
University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

IE500 Data Mining

1

Preprocessing

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Introduction

• “Give me six hours to chop down a tree
and I will spend the first four
sharpening the axe.”

2

Abraham Lincoln, 1809-1865

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Recap: The Data Mining Process

3

Source: Fayyad et al. (1996)

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Data Preprocessing

• Your data may have some problems
– i.e., it may be problematic for the subsequent mining steps

• Fix those problems before going on

• Which problems can you think of?

4

https://phdcomics.com/comics/archive.php?comicid=848

https://phdcomics.com/comics/archive.php?comicid=848

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Data Preprocessing

• Problems that you may have with your data
– Errors

– Missing values

– Unbalanced distribution

– Different Scales

– False predictors

– Unsupported data types

• Categorical data and Dates

• Textual values

– High dimensionality

• Feature Subset Selection

• PCA

• Sampling

6

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Errors in Data

• Sources
– Malfunctioning sensors

– Errors in manual data processing (e.g., twisted digits)

– Storage/transmission errors

– Encoding problems, misinterpreted file formats

– Bugs in processing code

– ...

7

Image: http://www.flickr.com/photos/16854395@N05/3032208925/

http://www.flickr.com/photos/16854395@N05/3032208925/

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Errors in Data

• Simple remedy
– Remove data points outside a given interval

• This requires some domain knowledge

• Typical Examples
– Remove temperature values outside -30 and +50 °C

– Remove negative durations

– Remove purchases above 1M Euro

• Advanced remedies
– Automatically find suspicious data points (Anomaly Detection)

8

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Missing Values

• Possible reasons
– Failure of a sensor

– Data loss

– Information was not collected

– Customers did not provide their age, sex, marital status, …

– ...

9

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Missing Values

• Treatments
– Ignore records with missing values in training data

– Replace missing value with...

• Default or special value (e.g., 0, “missing”)

• Average/median value for numerics

• Most frequent value for nominals

• SimpleImputer(missing_values=np.nan, strategy='mean')

– Try to predict missing values:

• Handle missing values as learning problem

• Target: attribute which has missing values

• Training data: instances where the attribute is present

• Test data: instances where the attribute is missing

• KNNImputer(n_neighbors=2, weights="uniform")

10

https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.impute.KNNImputer.html

https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.impute.KNNImputer.html

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Missing Values

• Note: values may be missing for various reasons

– ...and, more importantly: at random vs. not at random

• Examples for not random

– Non-mandatory questions in questionnaires

• e.g., “how often do you drink alcohol?”

– Values that are only collected under certain conditions

• e.g., final grade of your university degree (if any)

– Values only valid for certain data sub-populations

• e.g., “are you currently pregnant”?

– Sensors failing under certain conditions

• e.g., at high temperatures

• In those cases, averaging and imputation causes information loss

– In other words: “missing” can be information!

11

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Handling Missing Values: Caveats

• Imagine a medical trial checking for
side effects of a particular drug with 250 participants

• In the trial, there are 50 people
who know their blood sugar value
– Out of those, 40/50 = 80% have an increased blood sugar value

12

side effects

Yes (n=58) No (n=192)

increased
blood
sugar

Yes (n=40) 30 10

No (n=10) 8 2

-- (n=200) 20 180

Overall, the side effects are moderate (58/250=23,2%),
but people with an increased blood sugar value

have a 75% (30/40) risk of side effects

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Handling Missing Values: Caveats
(ctd.)

• Assume you handle the missing value
by filling in the majority value (“yes”)

13

side effects

Yes (n=58) No (n=192)

increased
blood
sugar

Yes (n=240) 50 190

No (n=10) 8 2

Overall, the side effects are moderate (58/250=23,2%),
and even slightly lower (50/240≈20,8%) for people

with an increased blood sugar value

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Unbalanced Distribution

• Example:
– learn a model that recognizes HIV

– given a set of symptoms

• Data set:
– records of patients

who were tested for HIV

• Class distribution:
– 99.9% negative

– 0.01% positive

14

• Learn a decision tree
− It will be hard to find any splitting

that significantly improves the quality

Decision tree learned:

false

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Resampling Unbalanced Data

• Two conflicting goals
– Use as much training data as possible

– Use as diverse training data as possible

• Strategies
– Downsampling larger class

• Conflicts with goal 1

– Upsampling smaller class

• Conflicts with goal 2

15

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Resampling Unbalanced Data

• Consider an extreme example
– 1,000 examples of class A

– 10 examples of class B

• Downsampling
– does not use 990 examples

• Upsampling
– creates 100 copies of each example of B

– likely for the classifier to simply memorize the 10 B cases

• Python:
– https://imbalanced-learn.org/

16

https://imbalanced-learn.org/
https://imbalanced-learn.org/
https://imbalanced-learn.org/
https://imbalanced-learn.org/

