clusters is not known before
 - Cluster Analysis and Association Rule Mining are unsupervised learning tasks

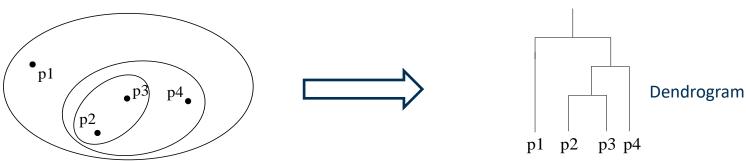
Types of Clusterings

Partitional Clustering

A division of data objects into non-overlapping subsets (clusters)
 such that each data object is in exactly one subset



- Hierarchical Clustering (see additional material)
 - A set of nested clusters organized as a hierarchical tree



Aspects of Cluster Analysis

A clustering algorithm

- Partitional algorithms
- Density-based algorithms
- Hierarchical algorithms
- **–** ...

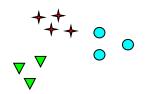
A proximity (similarity, or dissimilarity) measure

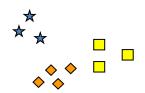
- Euclidean distance
- Cosine similarity
- Data type-specific similarity measures
- Domain-specific similarity measures

Clustering quality

- Intra-clusters distance ⇒ minimized
- Inter-clusters distance ⇒ maximized
- The clustering should be useful with regard to the goal of the analysis

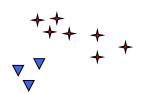
The Notion of a Cluster is Ambiguous





How many clusters do you see?

Six Clusters





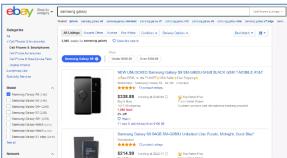
Two Clusters

Four Clusters

The usefulness of a clustering depends on the goal of the analysis

Example Applications

- Market Segmentation
 - Goal: Identify groups of similar customers
 - Level of granularity depends on the task at hand
- E-Commerce
 - Identify offers of the same product on electronic markets
- Image Recognition
 - Identify parts of an image that belong to the same object





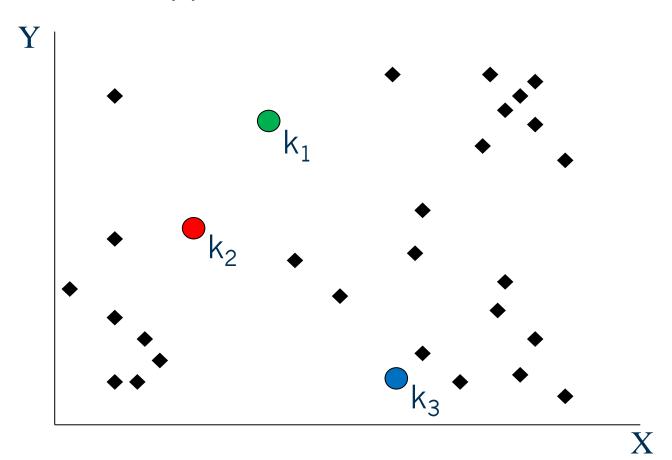
K-Means Clustering

- Partitional clustering algorithm
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified beforehand

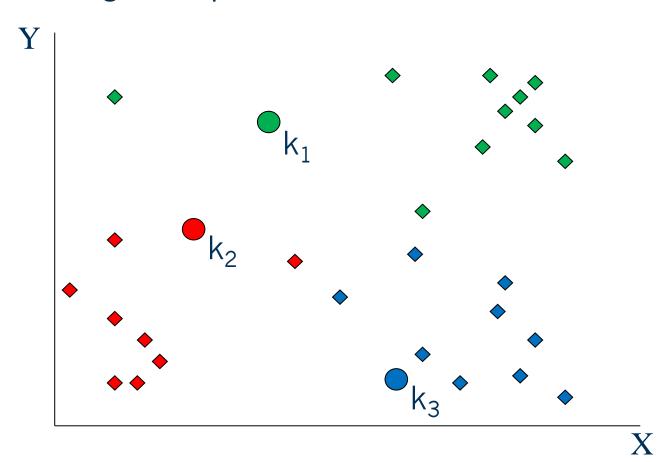
Algorithm:

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: until The centroids don't change

