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 What is Cluster Analysis?
 K-Means Clustering

* Density-based Clustering
— DBSCAN

* Proximity Measures

 Anomaly Detection
— Statistical Approaches
— Distance-based Approaches
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What is Cluster Analysis?
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* Finding groups of objects such that the objects in a group

— will be similar to one another

— and different from the objects in other groups

* Goal: Get a better understanding of the data

Intra-cluster
distances are
minimized
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Cluster Analysis as
Unsupervised Learning

* Supervised learning: Discover patterns in the data that
relate data attributes with a target (class) attribute
— The set of classes is known before
— Class attributes are usually provided by human annotators
— Patterns are used for prediction of the target attribute for new data

* Unsupervised learning: The data has no target attribute
— We want to explore the data to find some intrinsic structures in it
— The set of classes/clusters is not known before

— Cluster Analysis and Association Rule Mining are unsupervised
learning tasks
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* Partitional Clustering

— A division of data objects into non-overlapping subsets (clusters)

such that each data object is in exactly one subset
e °
°
°
® ® ® I > ’
¢ ®
°

* Hierarchical Clustering (see additional material)
— A set of nested clusters organized as a hierarchical tree

" 0a, | > - Dendrogram
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* A clustering algorithm
— Partitional algorithms
— Density-based algorithms
— Hierarchical algorithms

e A proximity (similarity, or dissimilarity) measure
— Euclidean distance
— Cosine similarity
— Data type-specific similarity measures
— Domain-specific similarity measures
* Clustering quality
— Intra-clusters distance = minimized
— Inter-clusters distance = maximized
— The clustering should be useful with regard to the goal of the analysis
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The Notion of a Cluster is Ambiguous
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The usefulness of a clustering depends on
the goal of the analysis
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Example Applications

 Market Segmentation
— Goal: Identify groups of similar customers

— Level of granularity depends on the task at h

e E-Commerce

— l|dentify offers of the same product on
electronic markets

* |mage Recognition

— l|dentify parts of an image that belong to the
same object
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K-Means Clustering

* Partitional clustering algorithm
e Each cluster is associated with a centroid (center point)

* Each point is assigned to the cluster with the
closest centroid

 Number of clusters, K, must be specified beforehand

e Algorithm:

Select K points as the initial centroids.

: repeat

1:
2
3:  Form K clusters by assigning all points to the closest centroid.
4 Recompute the centroid of each cluster.

5

. until The centroids don’t change
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* Randomly pick 3 initial centroids
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K-Means Example, Step 2

* Assign each point to the closest centroid
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e Move each centroid to the mean of each cluster
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* Reassign points if they are now closer to a different centroid

Y |~ Question: Which points are reassigned?
\ 4 \ 4
\ 4 ‘0‘
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 Answer: Three points are reassigned
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 Re-compute cluster means and

y Mmove centroids to new cluster means
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e Default convergence criterion
— No (or minimum) change of centroids

e Alternative convergence criteria
— No (or minimum) re-assignments of data points to different clusters
— Stop after x iterations
— Minimum decrease in the sum of squared error (SSE)
e See next slide
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Evaluating K-Means Clusterings

 Widely used cohesion measure: Sum of Squared Error (SSE)
— For each point, the error is the distance to the nearest centroid
— To get SSE, we square these errors and sum them

k
SSE = zz dist(x, mj)z
=1 xECj

— (j is the j-th cluster

— m; is the centroid of cluster (;
(the mean vector of all the data points in ;)

— dist(x, mj) is the distance between data point x and centroid m;

e Given several clusterings (= groupings),
we should prefer the one with the smallest SSE
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o
o
e Clustering problem given: o
¢ °
- N
* Good clustering >
?: A |
— small distances to centroids L YA I\.
- N
* Not so good clustering />r.\
— larger distances to centroids /\\‘A/
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Weaknesses of K-Means: Initial Seeds

e Clustering results may vary significantly depending on initial
choice of seeds (number and position of seeds)

(B Meration | [C. [teration 2
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* If we use different seeds, we get good results
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Improving the Clustering Results

e Restart a number of times with different random seeds

— chose the resulting clustering with the smallest
sum of squared error (SSE)

e Run k-means with different values of k

— The SSE for different values of k cannot directly be compared
e Think: what happens for k - number of examples?