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Resampling

• SMOTE (Synthetic Minority Over Sampling Technique)
– Creates synthetic examples of minority class

• Given an example x
– Choose one neighbor n

among the k nearest neighbors
(w/in same class) of x

– Create synthetic example s

• For each attribute a

• s.a ← x.a + rand(0,1) * (n.a – x.a)

17

x

s
n

3 nearest neighbors of x

N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,” Journal of artificial intelligence research, 321-357, 2002.

Not included because of
wrong class

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Multiple Attributes

• In previous example,
we already had two attributes:
x and y coordinates

• But need one distance
between the examples/
weather stations

• Used linear distance
(Euclidean Distance)

18 x

y

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Multiple Attributes

• Euclidean Distance (𝐿2 - norm)

– 𝑑𝑖𝑠𝑡 = σ𝑘=1
𝑛 (𝑝𝑘−𝑞𝑘)2

• More general (𝐿𝑝 - norm)

– 𝑑𝑖𝑠𝑡 =
𝑝

σ𝑘=1
𝑛 |𝑝𝑘 − 𝑞𝑘|𝑝

 = (σ𝑘=1
𝑛 |𝑝𝑘 − 𝑞𝑘|𝑝)

1

𝑝

• Manhattan distance (𝐿1 - norm)
– 𝑑𝑖𝑠𝑡 = σ𝑘=1

𝑛 |𝑝𝑘 − 𝑞𝑘|

– Minimum distance to go from one
crossing to another

• In a squared city
(like Manhattan)

19

Or Mannheim;)

Example:

𝐿2 = 42 + 32 = 5
L1 = 4+3=7

Where n is the number of dimensions
(attributes) and 𝑝𝑘 𝑎𝑛𝑑 𝑞𝑘 are the k-th
attributes of data points p and q

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Example

• Calculate the prediction for 2-NN
– Use Mannheim/Manhattan distance

20

Hours of sleep Calories burned Well Rested?

4 3,000 No

8 2,500 Yes

5 4,000 No

8 2,000 Yes

9 3,500 ?

Training
Data

Test Data

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Example

• Calculate the prediction for 2-NN
– Use Mannheim/Manhattan distance

– Distances to last example (test data):

• 𝐷1 = σ𝑘=1
𝑛 |𝑝𝑘 − 𝑞𝑘| = 4 − 9 + 3,000 − 3,500 = 5 + 500 = 505

• 𝐷2 = σ𝑘=1
𝑛 |𝑝𝑘 − 𝑞𝑘| = 8 − 9 + 2,500 − 3,500 = 1 + 1,000 = 1,001

• 𝐷3 = σ𝑘=1
𝑛 |𝑝𝑘 − 𝑞𝑘| = 5 − 9 + 4,000 − 3,500 = 4 + 500 = 504

• 𝐷4 = σ𝑘=1
𝑛 |𝑝𝑘 − 𝑞𝑘| = 8 − 9 + 2,000 − 3,500 = 1 + 1,500 = 1,501

21

Hours of sleep Calories burned Well Rested? Distances to last

4 3,000 No

8 2,500 Yes

5 4,000 No

8 2,000 Yes

9 3,500 ?

Training
Data

Test Data

505

1,001

504

1,501

No

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Different scales: Normalization

• Calculate the prediction for 2-NN
– Use Mannheim/Manhattan distance

– Distances to last example (test data):

• 𝐷1 = σ𝑘=1
𝑛 |𝑝𝑘 − 𝑞𝑘| = 4 − 9 + 3,000 − 3,500 = 5 + 500 = 505

– K-NN is sensitive to scaling
22

Hours of sleep Calories burned Well Rested? Distances to last

4 3,000 No

8 2,500 Yes

5 4,000 No

8 2,000 Yes

9 3,500 ?

