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Introduction

* “Give me six hours to chop down a tree
and | will spend the first four
sharpening the axe.”

Abraham Lincoln, 1809-1865
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Recap: The Data Mining Process
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Data Preprocessing

* Your data may have some problems

— i.e., it may be problematic for the subsequent mining steps
* Fix those problems before going on
* Which problems can you think of?

LET ME &VE
You SoME
ATVICE,

WiwWW PHDCOMICS, COM

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 4
https://phdcomics.com/comics/archive.php?comicid=848



https://phdcomics.com/comics/archive.php?comicid=848

e
UNIVERSITY

Data Preprocessing B0F MANNHEIM

Data and Web Science Group

* Problems that you may have with your data
— Errors
— Missing values
— Unbalanced distribution
— Different Scales
— False predictors

— Unsupported data types
e Categorical data and Dates
e Textual values

— High dimensionality
* Feature Subset Selection
 PCA
e Sampling

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 6
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* Sources
— Malfunctioning sensors
— Errors in manual data processing (e.g., twisted digits)
— Storage/transmission errors
— Encoding problems, misinterpreted file foats

— Bugs in processing code

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 7
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e Simple remedy

— Remove data points outside a given interval
* This requires some domain knowledge

* Typical Examples
— Remove temperature values outside -30 and +50 °C
— Remove negative durations
— Remove purchases above 1M Euro

 Advanced remedies
— Automatically find suspicious data points (Anomaly Detection)

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 8
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Missing Values

* Possible reasons
— Failure of a sensor
— Data loss
— Information was not collected
— Customers did not provide their age, sex, marital status, ...

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 9
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Missing Values

* Treatments
— lgnore records with missing values in training data

— Replace missing value with...

* Default or special value (e.g., 0, “missing”)

* Average/median value for numerics

* Most frequent value for nominals

* SimpleImputer (missing values=np.nan, strategy='mean')
— Try to predict missing values:

* Handle missing values as learning problem

e Target: attribute which has missing values

* Training data: instances where the attribute is present

* Test data: instances where the attribute is missing

* KNNImputer (n neighbors=2, weights="uniform")

https://scikit-learn.org/1.5/modules/generated/sklearn.impute.Simplelmputer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.impute.KNNImputer.html
University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024
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Missing Values

* Note: values may be missing for various reasons
— ...and, more importantly: at random vs. not at random

 Examples for not random

— Non-mandatory questions in questionnaires
* e.g., “how often do you drink alcohol?”

— Values that are only collected under certain conditions
* e.g., final grade of your university degree (if any)

— Values only valid for certain data sub-populations
* e.g., “are you currently pregnant”?

— Sensors failing under certain conditions
* e.g., at high temperatures

* Inthose cases, averaging and imputation causes information loss
— In other words: “missing” can be information!

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 11
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side effects of a particular drug with 250 participants

* In the trial, there are 50 people
who know their blood sugar value

— Out of those, 40/50 = 80% have an increased blood sugar value

Overall, the side effects are moderate (58/250=23,2%), )
but people with an increased blood sugar value side effects
have a 75% (30/40) risk of side effects Yes (n=58) No (n=192)

Yes (n=40) 30 10
increased
SLers No (n=10) 8 2
sugar
-- (n=200) 20 180

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024
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Handling Missing Values: Caveats
(ctd.)

* Assume you handle the missing value
by filling in the majority value (“yes”)

Overall, the side effects are moderate (58/250=23,2%), )
and even slightly lower (50/240~20,8%) for people side effects
with an increased blood sugar value Yes (n=58) No (n=192)

—

Yes (n=240) 50 190

increased
blood

No (n=10) 8 2
sugar

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 13
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 Example:
— learn a model that recognizes HIV
— given a set of symptoms

e Data set:

— records of patients
who were tested for HIV

e Class distribution: e Learn a decision tree
— 99.9% negative — It will be hard to find any splitting
— 0.01% positive that significantly improves the quality