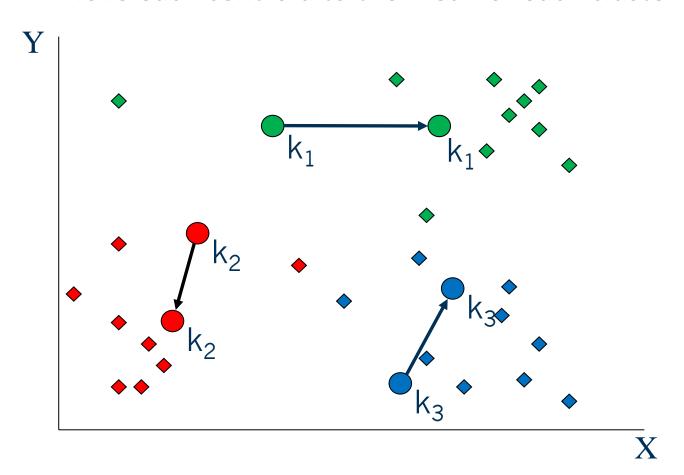
Randomly pick 3 initial centroids



Assign each point to the closest centroid

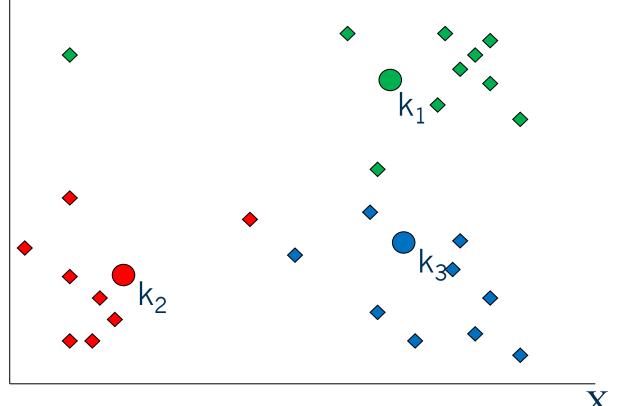


Move each centroid to the mean of each cluster

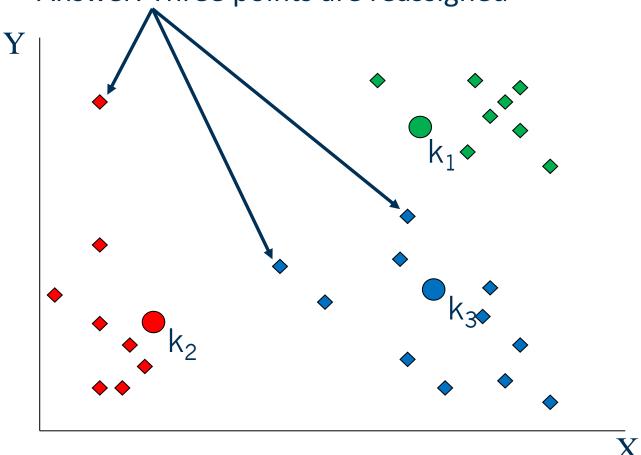


Reassign points if they are now closer to a different centroid

 V_{\parallel} — Question: Which points are reassigned?

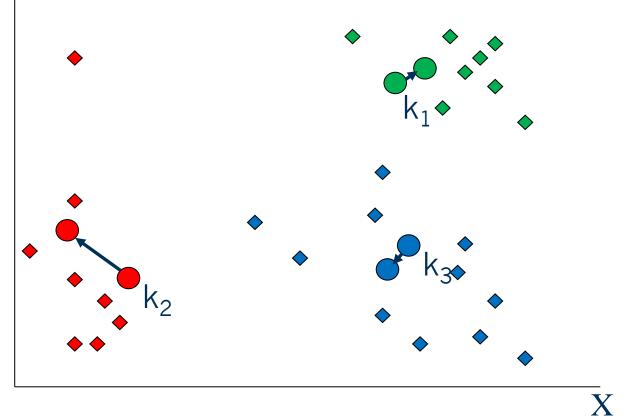


Answer: Three points are reassigned



Re-compute cluster means and

move centroids to new cluster means



Convergence Criteria

- Default convergence criterion
 - No (or minimum) change of centroids
- Alternative convergence criteria
 - No (or minimum) re-assignments of data points to different clusters
 - Stop after x iterations
 - Minimum decrease in the sum of squared error (SSE)
 - See next slide

Evaluating K-Means Clusterings

- Widely used cohesion measure: Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest centroid
 - To get SSE, we square these errors and sum them

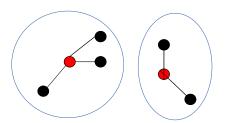
$$SSE = \sum_{j=1}^{k} \sum_{x \in C_j} dist(x, m_j)^2$$

- C_i is the j-th cluster
- m_j is the centroid of cluster C_j (the mean vector of all the data points in C_j)
- $dist(x, m_j)$ is the distance between data point x and centroid m_j
- Given several clusterings (= groupings),
 we should prefer the one with the smallest SSE

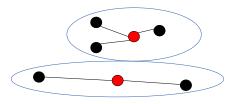
Illustration: Sum of Squared Error

Clustering problem given:

- Good clustering
 - small distances to centroids

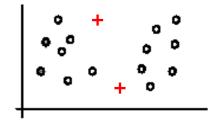


- Not so good clustering
 - larger distances to centroids

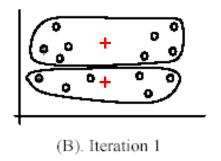


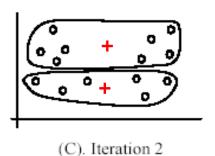
Weaknesses of K-Means: Initial Seeds

 Clustering results may vary significantly depending on initial choice of seeds (number and position of seeds)



(A). Random selection of seeds (centroids)



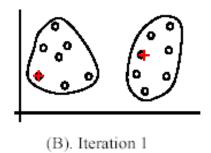


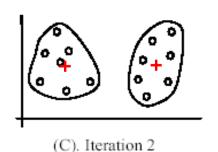
Weaknesses of K-Means: Initial Seeds

• If we use different seeds, we get good results



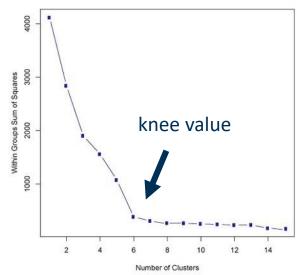
(A). Random selection of k seeds (centroids)