Training
Data

Test Data

505

1,001

504

1,501

No

“Hours of sleep” does not contribute much

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Different scales: Normalization

StandardScaler

MinMaxScaler

• Needs normalization

– StandardScaler 𝑧 =
𝑥−𝜇

𝜎

• Standardize features by removing the mean and scaling to unit variance

– MinMaxScaler 𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

• Transform features by scaling each feature to a given range e.g. [0,1]

23

Hours of sleep Calories burned Well Rested? Distances to last

4 3,000 No

8 2,500 Yes

5 4,000 No

8 2,000 Yes

9 3,500 ?

Training
Data

Test Data

505

1,001

504

1,501

No

https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.MinMaxScaler.html

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Different scales: Normalization

MinMaxScaler

• Apply MinMaxScaler 𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

– Important: Also preprocessing steps can be “trained“

• Hours of Sleep

– 𝑋𝑚𝑖𝑛 = 4 𝑎𝑛𝑑 𝑋𝑚𝑎𝑥 = 𝟖 (𝑛𝑜𝑡 9)

– 𝐻𝑧 =
𝑧−4

8−4
=

𝑧−4

2

• Calories Burned 𝐶𝑧 =
𝑧−2,000

4,000−2,000
=

𝑧−2,000

2,000

24

Hours of sleep Calories burned Well Rested? Distances to last

4 3,000 No

8 2,500 Yes

5 4,000 No

8 2,000 Yes

9 3,500 ?

Training
Data

Test Data

505

1,001

504

1,501

No

https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.MinMaxScaler.html

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Different scales: Normalization

MinMaxScaler

• Apply MinMaxScaler 𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

– Important: Also preprocessing steps can be “trained“

• Hours of Sleep

– 𝑋𝑚𝑖𝑛 = 4 𝑎𝑛𝑑 𝑋𝑚𝑎𝑥 = 𝟖 (𝑛𝑜𝑡 9)

– 𝐻𝑧 =
𝑧−4

8−4
=

𝑧−4

2

• Calories Burned 𝐶𝑧 =
𝑧−2,000

4,000−2,000
=

𝑧−2,000

2,000

25

Training
Data

Test Data

Hours of sleep
(normalized)

Calories burned
(normalized)

Well Rested? Distances to last Distances to
last(normalized)

4 = 0 3,000 = 0.5 No

8 = 1 2,500 = 0.25 Yes

5 = 0.25 4,000 = 1 No

8 = 1 2,000 = 0 Yes

9 = 1.25 3,500 = 0.75 ?

505

1,001

504

1,501

No

1.5

0.75

1.25

0.5

Yes

https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.MinMaxScaler.html

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Preprocessors also Need to be Trained

• Many preprocessing methods also have an internal
representation
– E.g. Mean and variance, minimum and maximum values

– Do NOT apply it on the whole dataset before splitting etc

26

https://scikit-learn.org/1.5/modules/compose.html

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Preprocessors also Need to be Trained

• Many preprocessing methods also have an internal
representation
– Function fit_transform for training and transform for testing

27

https://scikit-learn.org/1.5/modules/compose.html

No fit on test data

https://scikit-learn.org/1.5/modules/compose.html
https://scikit-learn.org/1.5/modules/compose.html
https://scikit-learn.org/1.5/modules/compose.html

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Preprocessors also Need to be Trained

• How to compose multiple components
– Pipeline

– How to apply tranformations to only a few columns

• ColumnTransformer

28

https://scikit-learn.org/1.5/modules/compose.html

Name

Component Columns

https://scikit-learn.org/1.5/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/1.5/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/1.5/modules/generated/sklearn.compose.ColumnTransformer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.compose.ColumnTransformer.html
https://scikit-learn.org/1.5/modules/compose.html
https://scikit-learn.org/1.5/modules/compose.html
https://scikit-learn.org/1.5/modules/compose.html

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

False Predictors

• ~100% accuracy are a great result
– ...and a result that should make you suspicious!

