Introduction

IE500 Data Mining

Hello

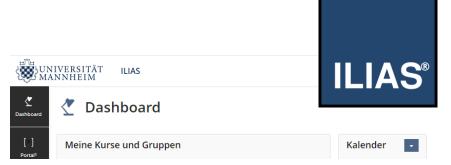
- Dr. Sven Hertling
 - Substitute Professor for Data Science
- Research Interests:
 - Knowledge Graph Integration
 - KGs in combination with Large Language Models
 - Information Extraction
- Room: B6 26, B0.21
- eMail: sven.hertling@uni-mannheim.de
- Will teach the lectures

Hello

- Dr. Rita Torres de Sousa
- Researcher
- Research Interests:
 - Knowledge graphs
 - Machine learning
 - Biomedical applications
- Room: B6 26, B0.01
- eMail: <u>rita.sousa@uni-mannheim.de</u>
- Webpage: ritatsousa.github.io
- Rita will teach the exercises

Hello

- M.Sc. Franz Krause
 - Graduate Research Associate
- Research Interests:
 - Machine Learning Applications on Linked Data
 - Dynamization of Knowledge Graph Embeddings
 - Knowledge Graph Application and Implementation in Industrial Settings
 - Applied Graph Theory
- Room: B6 26, B 0.02
- eMail: <u>franz.krause@uni-mannheim.de</u>
- Will teach one of the exercise groups and will supervise student projects



Course Organization - Material

- Course Webpage
 - https://www.uni-mannheim.de/dws/teaching/coursedetails/courses-for-master-candidates/ie-500-datamining
 - Provides up-to-date information, lecture slides, video lectures
- ILIAS eLearning System
 - https://ilias.uni-mannheim.de/
 - Exercises
 - Mailing lists, discussion forum,
 - Team project (submission, coaching sessions)

Course Organization

Registration

- you have registered via Portal2
- and been added to ILIAS

Offline Lecture

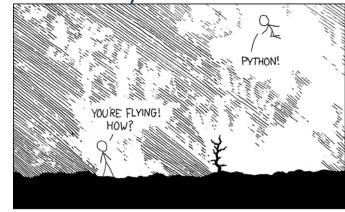
- Introduces the principle methods of data mining
- Discusses how to evaluate the learned models
- Presents practical examples of data mining applications
- Time: Monday, 13:45 15:15
- Location: Room A 001 Building A 5,6 Part A

Course Organization - Material

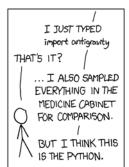
- Online Lecture
 - Part of the course
 - Exercise / Exam relevant
 - All Slides and Videos are already available

	Week	Monday(Offline Lecture)	Online Lecture (see Ilias Course)	Thursday (Exercise)
	01.09.2025	no lecture		Introduction to Python (13:45–15:15)
	08.09.2025	Introduction to Data Mining		Intro
	15.09.2025	Preprocessing		Preprocessing
	22.09.2025	Classification 1	Nearest Centroids	Classification 1
	29.09.2025	Classification 2	Comparing Classifiers	Classification 2
	06.10.2025	Regression	Ensembles	Regression
	13.10.2025	Clustering and Anomalies	Hierarchical Clustering	Clustering
	20.10.2025	Feedback on project outlines	Time Series	Time Series
	27.10.2025	Association Analysis and Subgroup Discovery	Multi Modal Data	Association Analysis
	03.11.2025	Project feedback session		Project Work
	10.11.2025	Project feedback session		Project Work
	17.11.2025	Project feedback session		Project Work
	24.11.2025	Project feedback session		Project Work
	01.12.2025	Q&A		Project Presentations

Course Organization - Exercise


- Exercise Groups
 - Students experiment with data sets using Python
 - Theoretical tasks (similar to exam)
- Time and Location (same content only attend one):
 - Thursday, 12.00 13.30, A104 Building B6, 26 Part A (Rita/Franz)
 - Thursday, 13.45 15.15, A104 Building B6, 26 Part A (Rita/Franz)
 - Thursday, 15.30 17.00, A104 Building B6, 26 Part A (Rita/Franz)
 - You can also switch
 between weeks if needed

Introduction to Python



- Already last week Thursday 13:45-15:15
- Topics:
 - Setup of environment (Anaconda, Jupyter Notebooks)
 - Python Intro / Design Goals
 - Basic programming concepts in Python
- Support
 - Help with environment setup
 - Q&A
- Material
 - Tutorial slides available on website

Usage of LLMs like ChatGPT

- We will be using LLMs in the exercise to
 - Discuss suitable methods and parameter settings for different use cases
 - Generate and debug Python code for experimenting with the methods

Course Organization - Project

Project Work

- Teams of five to six students realize a data mining project
- Teams may choose their own data sets and tasks
 (in addition, we will propose some suitable data sets and tasks)
- Write summary about project and present the results