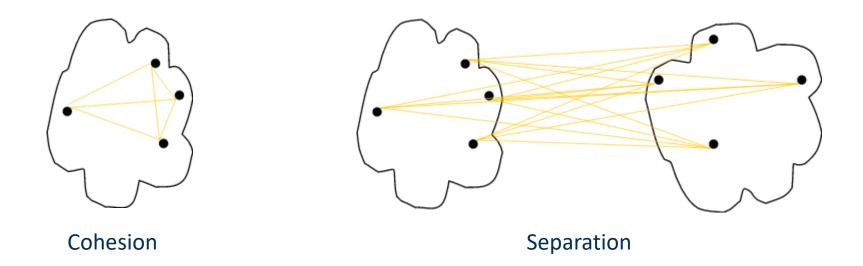
Improving the Clustering Results

- Restart a number of times with different random seeds
 - chose the resulting clustering with the smallest sum of squared error (SSE)
- Run k-means with different values of k
 - The SSE for different values of k cannot directly be compared
 - Think: what happens for $k \rightarrow$ number of examples?
 - Workarounds
 - Choose k where SSE improvement decreases (knee value of k)
 - Employ X-Means
 - Variation of K-Means algorithm that automatically determines k
 - Starts with small k, then splits large clusters until improvement decreases



Choosing k – Cluster Evaluation

- Recap: we want to maximize
 - Cohesion: measures how closely related are objects in a cluster
 - Separation: measure how distinct or well-separated a cluster is from other clusters



Silhouette Coefficient

- Cohesion a(x): Average distance of x to all other vectors in the same cluster
- Separation b(x): Average distance of x to the vectors in other clusters. Find the minimum among the clusters.
- Silhouette s(x):

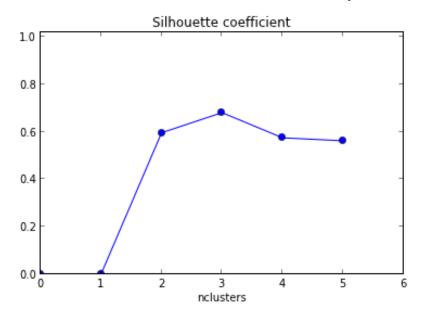
$$s(x) = \frac{b(x) - a(x)}{\max\{a(x), b(x)\}}$$

- s(x) = [-1,1] -1=bad, 0=indifferent, 1=good
- Silhouette coefficient (SC):

$$SC = \frac{1}{N} \sum_{i=1}^{N} s(x_i)$$

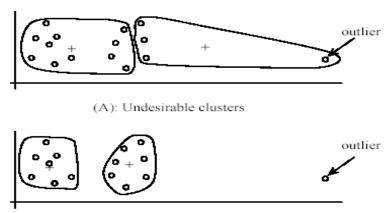
Selecting k Using the Silhouette Coefficient

- Approach
 - Run k-means with different k values
 - Plot the Silhouette Coefficient
 - Pick the best (i.e., highest) silhouette coefficient
 - Note: silhouette coefficient does not depend on no. of clusters



Weaknesses of K-Means: Problems with Outliers

- Possible remedy:
 - Remove data points far away from centroids
 - To be safe: monitor these possible outliers over a few iterations and then decide to remove them
- Other remedy: random sampling
 - After determining the centroids based on random samples,
 assign the rest of the data points (also improves runtime performance)



K-Medoids

- K-Medoids is a K-Means variation that uses the medians of each cluster instead of the mean
- Medoids are the most central existing data points in each cluster
- K-Medoids is more robust against outliers as the median is not affected by extreme values:
 - Mean and Median of 1, 3, 5, 7, 9 is 5
 - Mean of 1, 3, 5, 7, 1009 is 205
 - Median of 1, 3, 5, 7, 1009 is 5

K-Means Clustering Summary

Advantages

- Simple, understandable
- Efficient time complexity:O(n * K * I * d)where
 - n = number of points
 - K = number of clusters
 - I = number of iterations
 - d = number of attributes

Disadvantages

- Need to determine number of clusters
- All items are forced into a cluster
- Sensitive to
 - Outliers
 - Initial seeds

```
Python

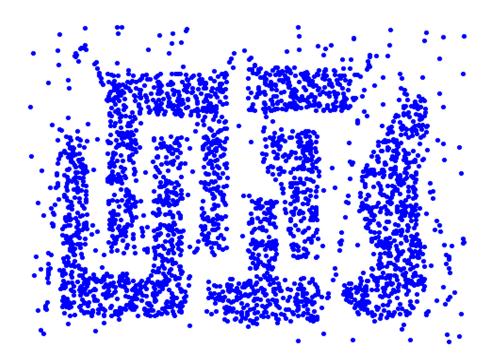
# import KMeans
from sklearn.cluster import KMeans

# create clusterer
estimator = KMeans(n_clusters = 3)

# create clustering
cluster_ids = estimator.fit_predict(dataset[['Att1', 'Att2']])
```

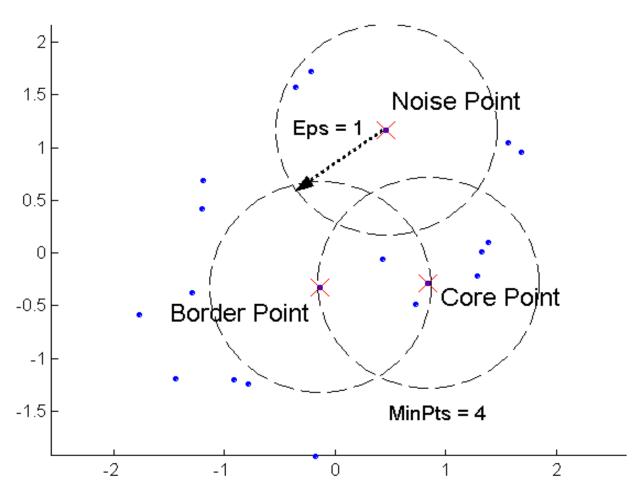
Density-based Clustering

- Challenging use case for K-Means because
 - Problem 1: Non-globular shapes
 - Problem 2: Outliers / noise points