• A tale from the road
– Working with our Linked Open Data extension

– Trying to predict the world university rankings

– With data from DBpedia

• Goal:
– Understand what makes a top university

29

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

False Predictors

• The Linked Open Data extension
– Extracts additional attributes from

public knowledge graphs

• e.g., DBpedia

– Unsupervised (i.e., attributes are created fully automatically)

• Model learned: THE<20 → TOP=true
– False predictor: target variable was included in attributes

• Other examples
– Mark<5 → passed=true

– Sales>1000000 → bestseller=true

30

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Recognizing False Predictors

• By analyzing models
– Rule sets consisting of only one rule

– Decision trees with only one node

• Process: learn model, inspect model, remove suspect, repeat
– until the accuracy drops

– Tale from the road example: there were other indicators as well

• By analyzing attributes
– Compute correlation of each attribute with label

– Correlation near 1 (or -1) marks a suspect

• Caution: there are also strong (but not false) predictors
– it's not always possible to decide automatically!

31

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Unsupported Data Types

• Not every learning operator supports all data types
– Some (e.g., SVM) cannot handle categorical data

– Some (e.g., ID3) cannot handle numeric data

– Dates are difficult for most learners

– Textual values need to be transformed

• Solutions
– Convert categorical to numeric data

– Convert numeric to nominal data (discretization, binning)

– Extract valuable information from dates

– Transform textual attributes to vector representations

32

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Conversion: Categorical to Numeric

• Two common ways to encode categorical attributes:
– For ordinal attributes (order is important)

• e.g. Grade=A, A-, B+, B, B-, C+, C, C-

• Assign each distinct value a corresponding number preserving the order

– A=8, A-=7, B+=6, B=5, B-=4, C+=3, C=2, C-=1

• Using such a coding schema allows learners to learn valuable rules, e.g.

– grade>6 → excellent_student=true

• Python: OrdinalEncoder

33

ID Grade …

371 A-

433 B

ID Grade …

371 7

433 5

https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.OrdinalEncoder.html

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Conversion: Categorical to Numeric

• Two common ways to encode categorical attributes:
– For nominal attributes (no order)

• e.g. Color=Red, Orange,…, Violet

• One Hot Encoding: For each value v, create a binary “flag” variable C_v ,

which is 1 if Color=v, 0 otherwise

• Python: OneHotEncoder

• Special case: Binary attribute e.g. student=yes, no

– Student = yes → student_binary = 0

– Student = no → student_binary = 1

34

ID Color …

371 red

433 yellow

ID Color_red Color_orange Color_yellow …

371 1 0 0

433 0 0 1

https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.OneHotEncoder.html

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Conversion: Categorical to Numeric

• Many values:
– US State Code (50 values)

– Profession Code (7,000 values,
but only few frequent)

• Approaches:
– manual, with background knowledge

• e.g., group US states

– Use binary attributes

• then apply dimensionality reduction (see later today)

35

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Conversion: Numeric to Ordinal

• Discretization
– Values of the attribute, e.g., age of a person:

• 0, 4, 12, 16, 16, 18, 24, 26, 30

– Equal-interval binning – for bin width of e.g., 10:

• Bin 1: 0, 4 [-∞,10) bin

• Bin 2: 12, 16, 16, 18 [10,20) bin

• Bin 3: 24, 26, 30 [20,+∞) bin

– Equal-frequency binning – for bin density of e.g., 3:

• Bin 1: 0, 4, 12 [-, 14) bin

• Bin 2: 16, 16, 18 [14, 21) bin

• Bin 3: 24, 26, 30 [21,+] bin

36

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Dealing with Date Attributes

• Dates (and times) can be formatted in various ways
– first step: normalize and parse

• Dates have lots of interesting information in them

• Example: analyzing shopping behavior
– time of day

– weekday vs. weekend

– begin vs. end of month

– month itself

– quarter, season

• Python: use, e.g., datetime

37

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Dealing with Textual Attributes

• Preprocessing
– Text Cleanup (remove punctuation and HTML tags)

– Tokenization (break text into single words or N-grams)

– Stopword Removal (e.g. the, of, and, to, an, is, that, …)

– Stemming (find the stem of a word)

• User, users, used, using ➔ Stem: use

38

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Dealing with Textual Attributes