Deadlines

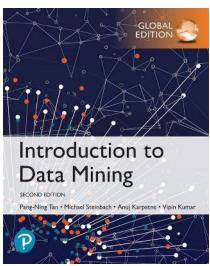
- Team formation Sunday, October, 5th, 23:59
- Submission of project proposal
 - Tuesday, October, 14th, 23:59
- Submission of final project work report
 - Sunday, November 30th, 23:59
- Submission of Presentation (PDF)
 - Wednesday, December 3rd, 23:59

Course Organization - Exam

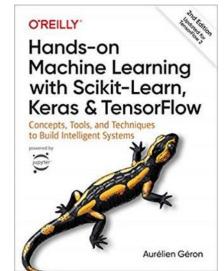
- Date and Time: Monday, 15th December 2025
- Duration: 60 minutes
- Structure: 6 open questions that
 - Check whether you have understood the lecture content
 - We try to cover all major chapters of the lecture
 - Require you to describe the ideas behind algorithms and methods
 - Often: How do methods react to special patterns in the data?
 - Might require you to do some simple calculations for which
 - You need to know the most relevant formulas
 - You do not need a calculator
 - There will be at most 1 question containing Python content
 - Should be solvable without a lot of Python knowledge
 - You do not need to know specialized Python functions by heart

Course Organization - Exam

- There is only one exam per semester
 - Because course is offered every semester
 - The next exam date is at the end of the upcoming FSS
 - i.e., no retake date!
- Upon failure, you will have to redo
 both the project and the exam in another semester
 - Unfortunately, we cannot carry over your project mark

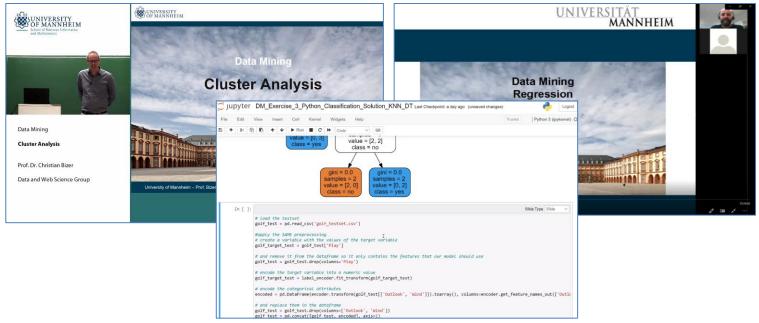

Final grade

75 % written exam, 20% project report, 5% project presentation


Textbooks for the Course

 Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining. 2nd Edition.
 Pearson / Addison Wesley.

Aurélien Géron:
 Hands-on Machine Learning with Scikit-Learn,
 Keras & TensorFlow.
 2nd or 3rd Edition, O'Reilly, 2019 or 2022

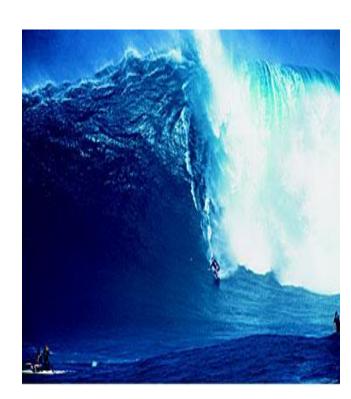

Scikit-learn Documentation:
 https://scikit-learn.org/stable/user_guide.html

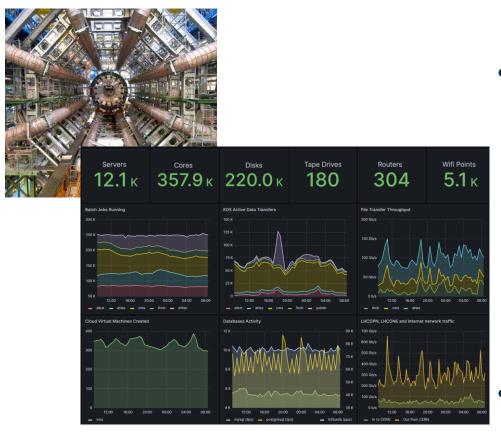
Videos and Screencasts

Videos

- https://www.uni-mannheim.de/dws/teaching/lecture-videos (VPN!)
- Lecture Videos By Heiko Paulheim (HWS 2020) and Christian Bizer (FSS 2020)
- Screencasts for the Exercises by Ralph Peeters (FSS 2022)
- Keep in mind, that the lecture and exercise change over time

Questions?




What is Data Mining?