DBSCAN

- DBSCAN is a density-based algorithm
 - Density = number of points within a specified radius Epsilon (Eps)
- Divides data points into three classes:
 - A point is a core point if it has at least a specified number of neighboring points (*MinPts*) within the specified radius *Eps*
 - the point itself is counted as well
 - these points form the interior of a dense region (cluster)
 - A border point has fewer points than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point



DBSCAN Algorithm

Eliminate noise points

end for

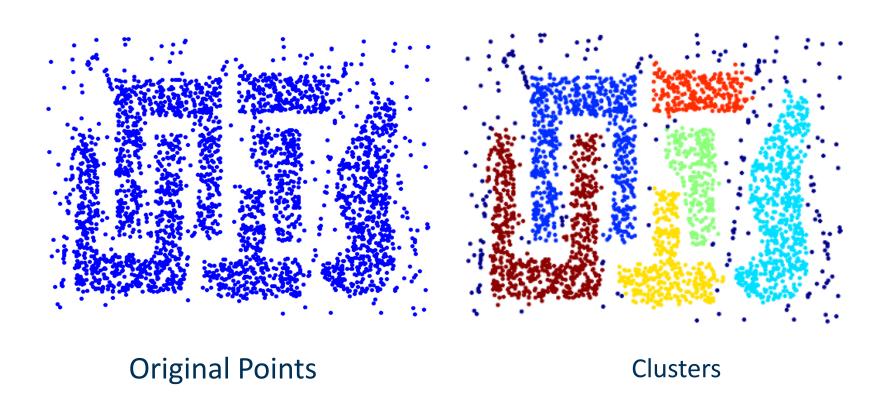
Perform clustering on the remaining points

```
current\_cluster\_label \leftarrow 1
for all core points do
  if the core point has no cluster label then
    current\_cluster\_label \leftarrow current\_cluster\_label + 1
    Label the current core point with cluster label current_cluster_label
  end if
  for all points in the Eps-neighborhood, except i^{th} the point itself do
    if the point does not have a cluster label then
                                                                         perform recursion
                                                                        for all points in the
       Label the point with cluster label current_cluster_label
                                                                        Eps-neighborhood
    end if
                                                                           of the point
  end for
```



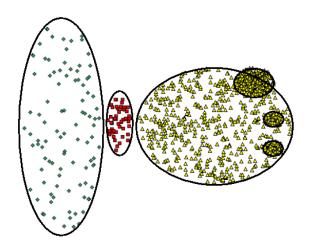

Original Points

Point types: core, border and noise

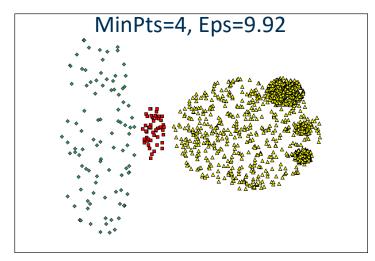


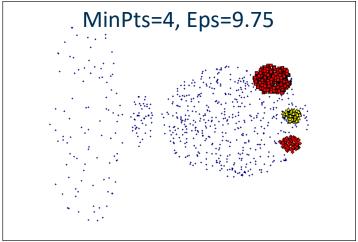
When DBSCAN Does NOT Work Well

- Varing densities
- High-dimensional data



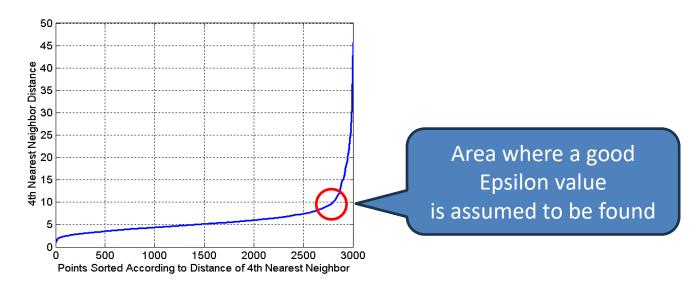
Original Points





DBSCAN: Determining EPS and MinPts

- Idea: for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- Plot sorted distance of every point to its kth nearest neighbor



DBSCAN in Python

Python

```
# import DBSCAN
from sklearn.cluster import DBSCAN

# create the clusterer
clusterer = DBSCAN(min_samples=3, eps=1.5, metric='euclidean')

# create the clusters
clusters = clusterer.fit_predict(dataset[['Att1', 'Att2']])
```

Proximity Measures

- So far, we have seen different clustering algorithms
 - all of which rely on proximity (distance, similarity, ...) measures
- Similarity
 - Numerical measure of how alike two data objects are (higher: more alike)
 - Often falls in the range [0,1]
- Dissimilarity / Distance
 - Numerical measure of how different are two data objects (higher: less alike)
 - Minimum dissimilarity is often 0
 - Upper limit varies
- A wide range of different measures is used depending on the requirements of the application

Proximity of Single Attributes

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \left\{ egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{ egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$
Ordinal	$d = \frac{ \vec{p}-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p - q	$s = -d$, $s = \frac{1}{1+d}$ or $s = 1 - \frac{d - min \cdot d}{max \cdot d \cdot min \cdot d}$
		$s = 1 - \frac{d - min_d}{max_d - min_d}$