4000

— Workarounds

* Choose k where SSE improvement 1\
decreases (knee value of k)

3000

knee value

VL

2000
-/

* Employ X-Means

— Variation of K-Means algorithm
that automatically determines k

Within Groups Sum of Squares

1000

— Starts with small k, then splits large

clusters until improvement decreases
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Choosing k — Cluster Evaluation

* Recap: we want to maximize
— Cohesion: measures how closely related are objects in a cluster

— Separation: measure how distinct or well-separated a cluster is from
other clusters

Cohesion Separation

University of Mannheim | IE500 Data Mining | Clustering | Version 1.09.2024 23



Silhouette Coefficient
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Cohesion a(x) : Average distance of x to all other vectors
in the same cluster

Separation b(x) : Average distance of x to the vectors in
other clusters. Find the minimum among the clusters.

Silhouette s(x) :
b(x) —a(x)

S = e, b0}
s(x) =[-1,1] -1=bad, O=indifferent, 1=good
Silhouette coefficient (SC):

, N
SC = Nz s(x;)
i=1
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* Approach
— Run k-means with different k values
— Plot the Silhouette Coefficient
— Pick the best (i.e., highest) silhouette coefficient
— Note: silhouette coefficient does not depend on no. of clusters

Silhouette coefficient

10F

RN

h&

h4r

k2r

0

0 1 2 3 4 5 G
nclusters
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Problems with Outliers

* Possible remedy:
— Remove data points far away from centroids

— To be safe: monitor these possible outliers over a few iterations and
then decide to remove them

e Other remedy: random sampling

— After determining the centroids based on random samples,
assign the rest of the data points (also improves runtime performance)

outher

0 outher
o
Q o, 0 /
o a o [+]
o

(B Ideal clusters
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e K-Medoids is a K-Means variation that uses the medians of
each cluster instead of the mean

 Medoids are the most central existing data points
in each cluster

 K-Medoids is more robust against outliers as the median is
not affected by extreme values:
— Mean and Medianof 1, 3,5,7,9is5
— Meanof 1,3,5,7, 1009 is 205
— Medianof1l, 3,5, 7,1009is 5
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K-Means Clustering Summary

* Advantages * Disadvantages
— Simple, understandable — Need to determine
— Efficient time complexity: number of clusters
On*K*I*d) — All items are forced
where into a cluster
* n =number of points — Sensitive to
* K =number of clusters e Qutliers
* | = number of iterations  |nitial seeds

* d = number of attributes
Python

# import KMeans
from sklearn.cluster import KMeans

# create clusterer
estimator = KMeans(n_clusters = 3)

# create clustering
cluster_ids = estimator.fit_predict(dataset[['Attl', 'Att2']1])
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Density-based Clustering

* Challenging use case for K-Means because
— Problem 1: Non-globular shapes
— Problem 2: Outliers / noise points
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 DBSCAN is a density-based algorithm

— Density = number of points within a specified radius Epsilon (Eps)

* Divides data points into three classes:

— A pointis a core point if it has at least a specified number of
neighboring points (MinPts) within the specified radius Eps
* the point itself is counted as well
* these points form the interior of a dense region (cluster)

— A border point has fewer points than MinPts within Eps, but is
in the neighborhood of a core point

— A noise point is any point that is not a core point or a border point
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Examples of Core, Border, and
Noise Points

2r ,/ ~
/e N,
15) / Noise Pdint
{ Eps = 1__,}-( .
10 CT
05h . ’ﬂf; > /ﬁ\/\
ot / {f U
F ).F . )
s : Borl'\jer F’oint%«i y Core Pont
4l N N/ /
D
-1.51 MinPts = 4
2 r i : ;
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* Eliminate noise points

* Perform clustering on the remaining points
current_cluster_label < 1
for all core points do
if the core point has no cluster label then
current_cluster_label < current_cluster_label + 1
Label the current core point with cluster label current_cluster_label
end if
for all points in the Eps-neighborhood, except " the point itself do

if the point does not have a cluster label then perform recursion

Label the point with cluster label current_cluster_label for all points in the
dif Eps-neighborhood
end 1 of the point
end for
end for
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Examples of Core, Border, and
Noise Points

Original Points Clusters
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 Varing densities . MinPts=4, £ps=9.92

v e

&

 High-dimensional data ’

Original Points
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 |dea: for points in a cluster, their k" nearest neighbors are at
roughly the same distance

* Noise points have the k" nearest neighbor at farther distance
* Plot sorted distance of every point to its k" nearest neighbor

[43]
[=]

P
o [ 4] o L]
T T T T

Area where a good

(=)
T

[4)]
T

Epsilon value
is assumed to be found

4th Nearest Neighbor Distance
- — ] [\ w (1]