- Large quantities of data are collected about all aspects of our lives
- This data contains interesting patterns
- Data Mining helps us to
 - 1. Discover these patterns and
 - 2. Use them for decision making across all areas of society, including
 - Business and industry
 - Science and engineering
 - Medicine and biotech
 - Government
 - Individuals

https://home.cern/news/news/computing/new-data-centre-cern http://cern.ch/go/datacentrebynumbers

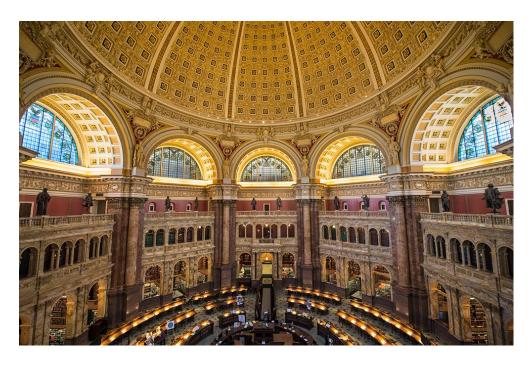
CERN

- Large Hadron Collider
 - 45 petabytes per week produced (February 2024)
- 820 petabytes of data archived on tape
- 1005 petabytes of disk space available (August 2024)

Discover

Patterns in the experiments

Facebook


- 4 Petabyte of new data generated every day
- over 300 Petabyte in Facebook's data warehouse

Predict

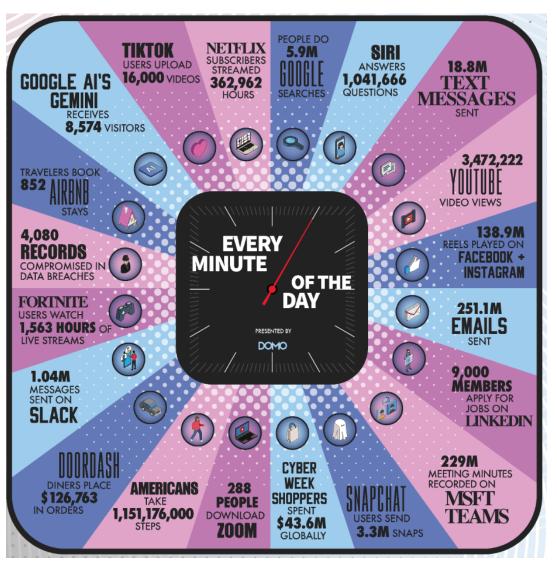
Interests and behavior of over one billion people

https://www.brandwatch.com/blog/facebook-statistics/
http://www.technologyreview.com/featuredstory/428150/what-facebook-knows/