Similarity and dissimilarity for simple attributes

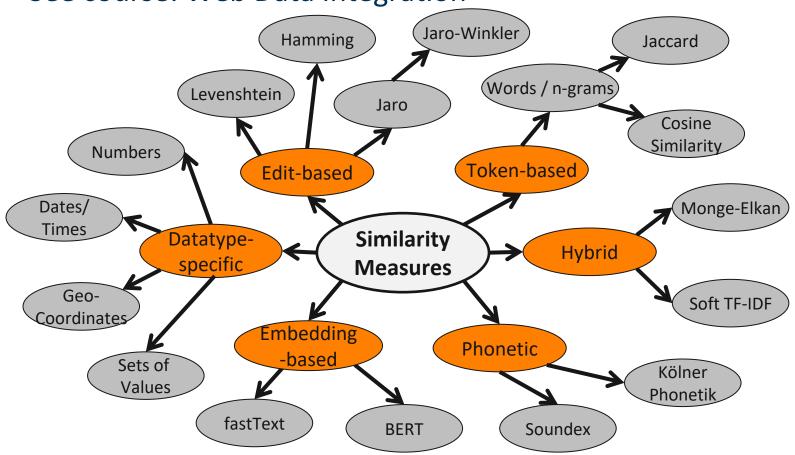
p and q are attribute values for two data objects

Levenshtein Distance

- Measures the dissimilarity of two strings
- Measures the minimum number of edits needed to transform one string into the other
- Allowed edit operations:
 - Insert a character into the string
 - Delete a character from the string
 - Replace one character with a different character
- Examples:
 - levensthein('table', 'cable') = 1 (1 substitution)
 - levensthein('Doe, Jane', 'Jane Doe') = 8 (7 substitution,1 deletion)

Further String Similarity Measures

See course: Web Data Integration



Proximity of Multidimensional Data Points

- All measures discussed so far cover the proximity of single attribute values
- But we usually have data points with many attributes
 - e.g., age, height, weight, sex...
- Thus, we need proximity measures for data points
 - See next slide
- Clustering approaches heavily depend on a similarity/distance between records
 - Attributes should be normalized so that all attributes can have equal impact on the computation of distances

Norms

• Euclidean Distance (L_2 - norm)

$$- dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

• More general (L_p - norm)

$$- dist = \sqrt[p]{\sum_{k=1}^{n} |p_k - q_k|^p}$$
$$= (\sum_{k=1}^{n} |p_k - q_k|^p)^{\frac{1}{p}}$$

• Manhattan distance (L_1 - norm)

$$- dist = \sum_{k=1}^{n} |p_k - q_k|$$

Minimum distance to go from one crossing to another

Or Mannheim;)

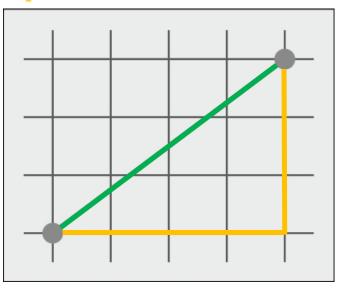
• In a squared city (like Manhattan)

Where n is the number of dimensions (attributes) and p_k and q_k are the $k^{\rm th}$ attributes of data points p and q

Example:

$$L_2 = \sqrt{4^2 + 3^2} = 5$$

 $L_1 = 4 + 3 = 7$

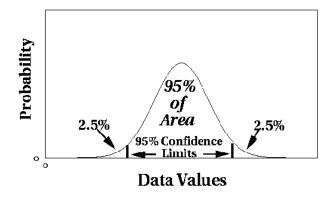


Anomaly Detection

- Also known as "Outlier Detection"
- Automatically identify data points that are somehow different from the rest
- Working assumption:
 - There are considerably more "normal" observations than "abnormal" observations (outliers/anomalies) in the data
- Methods:
 - Statistical Approaches (IQR, MAD)
 - Distance-based Approaches
 - Density based Approaches
 - Clustering based

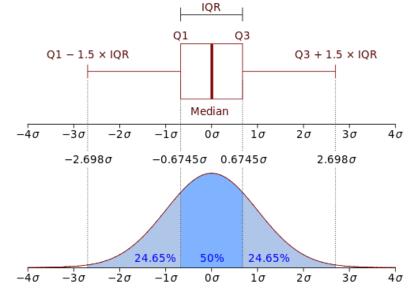
Statistical Approaches

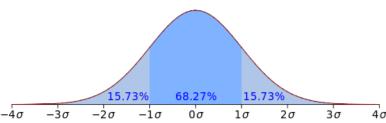
- Assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - Data distribution
 - Parameter of distribution (e.g., mean, variance)
 - Number of expected outliers (confidence limit)



Interquartile Range (IQR)

- Divides data in quartiles
 - Assumes a normal distribution
- Definitions:
 - Q1: x ≥ Q1 holds for 75% of all x
 - Q3: x ≥ Q3 holds for 25% of all x
 - IQR = Q3-Q1
- Outlier detection:
 - All values outside[Q1-1.5*IQR; Q3+1.5*IQR]
- Example:
 - 0,1,1,3,3,5,7,42 → median=3, Q1=1, Q3=7 → IQR = 6
 - Allowed interval: [1-1.5*6; 7+1.5*6] = [-8; 16]





Median Absolute Deviation (MAD)

MAD is the median deviation from the median of a sample, i.e.