• Feature Generation: Bag-of-Words
• Each word/term becomes a feature

• Order of words/terms is ignored

– Each document is represented by a vector

39

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Dealing with Textual Attributes

• Different techniques for vector creation:
– Binary Term Occurrence: Boolean attributes describe whether

or not a term appears in the document (one-hot encoding)

• Python: CountVectorizer(binary=true)

– Term Occurrence: Number of occurrences of a term in the
document (problematic if documents have different length)

• Python: CountVectorizer(binary=false)

– Terms Frequency: Attributes represent the frequency in which
a term appears in the document (number of occurrences /
number of words in document)

• Python: TfidfVectorizer(use_idf=False)

– TF-IDF: see next slide

• Python: TfidfVectorizer

40

https://scikit-learn.org/1.5/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Dealing with Textual Attributes

• The TF-IDF weight (term frequency–inverse document
frequency) is used to evaluate how important a word is to a
corpus of documents.

– TF: Term Frequency (see last slide)

– IDF: Inverse Document Frequency.

N: total number of docs in corpus

dfi: the number of docs in which ti appears

• Gives more weight to rare words

• Give less weight to common words
(domain-specific stopwords)

41

𝑤𝑖𝑗 = 𝑡𝑓𝑖𝑗 ∗ 𝑖𝑑𝑓𝑖

𝑖𝑑𝑓𝑖 = log(
𝑁

𝑑𝑓𝑖
)

In scikit-learn:

In scikit-learn:

𝑖𝑑𝑓𝑖 = log
1 + 𝑁

1 + 𝑑𝑓𝑖
+ 1

https://scikit-learn.org/1.5/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Similarity of Documents

• Jaccard Coefficient
– Similarity measure for vectors consisting of asymmetric binary

attributes

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐴, 𝐵 =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
=

𝑀11

𝑀01+𝑀10+𝑀11

• Used together with binary term occurrence vectors
(one-hot vectors)
– 1 represents occurrence of specific word

– 0 represents absence of specific word

– most values are 0 as only small subset of the vocabulary is used in a
document

42

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Similarity of Documents

• Jaccard Coefficient
– Similarity measure for vectors consisting of asymmetric binary

attributes

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐴, 𝐵 =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
=

𝑀11

𝑀01+𝑀10+𝑀11

• Jaccard similarities between the documents

– 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑑1, 𝑑2 =
4

9
= 0.44 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑑2, 𝑑3 =

2

11
= 0.18

– 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑑1, 𝑑3 =
3

11
= 0.27

43

Saturn is the gas planet with rings Jupiter largest Roman god of sowing

d1 1 1 1 1 1 1 1 0 0 0 0 0 0

d2 0 1 1 1 1 0 0 1 1 0 0 0 0

d3 1 1 1 0 0 0 0 0 0 1 1 1 1

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Similarity of Documents

• Cosine similarity
– Similarity measure for comparing weighted document

vectors such as term-frequency or TF-IDF vectors

 cos 𝑑1, 𝑑2 =
𝑑1• 𝑑2

𝑑1 𝑑2

– Example

d1 = 3 2 0 5 0 0 0 2 0 0

d2 = 1 0 0 0 0 0 0 1 0 2

d1 • d2= 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 = (42) 0.5 = 6.481

||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245

cos 𝑑1, 𝑑2 = 0.3150

44

where • indicates vector dot product

𝑎 • 𝑏 = ෍

𝑖=1

𝑛

𝑎𝑖𝑏𝑖 = 𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑛𝑏𝑛

and 𝑑 is the length of the vector

𝑑 = σ𝑖=1
𝑛 𝑑𝑖

2

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Dense and Sparse Representation

• Bag of Words is sparse
– Vector dimension is tens of thousands

• Most are zero

• Dense representation
– Word embeddings

• Vector of a few hundred dimensions

45

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Transformer Architecture

• Encoder-only:
– BERT, ALBERT (a lite version of BERT),

RoBERTa (A Robustly Optimized BERT Pretraining Approach)

• Decoder-only:
– LLMs like GPT, LLaMa, …

• Seq2Seq:
– T-5 (Text-to-Text

Transfer Transformer)