US Library of Congress

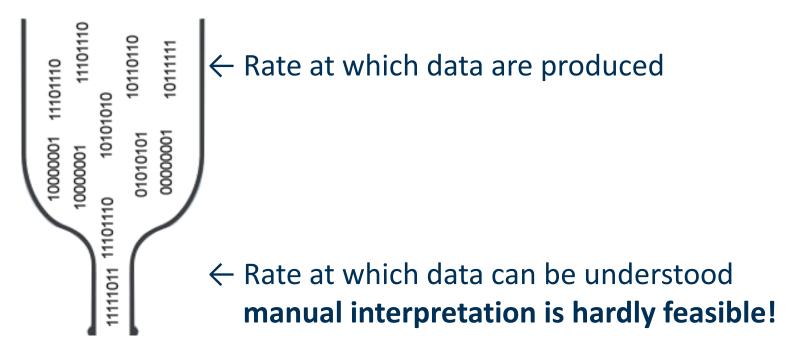
– ≈ 235 TB archived

Discover

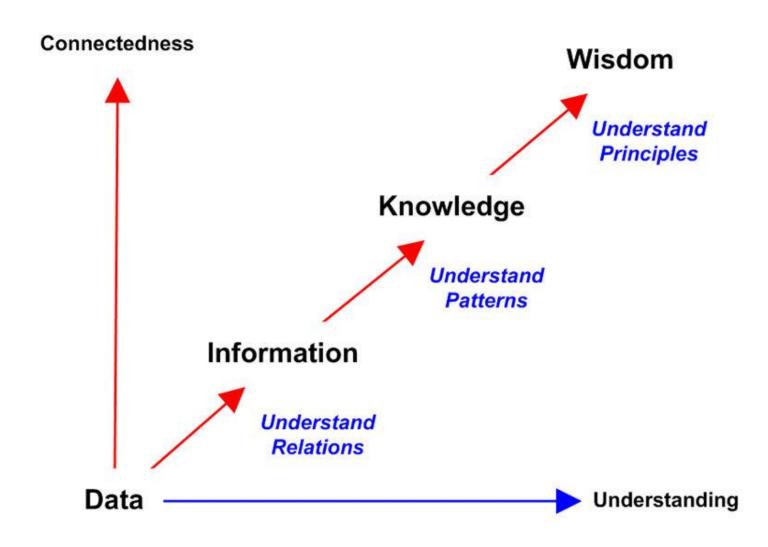

- Topic distributions*
- Citation networks

Train

Large Language Models

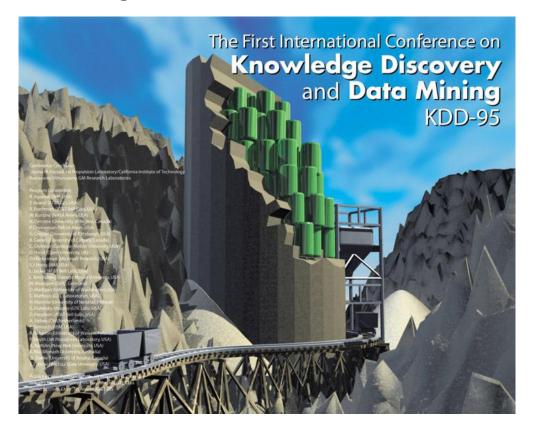

https://www.brandwatch.com/blog/facebook-statistics/ http://www.technologyreview.com/featuredstory/428150/what-facebook-knows/

"We are Drowning in Data... but starving for knowledge!"



- We are interested in the patterns, not the data itself!
- Data Mining methods help us to
 - Discover interesting patterns in large quantities of data
 - Take decisions based on the patterns

Data, Information, Knowledge, Wisdom



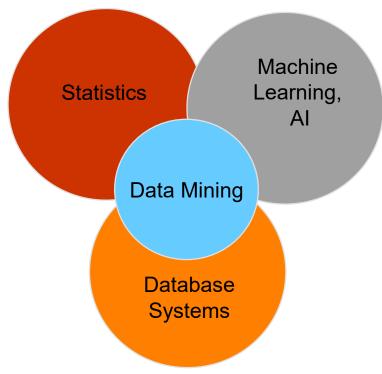
Data Mining: Definitions

- Idea: mountains of data
 - Where knowledge is mined

Data Mining: Definitions

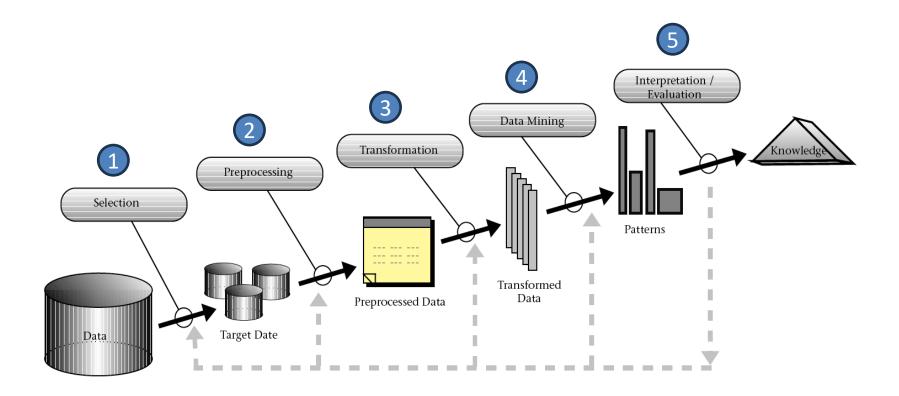
- Data Mining is a non-trivial process of identifying
 - valid
 - novel
 - potentially useful
 - ultimately understandable

patterns in data.


(Fayyad et al. 1996)

- Data Mining methods
 - 1. Detect interesting patterns in large quantities of data
 - 2. Support human decision making by providing such patterns
 - 3. Predict the outcome of a future observation based on the patterns

Origins of Data Mining

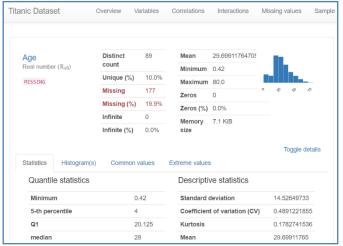


- Combines ideas from statistics, machine learning, artificial intelligence, and database systems
- Traditional techniques may be unsuitable due to
 - Large amount of data
 - High dimensionality of data
 - Heterogeneous,
 distributed nature of data

The Data Mining Process

Source: Fayyad et al. (1996)

Selection and Exploration (1)


Selection

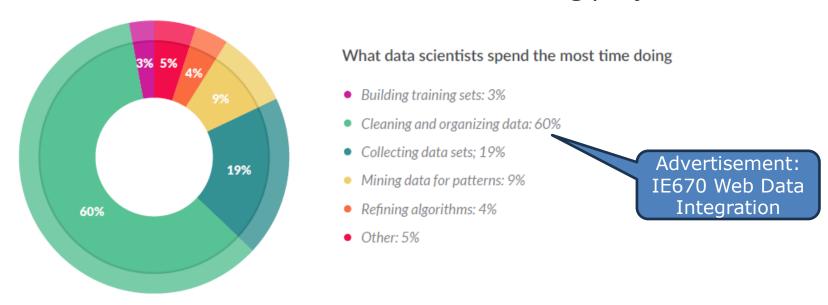
- What data is available?
- What data is potentially useful for the task at hand?
- What do I know about the quality/provenance of the data?