$$\tilde{X} = median(X)$$
 $MAD = median(|X_i - \tilde{X}|)$

- MAD can be used for outlier detection
 - All values that are k*MAD away from the median are considered to be outliers
 - E.g., k=3
- Example:
 - $X = 0,1,1,3,5,7,42 \rightarrow \tilde{X} = 3$
 - $-|X_i \tilde{X}|$ (Deviations): 3,2,2,0,2,4,39
 - Deviations sorted: $0,2,2,2,3,4,39 \rightarrow MAD = 2$
 - Allowed interval: [3-3*2; 3+3*2] = [-3;9]

Carl Friedrich Gauss, 1777-1855

Outliers vs. Extreme Values

- So far, we have looked at extreme values only
 - But outliers can occur as non-extremes
 - In that case, methods like IQR fail
- IQR on the example below:
 - Q2 (Median) is 0
 - Q1 is -1, Q3 is 1
 - \rightarrow IQR = 2
 - → everything outside [-4,+4] is an outlier
 - → there are no outliers in this example

Distance-based Approaches

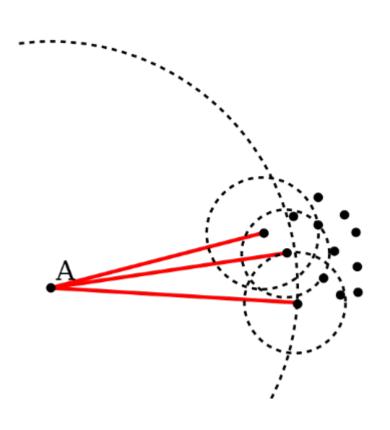
- Nearest-neighbor based
 - Compute the distance between every pair of data points
 - There are various ways to define outliers:
 - Data points for which there are fewer than p neighboring points within a distance D
 - The top n data points whose distance to the kth nearest neighbor is greatest
 - The top n data points whose average distance to the k nearest neighbors is greatest

Density-based: LOF approach

- For each point, compute the density of its local neighborhood
 - If that density is higher than the average density,
 the point is in a cluster
 - If that density is lower than the average density, the point is an outlier
- Compute local outlier factor (LOF) of a point A
 - Ratio of average density of A's neighbors to density of point A
- Outliers are points with large LOF value
 - Typical: larger than 1

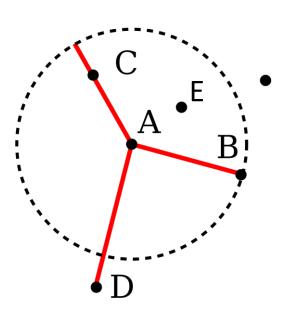
LOF: Illustration

- Using 3 nearest neighbors
- We compute
 - the average density of A
 - the average density of A's neighbors
- If the density of A is lower than the neighbors' density
 - A might be an outlier



LOF: Defining Density

- LOF uses a concept called "reachability distance"
- All points within the k-neighborhood have the same k-distance
 - In the example: $d_3(A, B) = d_3(A, C) = d_3(A, E)$
- Reachability distance $rd_k(A, B)$:
 - Distance of A,B, lower bound by $d_k(B)$
 - $rd_k(A, B) = \max(d_k(B), distance(A, B))$
- In the example:
 - $rd_k(D,A) = d(D,A)$, but
 - $rd_k(C, A) = k\text{-distance}(A)$
- Rationale: all sufficiently close points are regarded as equally close
 - lessens the impact of small variations



LOF: Defining Density

Average reachability distance

$$- \operatorname{avgrd}_k(A) = \frac{\sum_{P:k \text{ nearest neighbors of } A} rd_k(A,P)}{\operatorname{no. of k nearest neighbors of } A,}$$

$$|N_k(A)|$$

$$\operatorname{usually = k}$$

- Density is defined as the inverse
 - Idea: the larger the avg. reachability distance,
 the sparser the region in which the data point lies
 - Local reachability density $lrb_k(A) = 1/avgrd_k(A)$

$$LOF_k(A) = \frac{\sum_{P:k \; nearest \; neighbors \; of \; A} \frac{lrb_k(P)}{lrb_k(A)}}{|N_k(A)|} = \frac{\sum_{P:k \; nearest \; neighbors \; of \; A} lrb_k(P)}{|N_k(A)| * lrb_k(A)}$$

LOF: Example

• d(A,B) = 1, d(A,C) = 0.75, d(A,D) = 1.2,

$$- rd_k(A, B) = rd_k(A, C) = rd_k(A, E) = 1$$

- $rd_k(A, D) = 1.2$
- Average reachability:

$$- avgrd_k(A) = \frac{\sum_{P:k \text{ nearest neighbors of } A} rd_k(A,P)}{|N_k(A)|} = \frac{1+1+1}{3} = 1$$

• Density $lrb_k(A) = \frac{1}{avgrd_k(A)} = 1$

$$- lrb_k(B) = 1.25$$
, $lrb_k(C) = 0.83$, $lrb_k(E) = 1.67$

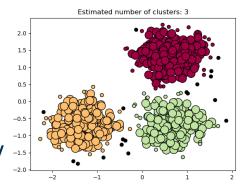
Local outlier factor of A:

$$LOF_k(A) = \frac{\sum_{P:k \text{ nearest neighbors of } A} lrb_k(P)}{|N_k(A)| * lrb_k(A)} = \frac{1.25 + 0.86 + 1.67}{3 * 1} = 1.26$$