– BART

46

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

High Dimensionality

• Datasets with large number of attributes

• Examples:
– Text classification

– Image classification

– Genome classification

– …

• (not only a) scalability problem
– e.g., decision tree:

search all attributes for determining one single split

47

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Feature Subset Selection

• Preprocessing step

• Idea: only use valuable features
– “feature”: machine learning terminology for “attribute”

• Basic heuristics: remove nominal attributes...
– Which have more than p% identical values

• Example: millionaire=false

– Which have more than p% different values

• Example: names, IDs

• Basic heuristics: remove numerical attributes
– Which have little variation, i.e., standard deviation <s

48

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Feature Subset Selection

• Basic Distinction: Filter vs. Wrapper Methods

• Filter methods
– Use attribute weighting criterion, e.g., Chi², Information Gain, ...

– Select attributes with highest weights

– Fast (linear in no. of attributes), but not always optimal

• Example:
– X_f = SelectKBest(chi2,k=20).fit_transform(X, y)

49

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Feature Subset Selection

• Remove redundant attributes
– e.g., temperature in °C and °F

– e.g., textual features “Barack” and “Obama”

• Method:
– compute pairwise correlations between attributes

– remove highly correlated attributes

• Recap:
– Naive Bayes requires independent attributes

– Will benefit from removing correlated attributes

50

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Feature Subset Selection

• Wrapper methods
– Use classifier internally

– Run with different feature sets

– Select best feature set

• Advantages
– Good feature set for given classifier

• Disadvantages
– Expensive (naively: at least quadratic in number of attributes)

– Heuristics can reduce number of classifier runs

51

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Feature Subset Selection

• Forward selection:
start with empty attribute set

do {

for each attribute {

add attribute to attribute set

compute performance (e.g., accuracy)

}

use attribute set with best performance

} while performance increases

• An learning algorithm is used for computing the performance
– Cross validation is advised

52

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Feature Subset Selection

• Backward elimination:
start with full attribute set

do {

for each attribute in attribute set {

remove attribute to attribute set

compute performance (e.g., accuracy)

}

use attribute set with best performance

} while performance increases

• An learning algorithm is used for computing the performance
– Cross validation is advised

53

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Feature Subset Selection

• The checkerboard dataset
– Decision tree learners can perfectly learn this!

– But what happens if we apply forward selection here?

54

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Feature Subset Selection

• Python:
– Forward selection:

SequentialFeatureSelector(direction='forward’)

– Backward elimination:
SequentialFeatureSelector(direction=backward’)

• If estimator has feature importances:

– RFECV (Recursive feature elimination with cross-validation)

– Just one selection step based on feature importances

• SelectFromModel

55

https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.RFECV.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.RFECV.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.SelectFromModel.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.SelectFromModel.html

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Feature Subset Selection

• Further approaches
– Brute Force search

– Evolutionary algorithms

• Trade-off
– Simple heuristics are fast

• But may not be the most effective

– Brute-force is most effective

• But the slowest

– Forward selection, backward elimination, and evolutionary algorithms

• Are often a good compromise

56

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Principal Component Analysis (PCA)

• So far, we have looked at feature selection methods
– We select a subset of attributes

– No new attributes are created

• PCA creates a (smaller set of) new attributes
– Artificial linear combinations of existing attributes

– As expressive as possible

• Dates back to the pre-computer age
– Invented by Karl Pearson (1857-1936)

– Also known for Pearson's correlation coefficient

57

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Principal Component Analysis (PCA)

• Idea: transform coordinate system so that
each new coordinate (principal component)
is as expressive as possible
– Expressivity: variance of the variable

– The 1st, 2nd, 3rd... PC should account for as much variance as possible

• further PCs can be neglected

58

http://setosa.io/ev/principal-component-analysis/

http://setosa.io/ev/principal-component-analysis/
http://setosa.io/ev/principal-component-analysis/
http://setosa.io/ev/principal-component-analysis/
http://setosa.io/ev/principal-component-analysis/
http://setosa.io/ev/principal-component-analysis/

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Principal Component Analysis (PCA)

• Principal components
– Are linear combinations of the existing features

• General approach:
– The first component should have as much variance as possible

– The subsequent ones should also have as much variance as possible

• And be perpendicular to the first one

59

https://builtin.com/data-science/step-step-explanation-principal-component-analysis

https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Sampling

• Feature Subset Selection
reduces the width of the dataset

• Sampling
reduces the height of the dataset
– i.e., the number of instances

• Trade-off
– Maximum usage of information

– Fast computation

• Two approaches
– Stratified sampling respects class distribution

– Kennard-Stone sampling tries to select heterogenous points
60

Hours of sleep Calories burned Well Rested?