Exploration / Profiling

- Get an initial understanding of the data
- Calculate basic summarization statistics
- Visualize the data
- Identify data problems such as outliers, missing values, duplicate records

Preprocessing and Transformation (2+3)

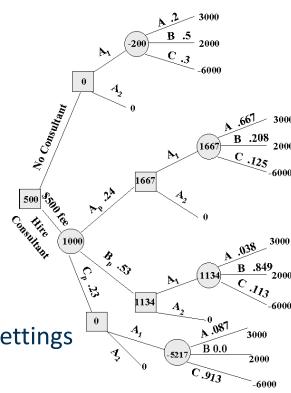
- Transform data into a representation that is suitable for the chosen data mining methods
 - Number of dimensions (represent relevant information using less attributes)
 - Scales of attributes (nominal, ordinal, numeric)
 - Amount of data (determines hardware requirements)


Methods

- Discretization and binarization
- Feature subset selection / dimensionality reduction
- Attribute transformation / text to term vector / embeddings
- Aggregation, sampling
- Integrate data from multiple sources

Preprocessing and Transformation (2+3)

- Good data preparation is key to producing valid and reliable models
- Data integration/preparation is estimated to take
 70-80% of the time and effort of a data mining project



Source: CrowdFlower Data Science Report 2016: http://visit.crowdflower.com/data-science-report.html University of Mannheim | IE500 Data Mining | Introduction and Course Outline | Version 1.09.2025

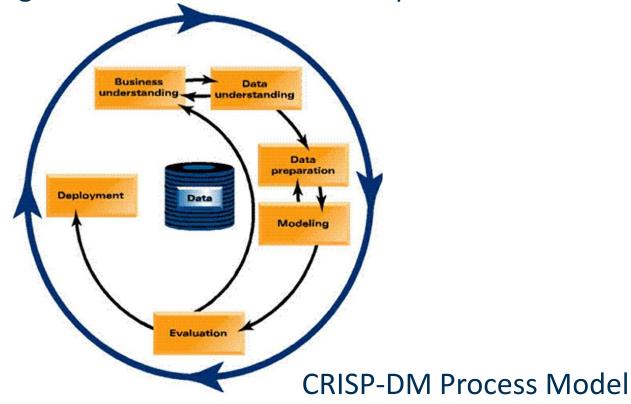
Data Mining (4)

- Input: Preprocessed Data
- Output: Model / Patterns
- 1. Apply data mining method
- 2. Evaluate resulting model / patterns
- 3. Iterate
 - Experiment with different (hyper-)parameter settings
 - Experiment with multiple alternative methods
 - Improve preprocessing and feature generation
 - Increase amount or quality of training data
 - Combine different methods

Interpretation / Evaluation (5)

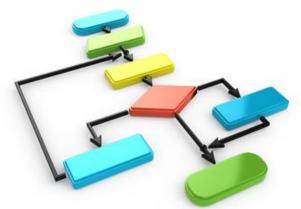
- Output of Data Mining
 - Patterns
 - Models
- In the end, we want to derive value from that, e.g.,
 - Gain knowledge

Make better decisions


Increase revenue

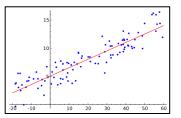
Deployment

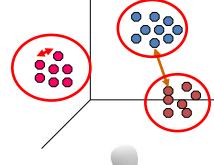
Use model in the business context


Keep iterating in order to maintain and improve model

Tasks and Applications

- Descriptive Tasks
 - Find patterns in the data
 - E.g. which products are often bought together?
- Predictive Tasks
 - Predict unknown values of a variable
 - Given observations (e.g., from the past)
 - E.g. will a person click a online advertisement?
 - given her browsing history
- Machine Learning Terminology
 - Descriptive = unsupervised
 - Predictive = supervised


Data Mining Tasks


Classification [Predictive]

Regression [Predictive]

Cluster Analysis [Descriptive]

Association Analysis [Descriptive]

Classification

 Previously unseen records should be assigned a class from a given set of classes as accurately as possible.