Decision tree learned:

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 @ 14
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Resampling Unbalanced Data

* Two conflicting goals
— Use as much training data as possible
— Use as diverse training data as possible

* Strategies

— Downsampling larger class
* Conflicts with goal 1

— Upsampling smaller class
* Conflicts with goal 2

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 15
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Resampling Unbalanced Data

Original Data Downsampled Data Upsampled Data

1000 + 1000 + 1000 -

e Consider an extreme example

— 1,000 examples of class A

800 800 800

=]
o
(=]

600 - 600

— 10 examples of class B

Frequency

400 400 + 400 4

* Downsampling

200 A 200 200

— does not use 990 examples

L]
¢ U psa m p I I ng o Class A Claés B ° Clasl.sA Clalss B o Class A Class B

— creates 100 copies of each example of B
— likely for the classifier to simply memorize the 10 B cases

— https: //|mbalanced learn.org/ T eea’tn

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 16
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Resampling

 SMOTE (Synthetic Minority Over Sampling Technique)

— Creates synthetic examples of minority class

* @Given an example x

A
— Choose one neighbor n 3 nearest neighbors of x
among the k nearest neighbors
(w/in same class) of x ’ Y \5'
— Create synthetic example s e
* For each attribute a X 15"'
* s.a & x.a+rand(0,1) * (n.a—x.a) .r:‘ °
S
Not included because of
wrong class
University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 17
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Multiple Attributes

* In previous example,

we already had two attributes:

X and y coordinates

e But need one distance
between the examples/
weather stations

e Used linear distance
(Euclidean Distance)

y

A

¢

{REWLUNIVERSITY
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L
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A
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Multiple Attributes

° Euclidean Distance (LZ - norm) Where n is the number of dimensions
(attributes) and p,, and q;, are the k-th

— dist = \/ZZ=1(pk—qk)2 attributes of data points p and g
* More general (L, - norm) Example:
: p — ./ _
— dist = \/XR_q Ik — qil? Ly =v42+32=5

1
= Qk=11px — qxIP)P

— dist = Y1 |Pr — qi|
— Minimum distance to go from one
crossing to another

* In a squared city 2 Or Mannheim;) ]
(like Manhattan)

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 19
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Hours of sleep | Calories burned | Well Rested?
RE 3,000 No
Training 8 2,500 Yes
Data | |5 4,000 No
8 2,000 Yes
Test Data { 9 3,500 ?

e C(Calculate the prediction for 2-NN
— Use Mannheim/Manhattan distance

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 20
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Hours of sleep | Calories burned | Well Rested? | Distances to last
RE 3,000 No 505
Training 8 2,500 Yes 1,001
Data | |5 4,000 No 504
8 2,000 Yes 1,501
Test Data { 9 3,500 ? No

e C(Calculate the prediction for 2-NN
— Use Mannheim/Manhattan distance
— Distances to last example (test data):
« D; =37 |pr — gkl = 14— 9] + 13,000 — 3,500| = 5 + 500 = 505
« Dy =37 Ipk — il =18 = 9| + 12,500 — 3,500| = 1+ 1,000 = 1,001
e D3 =3"_ |pk — qxl = |5 = 9| + 14,000 — 3,500| = 4 + 500 = 504
« Dy =" |k — il =18 = 9| +12,000 — 3,500| = 1+ 1,500 = 1,501

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 21



e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Different scales: Normalization

Hours of sleep | Calories burned | Well Rested? | Distances to last
RE 3,000 No 505
Training 8 2,500 Yes 1,001
Data | ['s 4,000 No 504
|8 2,000 Yes 1,501
Test Data { 9 3,500 ? No

e C(Calculate the prediction for 2-NN
— Use Mannheim/Manhattan distance
— Distances to last example (test data):
« D; =37 |pr — gkl = 14— 9] + 13,000 — 3,500| = 5 + 500 = 505
—— y
“Hours of sleep” does not contribute much