4 3,000 No

8 2,500 Yes

… … …

width/featuresheight/
examples

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Stratified Sampling

• Stratified sample: Sample each class independently, so that
records of the minority class are present in each sample
– Make sure that each class is represented with approximately

equal proportions in both subsets

– Other attributes may also be considered for stratification

• e.g., gender, age, …

61

Whole data

Training (3/4) Testing (1/4)

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Kennard-Stone Sampling

1) Compute pairwise distances of points

2) Add points with largest distance from one another

3) While target sample size not reached
1) For each candidate, find smallest distance to any point in the

sample

2) Add candidate with largest of those smallest distances

62

Already selected

Already selected

A B

Smallest distance

Smallest distance

Add A because
largest distance

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Kennard-Stone Sampling

• This guarantees that heterogeneous data points are added
– i.e., sample gets more diverse

– Includes more corner cases

• But potentially also more outliers

– Distribution may be altered

• Python: Not included in scikit-learn by default
– Need to install separate package "kennard-stone“

• https://pypi.org/project/kennard-stone/

63

https://pypi.org/project/kennard-stone/
https://pypi.org/project/kennard-stone/
https://pypi.org/project/kennard-stone/
https://pypi.org/project/kennard-stone/

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Kennard-Stone Sampling (Example)

• Pro: a lot of rare cases covered

• Con: original distribution gets lost

64

https://antoinestevens.github.io/prospectr/

https://antoinestevens.github.io/prospectr/

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Sampling Strategies and
Learning Algorithms

• There are interaction effects

• Some learning algorithms rely on distributions
– e.g., Naive Bayes

– Usually, stratified sampling works better

• Some rely less on distributions
– And may work better if they see more corner cases

– e.g., Decision Trees

65

Decision Tree Naive Bayes

Stratified .727 .752

Kennard

Stone

.742 .721

Titanic Dataset
Filter: 50 training examples

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

A Note on Sampling

• Often, the training data in a real-world project
is already a sample
– e.g., sales figures of last month

– To predict the sales figures for the rest of the year

• How representative is that sample?
– What if last month was December? Or February?

• Effect known as selection bias
– Example: phone survey with 3,000 participants,

carried out Monday, 9-17

– Thought experiment: effect of selection bias for prediction,
e.g., with a Naive Bayes classifier

66

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Summary Data Preprocessing

• Raw data has many problems
– Missing values

– Errors

– High dimensionality

– …

• Good preprocessing is essential for good data mining
– One of the first steps in the pipeline

– Requires lots of experimentation and fine-tuning

• often the most time consuming step of the pipeline

67

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Prepare Your Data

68

Source: CrowdFlower Data Science Report 2016: http://visit.crowdflower.com/data-science-report.html

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Questions?

69

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024

Data and Web Science Group

Literature for this Slideset

• Python:
– Imputation

• https://scikit-learn.org/1.5/modules/impute.html

– Preprocessing

• https://scikit-learn.org/1.5/modules/preprocessing.html

– Text feature extraction

• https://scikit-learn.org/1.5/modules/feature_extraction.html#
text-feature-extraction