Approach:

- Given a collection of records (training set)
 - Each record contains a set of attributes
 - One attribute is the class attribute (label) that should be predicted
- Find a model for predicting the class attribute as a function of the values of other attributes

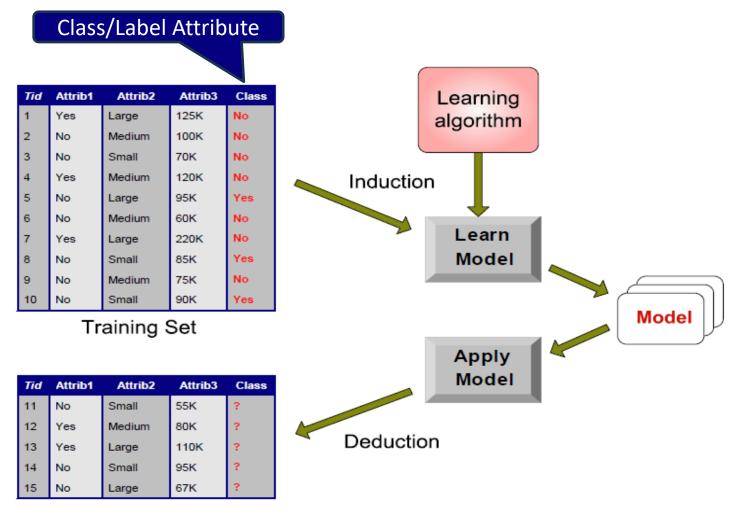
Classification

"tree"

"not a tree"

"tree"

"not a tree"


"tree"

"not a tree"

Classification: Workflow

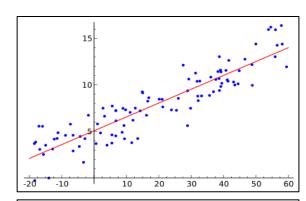
Unseen Records

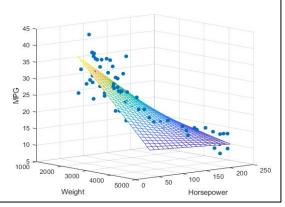
Classification: Applications

- Credit Risk Assessment
 - Attributes: your age, income, debts, ...
 - Class: are you getting credit by your bank?

- Attributes: words and header fields of an e-mail
- Class: regular e-mail or spam e-mail?

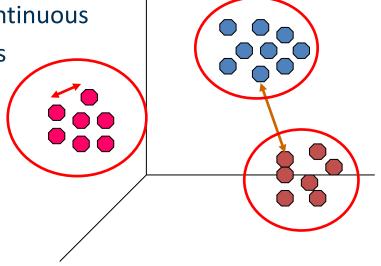
- Attributes: the values in your tax declaration
- Class: are you trying to cheat?



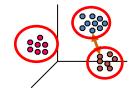


Regression

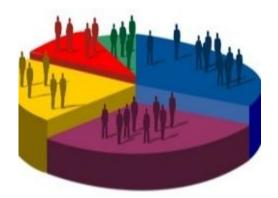
- Predict a value of a continuous variable based on the values of other variables, assuming a linear or nonlinear model
 - Examples:
 - Predicting the price of a house or car
 - Predicting sales amounts of new product based on advertising expenditure
 - Predicting miles per gallon (MPG) of a car as a function of its weight and horsepower
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.



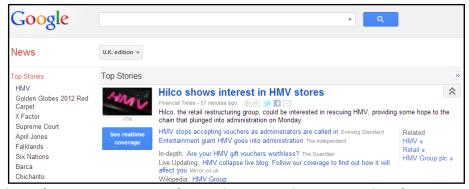
 Difference to classification: The predicted attribute is continuous, while classification is used to predict nominal attributes (e.g. yes/no)


Cluster Analysis

- Given a set of data points, each having a set of attributes, and a similarity measure among them, find groups such that
 - Data points in one group are more similar to one another
 - Data points in separate groups are less similar to one another
- Similarity Measures
 - Euclidean distance if attributes are continuous
 - Other task-specific similarity measures
- Goals
 - Intra-cluster distances are minimized
 - Inter-cluster distances are maximized
- Result
 - A descriptive grouping of data points



Cluster Analysis: Applications



- Application 1: Market segmentation
 - Find groups of similar customers
 - Where a group may be conceived as a marketing target to be reached with a distinct marketing mix

- Application 2: Document Clustering
 - Find groups of documents that are similar to each other based on terms appearing in them
 - Grouping of articles in Google News

Association Analysis

- Given a set of records each of which contain some number of items from a given collection
- Discover frequent itemsets and produce association rules which will predict occurrence of an item based on occurrences of other items

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Frequent Itemsets
{Diaper, Milk, Beer}
{Milk, Coke}