[42]

T

(=)
T

/—_‘.,_ i i i i
0 500 1000 1500 2000 2500 3000
Points Sorted According to Distance of 4th Nearest Neighbor

University of Mannheim | IE500 Data Mining | Clustering | Version 1.09.2024 36



DBSCAN in Python B ST MANNHE 1M

Data and Web Science Group

Python

# import DBSCAN
from sklearn.cluster import DBSCAN

# create the clusterer
clusterer = DBSCAN(min_samples=3, eps=1.5, metric='euclidean')

# create the clusters
clusters = clusterer.fit_predict(dataset[[ Attl", "Att2']1])
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So far, we have seen different clustering algorithms
— all of which rely on proximity (distance, similarity, ...) measures
Similarity
— Numerical measure of how alike two data objects are (higher: more alike)
— Often falls in the range [0,1]
Dissimilarity / Distance
— Numerical measure of how different are two data objects (higher: less alike)
— Minimum dissimilarity is often 0
— Upper limit varies

A wide range of different measures is used depending on the
requirements of the application
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Attribute Dissimilarity Similarity
Type
. 0 ifp=gq 1 ifp=gq
Nominal = ) s = )
1 ifp#gq 0 ifp#gq
d — lp—al
. n—1 pa
Ordinal (values mapped to integers0 ton—1, | s =1 — J—Ln_l
where n is the number of values)
Interval or Ratio | d = |p — ¢| s =—d,s = ﬁ or
s—1— d—min_d
mazx_d—min_d

Similarity and dissimilarity for simple attributes

p and q are attribute values for two data objects

University of Mannheim | IE500 Data Mining | Clustering | Version 1.09.2024
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Levenshtein Distance

 Measures the dissimilarity of two strings

* Measures the minimum number of edits needed
to transform one string into the other

* Allowed edit operations:
— Insert a character into the string
— Delete a character from the string
— Replace one character with a different character

 Examples:
— levensthein('table’, 'cable') =1 (1 substitution)

— levensthein('Doe, Jane', 'Jane Doe') = 8 (7 substitution,
1 deletion)
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Further String Similarity Measures

e See course: Web Data Integration

@ Jaro-Winkler @
Cosine
Similarit

Dates/ Monge-Elkan
Times

Geo-
oordinate
Kélner
Values Phonetik
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Proximity of
Multidimensional Data Points

e All measures discussed so far cover the proximity of single
attribute values

* But we usually have data points with many attributes
— e.g., age, height, weight, sex...

 Thus, we need proximity measures for data points
— See next slide

* Clustering approaches heavily depend on a
similarity/distance between records

— Attributes should be normalized so that all attributes can have
equal impact on the computation of distances
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Norms

¢ EUCIidean Distance (LZ - norm) Where n is the number of dimensions (attributes)

and p, and g, are the k" attributes of data points

— dist = /Y-, (Pk—qk)? pence
* More general (L, - norm)

Example:

. p — —
— dist = X1 |k — qi|P L, =v4?+3% =5

1
= (Qk=11px — qxIP)P

— dist = Y1 [Pk — qu|
— Minimum distance to go from one
crossing to another

* In a squared city AReAVERTLETH)
(like Manhattan)
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Anomaly Detection

e Also known as “Outlier Detection”

* Automatically identify data points
that are somehow different from the rest

 Working assumption:

|II

— There are considerably more “normal” observations than
“abnormal” observations (outliers/anomalies) in the data

* Methods:
— Statistical Approaches (IQR, MAD)
— Distance-based Approaches
— Density based Approaches
— Clustering based
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Statistical Approaches

* Assume a parametric model describing the distribution of
the data (e.g., normal distribution)

* Apply a statistical test that depends on

— Data distribution
— Parameter of distribution (e.g., mean, variance)
— Number of expected outliers (confidence limit)

Probability

95f %\\

2.5% / Area 5%
495? Con_ﬁdence\ }

Limits —!-I

o]

Data Values
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IQR
Ql Q3
* Divides data in quartiles Q115 x10R 03415 x 08
: I
— Assumes a normal distribution ' L
° Deﬁnitions: -40 -3¢0, -20 -lo. 0o 1o 20 30 40

-2.6980 -0.67450 0.67450 2.6980

— Q1: x> Q1 holds for 75% of all x
— Q3:x=Q3 holds for 25% of all x |
- |QR = Q3-Q1 24.55%% 50% 224.55%