→ outlier

DBSCAN for Outlier Detection

- DBSCAN directly identifies noise points
 - These are outliers not belonging to any cluster
 - In scikit-learn: label -1
 - Allows for performing outlier detection directly



```
# Apply DBSCAN with eps=0.5 and min_samples=5
dbscan = DBSCAN(eps=0.1, min_samples=5)
dbscan.fit(X)

# Identify the noise points
noise_mask = dbscan.labels_ == -1
print(noise_mask)

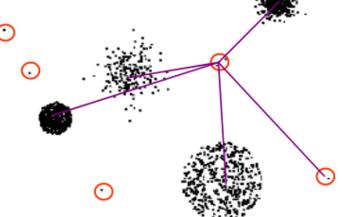
# Remove the noise points from the dataframe
X = X[~noise_mask]
```

Clustering-based Outlier Detection

Basic idea:

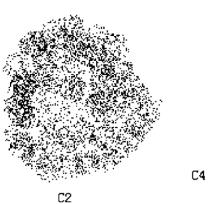
- Cluster the data into groups of different density
- Choose points in small cluster as candidate outliers
- Compute the distance between candidate points and non-candidate clusters

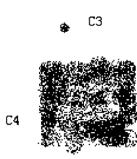
If candidate points are far from all other non-candidate points,
 they are outliers



Clustering-based Local Outlier Factor

- Idea: anomalies are data points that are
 - In a very small cluster or
 - Far away from other clusters
- CBLOF is run on clustered data
- Assigns a score based on
 - The size of the cluster a data point is in
 - The distance of the data point to the next large cluster





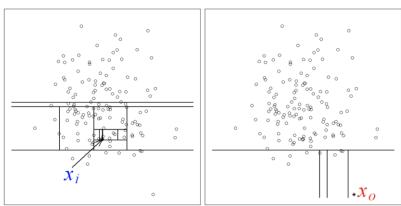
Clustering-based Local Outlier Factor

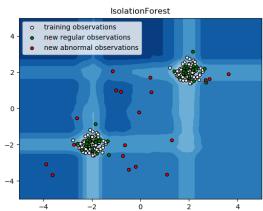
- General process:
 - First, run a clustering algorithm (of your choice)
 - Then, apply CBLOFPackagePyOD

Result: data points with outlier score

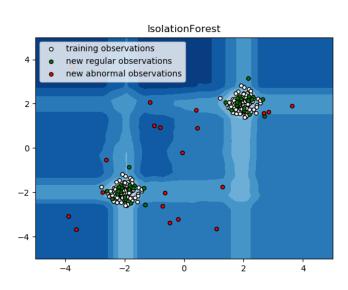
```
from sklearn.cluster import KMeans
from pyod.models.cblof import CBLOF
# clustering
clust = KMeans()
# outlier detection
detector = CBLOF(n_clusters=8, clustering_estimator=clust)
detector.fit(X)
# removal
noise_mask =detector.predict(X) == 1
X = X[~noise_mask]
```


- Isolation tree:
 - A decision tree that has only leaves with one example each
- Isolation forests:
 - Train a set of random isolation trees
- Idea:
 - Path to outliers in a tree is shorter than path to normal points
 - Across a set of random trees, average path length is an outlier score

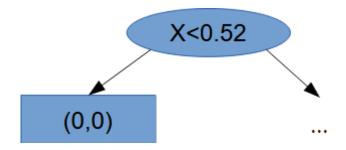


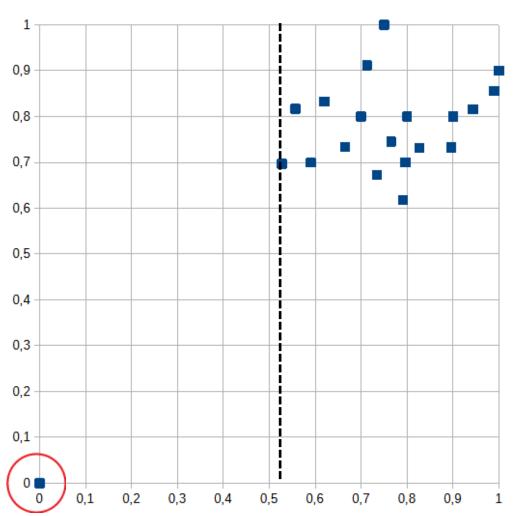


- Training a single isolation tree
 - For each leaf node w/ more than one data point
 - Pick an attribute Att and a value V at random
 - Create inner node with test Att<V
 - Train isolation tree for each subtree
- Output
 - A tree with just one instance per node
 - Usually, an upper limit on height is used



- Probability of (0,0) ending 0,9
 in a leaf at height 1
 - Pick Att X, pick V<0.52





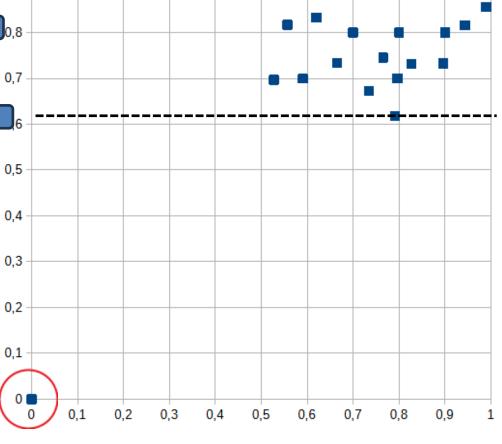
Probability of (0,0) ending _{0,9}
 in a leaf at height 1