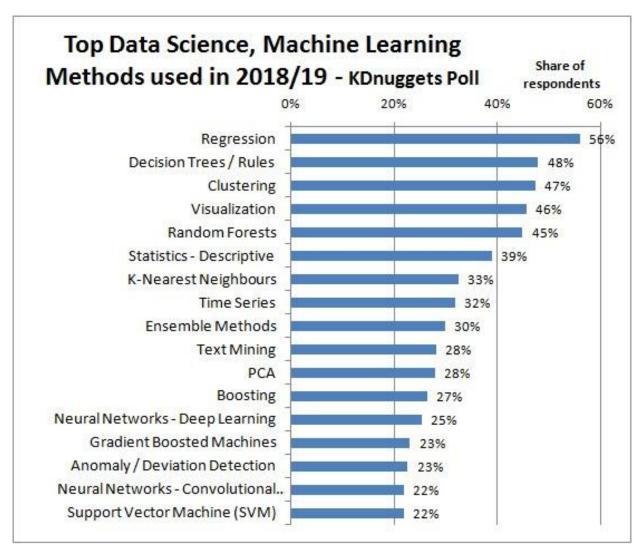
Association Rules
{Diaper, Milk} --> {Beer}
{Milk} --> {Coke}

Association Analysis: Applications

- Supermarket shelf management
 - To identify items that are bought together by sufficiently many customers
 - Process the point-of-sale data collected
 with barcode scanners to find dependencies among items

Sales Promotion

Frequently Bought Together


Price For All Three: \$87.41

Add all three to Cart Add all three to Wish List

Show availability and shipping details

Which Methods are Used in Practice?

Classification Algorithms



Classification:

- We give the computer a set of labeled examples
- The computer learns to classify new (unlabeled) examples
- How does that work?
 - K-Nearest-Neighbors
 - Decision Trees
 - Naïve Bayes
 - Support Vector Machines
 - Artificial Neural Networks
 - Deep Neural Networks
 - Many others ...

K-Nearest-Neighbors

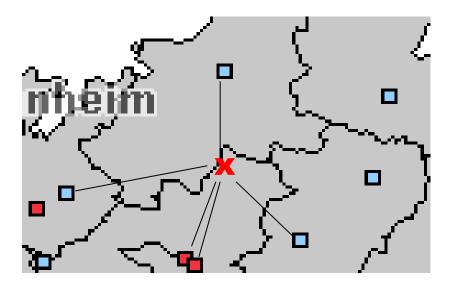
Problem


Predict the current weather in a certain place

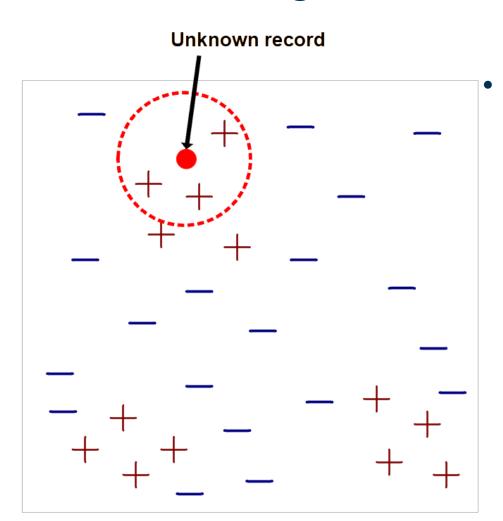
Where there is no weather station

– How could you do that?

Symbols

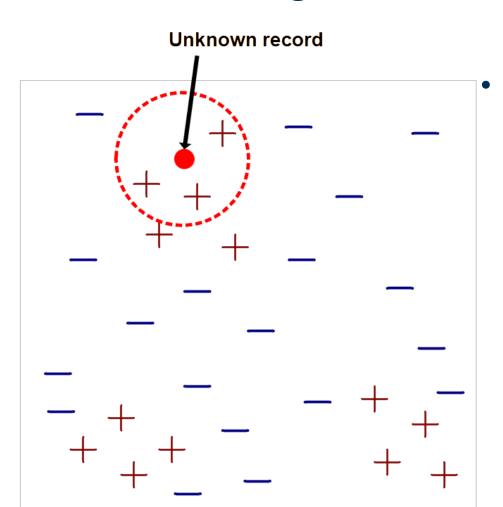

- Red = Sunny
- Blue = Cloudy

K-Nearest-Neighbors


- Idea: use the average of the nearest stations
- Example:
 - 2x sunny (red)
 - 3x cloudy (blue)
 - result: cloudy

- This approach is called K-Nearest-Neighbors
 - where k is the number of neighbors to consider
 - in the example:
 - k=5
 - "near" denotes geographical proximity