40 -3¢ -20 -lo0 00 1o 20 30 40

e Qutlier detection:

— All values outside
[Q1-1.5*%IQR ; Q3+1.5*IQR]

° Example: 40 -30 -20 -lo 0o 1lo 20 30 A4¢
- 0,1,1,3,3,5,7,42 - median=3, Q1=1, Q3=7 > IQR =6

— Allowed interval: [1-1.5%6; 7+1.5%6] =[-8 ; 16 :
| ’ I=1-8;16] Thus, 42 is
University of Mannheim | IE500 Data Mining | Clustering | Version 1.09.2024 an outlier 46
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e MAD is the median deviation from the median of a sample, i.e.
X = median(X)

MAD = median(|X; — X|)
* MAD can be used for outlier detection

— All values that are k*MAD away from
the median are considered to be outliers

 E.g., k=3
 Example:
- X=0,1,13,5,742>X =3 —
_ Carl Friedrich Gauss,
— |X; — X]| (Deviations): 3,2,2,0,2,4,39 1777-1855

— Deviations sorted: 0,2,2,2,3,4,39-> MAD =2
— Allowed interval: [3-3*%2 ; 3+3%2] = [-3,9]

Thus, 42 is
University of Mannheim | IE500 Data Mining | Clustering | Version 1.09.2024 an outlier 47
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* So far, we have looked at extreme values only

— But outliers can occur as non-extremes
— In that case, methods like IQR fail

* |QR on the example below:
— Q2 (Median)is 0
— Qlis-1,Q3is 1
- 1QR=2
— everything outside [-4,+4] is an outlier
— there are no outliers in this example

-1.5 -1 0.5 0 05 1 15

University of Mannheim | IE500 Data Mining | Clustering | Version 1.09.2024 48



e
iiﬁa; UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Distance-based Approaches

* Nearest-neighbor based
— Compute the distance between every pair of data points

— There are various ways to define outliers:
* Data points for which there are fewer than p neighboring points within
a distance D

Pgd(()age * The top n data points whose distance to the k" nearest neighbor is
y

greatest
* The top n data points whose average distance to the k nearest
neighbors is greatest
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Density-based: LOF approach

* For each point, compute the density
of its local neighborhood

— If that density is higher than the average density,
the point is in a cluster

— If that density is lower than the average density,
the point is an outlier

e Compute local outlier factor (LOF) of a point A
— Ratio of average density of A’s neighbors to density of point A

e Qutliers are points with large LOF value
— Typical: larger than 1
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LOF: lllustration

e Using 3 nearest neighbors
* We compute

— the average density of A
— the average density of A’s neighbors

e If the density of A is lower
than the neighbors’ density
— A might be an outlier

University of Mannheim | IE500 Data Mining | Clustering | Version 1.09.2024
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 LOF uses a concept called “reachability distance”

* All points within the k-neighborhood
have the same k-distance

— Inthe example:ds(A4,B) = d3(A,C) = d3(A,E)
* Reachability distance rd; (4, B) :

— Distance of A,B, lower bound by dj (B)

— rdy (A, B) = max(dy(B),distance(A, B))
* Inthe example:

— rd, (D,A) =d(D,A), but

— rdy (C,A) = k-distance(A)
e Rationale: all sufficiently close points are regarded as equally close

— lessens the impact of small variations
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LOF: Defining Density

* Average reachability distance smmmmea

2.p:k nearest neighbors of ATAk(AP) Re
INk(A)] 3

— avgrd,(4) =
no. of k nearest neighbors of A,
usually =k

* Density is defined as the inverse

— ldea: the larger the avg. reachability distance, .
the sparser the region in which the data point lies *~

— Local reachability density Irb,(A) = 1/avgrd,(A)

-
-----

* Local outlier factor: relation of density of A’s neighbors to

A’s density:
Irb, (P)

LOF, (4) = 2.P:k nearest neighbors of ATyrp, (A) _ Y:P-k nearest neighbors of A Irb, (P)
k - —

[Ny (A)] [N (A)] * Irby (A)
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LOF: Example

+ d(4,B) =1, d(4,0) =075, d(4,D) = 1.2,

— Tdk(A B) — Tdk(A C) Tdk(A E) =1 .
— rd,(A,D) = 1.2 /
* Average reachability:
— avgrd(A) = 2P=knearestne|;‘3:€gr of ATA(AP) _ — =1
1

* Density lrb,(A) = pp——s i
Let’s assume: avgrd,(B) = 0.8, avgrd,(C) = 1.2, avgrd, (E) = 0.6