– Feature Selection

• https://scikit-learn.org/1.5/modules/feature_selection.html

70

https://scikit-learn.org/1.5/modules/impute.html
https://scikit-learn.org/1.5/modules/impute.html
https://scikit-learn.org/1.5/modules/impute.html
https://scikit-learn.org/1.5/modules/impute.html
https://scikit-learn.org/1.5/modules/preprocessing.html
https://scikit-learn.org/1.5/modules/preprocessing.html
https://scikit-learn.org/1.5/modules/preprocessing.html
https://scikit-learn.org/1.5/modules/preprocessing.html
https://scikit-learn.org/1.5/modules/feature_extraction.html#text-feature-extraction
https://scikit-learn.org/1.5/modules/feature_extraction.html#text-feature-extraction
https://scikit-learn.org/1.5/modules/feature_extraction.html#text-feature-extraction
https://scikit-learn.org/1.5/modules/feature_extraction.html#text-feature-extraction
https://scikit-learn.org/1.5/modules/feature_extraction.html#text-feature-extraction
https://scikit-learn.org/1.5/modules/feature_extraction.html#text-feature-extraction
https://scikit-learn.org/1.5/modules/feature_extraction.html#text-feature-extraction
https://scikit-learn.org/1.5/modules/feature_extraction.html#text-feature-extraction
https://scikit-learn.org/1.5/modules/feature_extraction.html#text-feature-extraction
https://scikit-learn.org/1.5/modules/feature_selection.html
https://scikit-learn.org/1.5/modules/feature_selection.html
https://scikit-learn.org/1.5/modules/feature_selection.html
https://scikit-learn.org/1.5/modules/feature_selection.html

	Standardabschnitt
	Folie 1: Preprocessing
	Folie 2: Introduction
	Folie 3: Recap: The Data Mining Process
	Folie 4: Data Preprocessing
	Folie 6: Data Preprocessing

	Errors in Data
	Folie 7: Errors in Data
	Folie 8: Errors in Data

	Missing Values
	Folie 9: Missing Values
	Folie 10: Missing Values
	Folie 11: Missing Values
	Folie 12: Handling Missing Values: Caveats
	Folie 13: Handling Missing Values: Caveats (ctd.)

	Unbalanced Distribution
	Folie 14: Unbalanced Distribution
	Folie 15: Resampling Unbalanced Data
	Folie 16: Resampling Unbalanced Data
	Folie 17: Resampling

	Different Scales
	Folie 18: Multiple Attributes
	Folie 19: Multiple Attributes
	Folie 20: Example
	Folie 21: Example
	Folie 22: Different scales: Normalization
	Folie 23: Different scales: Normalization
	Folie 24: Different scales: Normalization
	Folie 25: Different scales: Normalization
	Folie 26: Preprocessors also Need to be Trained
	Folie 27: Preprocessors also Need to be Trained
	Folie 28: Preprocessors also Need to be Trained

	False Predictors
	Folie 29: False Predictors
	Folie 30: False Predictors
	Folie 31: Recognizing False Predictors

	Unsupported data types
	Folie 32: Unsupported Data Types
	Folie 33: Conversion: Categorical to Numeric
	Folie 34: Conversion: Categorical to Numeric
	Folie 35: Conversion: Categorical to Numeric
	Folie 36: Conversion: Numeric to Ordinal
	Folie 37: Dealing with Date Attributes

	Textual Values
	Folie 38: Dealing with Textual Attributes
	Folie 39: Dealing with Textual Attributes
	Folie 40: Dealing with Textual Attributes
	Folie 41: Dealing with Textual Attributes
	Folie 42: Similarity of Documents
	Folie 43: Similarity of Documents
	Folie 44: Similarity of Documents
	Folie 45: Dense and Sparse Representation
	Folie 46: Transformer Architecture

	High dimensionality
	Folie 47: High Dimensionality

	Feature Subset Selection
	Folie 48: Feature Subset Selection
	Folie 49: Feature Subset Selection
	Folie 50: Feature Subset Selection
	Folie 51: Feature Subset Selection
	Folie 52: Feature Subset Selection
	Folie 53: Feature Subset Selection
	Folie 54: Feature Subset Selection
	Folie 55: Feature Subset Selection
	Folie 56: Feature Subset Selection

	Principal Component Analysis (PCA)
	Folie 57: Principal Component Analysis (PCA)
	Folie 58: Principal Component Analysis (PCA)
	Folie 59: Principal Component Analysis (PCA)

	Sampling
	Folie 60: Sampling
	Folie 61: Stratified Sampling
	Folie 62: Kennard-Stone Sampling
	Folie 63: Kennard-Stone Sampling
	Folie 64: Kennard-Stone Sampling (Example)
	Folie 65: Sampling Strategies and Learning Algorithms
	Folie 66: A Note on Sampling
	Folie 67: Summary Data Preprocessing
	Folie 68: Prepare Your Data

	Questions
	Folie 69: Questions?
	Folie 70: Literature for this Slideset