in a leaf at height 1

output

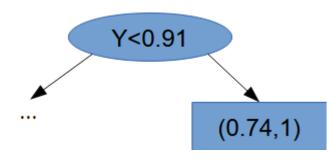
pick Att Y, pick V<0.62

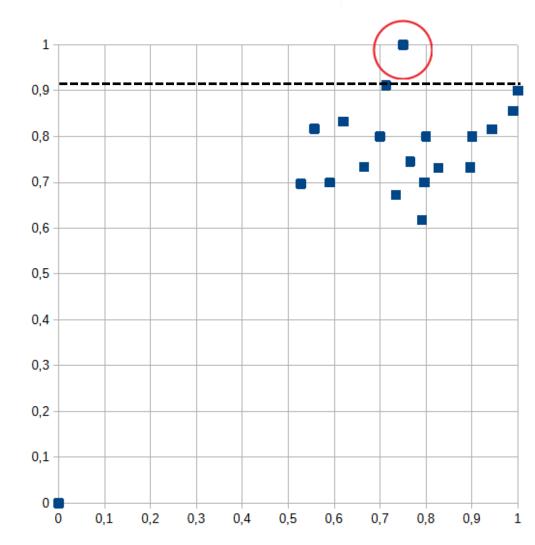
• 0.5*0.52 + 0.5*0.62 $\rightarrow 0.57$



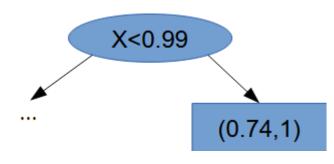
- Probability of (0.74,1) ending in a leaf at height 1
- Pick Att Y, pick V>0.91

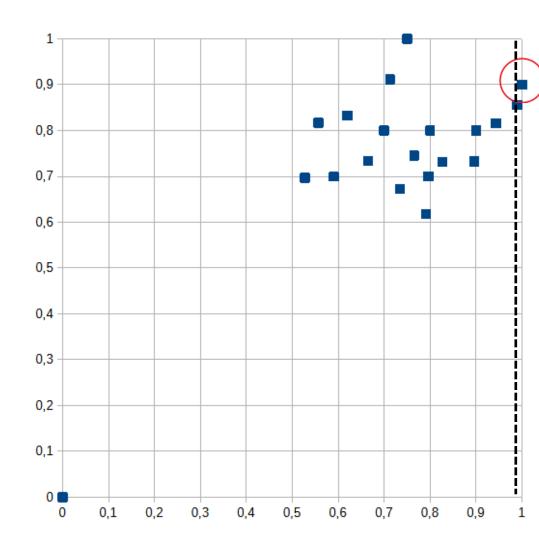




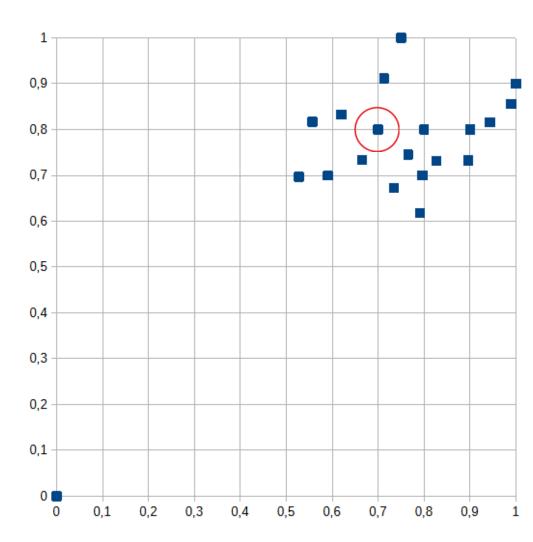


- Probability of (1,0.9) ending in a leaf at height 1
- Pick Att X, pick V>0.98



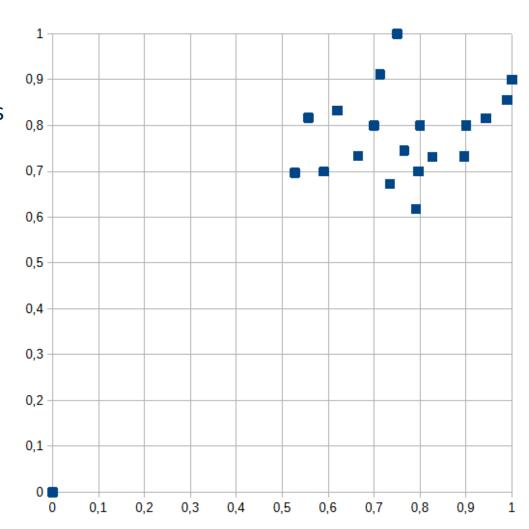


- Probability of any other data point ending in a leaf at height 1
 - This is not possible!
 - At least two tests are necessary



Observations

- Data points in dense areas need more tests
 - i.e., they end up deeper in the trees
- Data points far away from the rest have a higher probability to be isolated earlier
 - i.e., they end up *higher* in the trees



Additional material

- This week additional material is about
 - Hierarchical Clustering
- Additional material is exercise and exam relevant

Questions?

Literature for this Slideset

- Pang-Ning Tan, Michael Steinbach, Karpatne, Vipin Kumar: Introduction to Data Mining.
 2nd Edition. Pearson.
- Chapter 5: Cluster Analysis
 - Chapter 5.2: K-Means
 - Chapter 5.3: Agglomerative Hierarchical Clustering
 - Chapter 5.4: DBSCAN
- Chapter 2.4: Measures of Similarity and Dissimilarity