— lrbk(B) = 1.25 ) lrbk(C) = (0.83 ,lrbk(E) = 1.67
1.25+ 0.86 + 1.67 i

* Local outlier factor of A:
ZP-k nearest neighbors of A lrbk (P)
LOF,(A4) = — = = 1.26
() Ny (A)] * lrby (A) 31
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DBSCAN for Outlier Detection

Estimated number of clusters: 3

* DBSCAN directly identifies noise points

— These are outliers not belonging to any cluster
* In scikit-learn: label -1
— Allows for performing outlier detection directly | *

# Apply DBSCAN with eps=0.5 and min samples=5
dbscan = DBSCAN (eps=0.1, min_samples=5]
dbscan. fit (X)

# Identify the noise points
nmise_mask = dbscan.labels == -1
print (nolse mask)

# Remove the nolise points from the dataframe
X = X[~nolse mask]
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e Basicidea:

Cluster the data into groups of different density
Choose points in small cluster as candidate outliers

Compute the distance between candidate points and non-candidate
clusters

If candidate points are far from all other non-candidate pomts
they are outliers 2
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e |dea: anomalies are data points that are
— In a very small cluster or
— Far away from other clusters

e CBLOF is run on clustered data

e Assigns a score based on
— The size of the cluster a data pointis in

— The distance of the data point to the next large cluster
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Clustering-based Local Outlier Factor

* General process:

— First, run a clustering algorithm (of your choice)

— Then, apply CBLOF Package
PyOD

* Result: data points with outlier score

from sklearn.cluster import KMeans

from pyod.models.cblof import CBLOF

# clustering

clust = KMeans ()

# outlier detection

detector = CBLOF(n_clusters=8,clustering_estimator=clu5t)
detector.fit (X)

# removal

noise mask =detector.predict (X) ==

i = XTwnoise mask]
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Isolation Forests

e |solation tree:
— A decision tree that has only leaves with one example each

* |solation forests:

— Train a set of random isolation trees

* |dea:
— Path to outliers in a tree is shorter than path to normal points

— Across a set of random trees, average path length is an outlier score

IsolationForest
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Isolation Forest

* Training a single isolation tree

— For each leaf node w/ more than one data point
* Pick an attribute Att and a value V at random

* Create inner node with test Att<V
— Train isolation tree for each subtree

* Qutput
— A tree with just one instance per node

IsolationForest

o training observations
e new regular observations

—_— Usua”y’ an upper Iimit On height iS used e new abnormal observations
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Isolation Forest

1 a
* Probability of (0,0) ending D il
in a leaf at height 1 C0.52 B e L, L g "
lE—‘pick Att X, pick V<0.52, or m ® o
07 | | |
—_pick Att Y, pick V<0.62 -
= | 002 e -ommeen
e 0.5%0.52 +0.5*%0.62 o8
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* Probability of (0.74,1)
ending in a leaf at
height 1

* Pick AttY, pick V>0.91

* 0.5*0.09
— 0.045
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Isolation Forest

* Probability of (1,0.9) 09
ending in a leaf at .
height 1

e Pick Att X, pick V>0.98 |

. 0.5*0.02 |

> 0.01
o

0 01 0,2
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Isolation Forest

* Probability of any other
data point ending
in a leaf at height 1
— This is not possible!

— At least two tests
are necessary
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Isolation Forest

* Observations 05

— Data points in dense areas 08
need more tests

* i.e., theyend up deeper °’

in the trees 0.6

— Data points far away from s

the rest have a higher
probability to be isolated 04
earlier

03
* i.e., they end up higher
in the trees 0.2
01
om
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Additional material

 This week additional material is about

— Hierarchical Clustering

e Additional material is exercise and exam relevant
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Questions?
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Literature for this Slideset

e Pang-Ning Tan, Michael Steinbach, | EEESEEERINGIIN

¢ o EDITION

Karpatne,Vipin Kumar:
Introduction to Data Mining.
2nd Edition. Pearson.

Introductlon to
Data Mining

SECOND EDITION

e Chapter 5: Cluster Analysis
— Chapter 5.2: K-Means

— Chapter 5.3: Agglomerative Hierarchical
Clustering

— Chapter 5.4: DBSCAN
 Chapter 2.4: Measures of Similarity and Dissimilarity

Pang-Ning Tan ¢ Michael Steinbach ¢ Anuj Karpatne ¢ Vipin Kumar
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