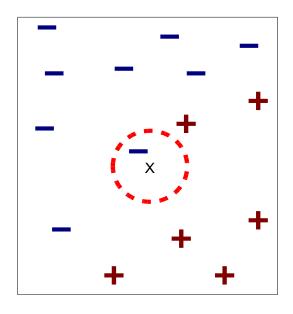
K-Nearest-Neighbor Classifier

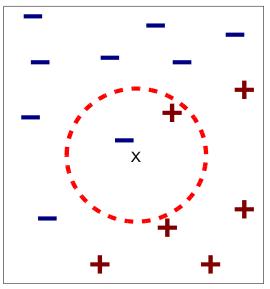


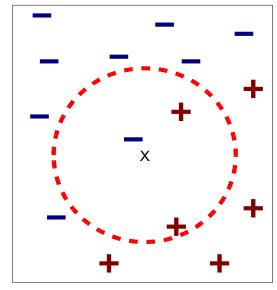
Require three things

- A set of stored records
- A distance measure to compute distance between records
- The value of k, the number of nearest neighbors to consider

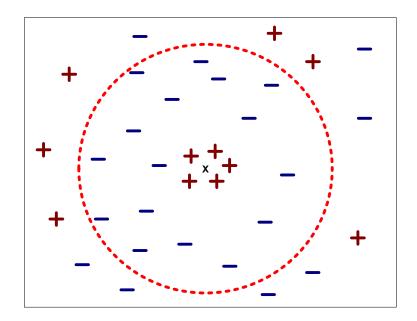
K-Nearest-Neighbor Classifier


To classify an unknown record:


- Compute distance to each training record
- Identify k-nearest neighbors
- Use class labels of nearest
 neighbors to determine the class
 label of unknown record
 - By taking majority vote or
 - By weighing the vote according to distance


Examples of K-Nearest Neighbors

 The k-nearest neighbors of a record x are data points that have the k smallest distances to x



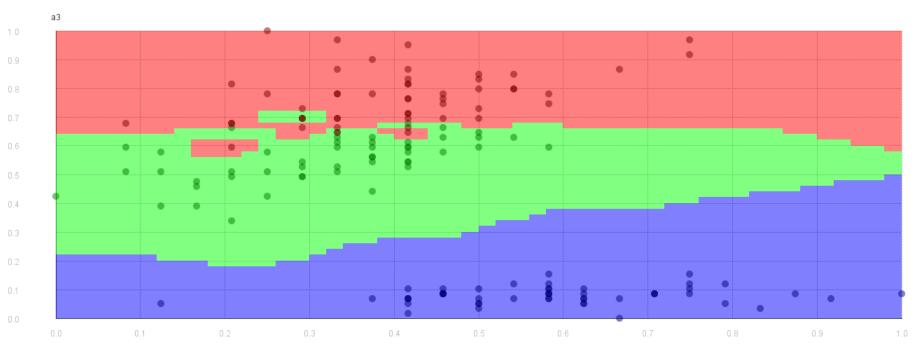
- (a) 1-nearest neighbor
- (b) 2-nearest neighbor
- (c) 3-nearest neighbor

Choosing a Good Value for K

- If k is too small, the result is sensitive to noise points
- If k is too large, the neighborhood may include points from other classes

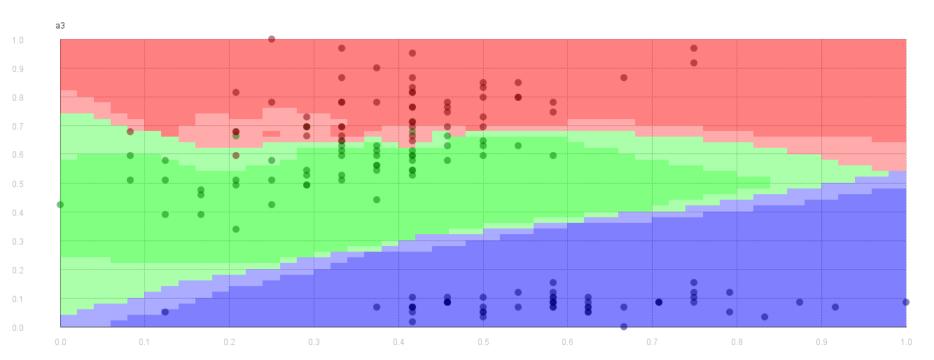
Rule of thumb: Test k values between 1 and 20

Discussion of K-NN Classification



- Often very accurate
 - for instance for optical character recognition (OCR)
- ... but slow as unseen record needs to be compared to all training examples
- Results depend on choosing a good proximity measure
 - attribute weights, asymmetric binary attributes, ...
- KNN can handle decision boundaries which are not parallel to the axes (unlike decision trees)

Decision Boundaries of a k-NN Classifier


- k=1
- Single noise points have influence on model

- k=3
- Boundaries become smoother
- Influence of noise points is reduced

What You Will Learn in This Lecture

- Common data mining tasks
 - How they work
 - When and how to apply them
 - How to interpret their output

Thank you

Questions?