— K-NN is sensitive to scaling

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 22
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Different scales: Normalization

Hours of sleep | Calories burned | Well Rested? | Distances to last
RE 3,000 No 505
Training 8 2,500 Yes 1,001
Data | ['s 4,000 No 504
|8 2,000 Yes 1,501
Test Data { 9 3,500 ? No

e Needs normalization

xX—[

— StandardScaler z = —

e Standardize features by removing the mean and scaling to unit variance
X—Xmin

— MinMaxScaler X,,prm =

Xmax—Xmin
* Transform features by scaling each feature to a given range e.g. [0,1]

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 23
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Different scales: Normalization

Hours of sleep | Calories burned | Well Rested? | Distances to last
RE 3,000 No 505
Training 8 2,500 Yes 1’001
Data | |5 4,000 No 504
8 2,000 Yes 1,501
Test Data { 9 3,500 ? No
X—Xmin

* Apply MinMaxScaler X, ,prm =

Xmax—Xmin
— Important: Also preprocessing steps can be “trained”

* Hours of Sleep
— Xmin =4 and X;pqx = 8 (not 9)
z—4 z—4
- M= T
z—2,000 _ z-2,000
4,000—2,000 2,000

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 24
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Different scales: Normalization

Training
Data |

—

Test Data {

* Apply MinMaxScaler X, ,prm =

) T

g

%EF UNIVERSITY

OF MANNHEIM

Data and Web Science Group

Hours of sleep | Calories burned | Well Rested? | Distances to last | Distances to

(normalized) (normalized) last(normalized)

4=0 3,000=0.5 No 505 1.5

8 =1 2,500 =0.25 Yes 1,001 0.75

5 =0.25 4,000=1 No 504 1.25

8 =1 2,000=0 Yes 1,501 0.5

9 =1.25 3,500 =0.75 ? No Yes
X—Xmin

Xmax_Xmin

— Important: Also preprocessing steps can be “trained”

* Hours of Sleep
— Xpin =4 and X0, = 8 (not 9)

_HZ

* Calories Burned C, =

z—4

_z—4
)

8—4

z-2,000

_ 22,000

4,000—2,000

2,000

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024
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* Many preprocessing methods also have an internal
representation
— E.g. Mean and variance, minimum and maximum values

— Do NOT apply it on the whole dataset before splitting etc

from sklearn.prep ing import MinMaxScaler
from sklearn.model selectiom t train_test_split

golf = pd.read_csv('golf.csv")

scaler = MinMaxScaler()
golf_scaled = scaler.fit t

m{golf[['Temperature', "Humidity']])

X_traj

est, y_train, y_test = train_test_split{golf scaled, golf['Play'], test_size=8.3, random_

https://scikit-learn.org/1.5/modules/compose.html

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 26
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* Many preprocessing methods also have an internal

representation
— Function fit_transform for training and transform for testing

golf = pd.read_csv{'golf.csv")

X _train, X test, y_train, y_test = train_test split(golf, golf['Play’], test_size=8.3, random_state=8)

scaler = MinMaxScaler()
golf scaled = scaler.fit_transform(X_train[[ Temperature', 'Humidity']], y_train)

golf test _scaled = scaler.transform(X_test[[ 'Temperature', 'Humidity']])

\_'_I

No fit on test data

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 27
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* How to compose multiple components
— F)iE2€3|ir1ff from sklearn.pipeline import Pipeline

from sklearn.svm import SVC
estimators = [
{"scale’, MinMaxScaler()),
{"clf', SVC())
]
pipe = Pipeline(estimators)
pipe.fit(X train, y_train)
pipe.score(X _test, y_test)

— How to apply tranformations to only a few columns
° Co|umnTransformer from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import OnsHotEncoder

column_trans = ColumnTransformer(
[("categories’, OneHotEncoder{dtype="int'}), ['Outloock’']},
m {'scale', MinMaxScaler(), ['Temperature’'])],

remainder="drop'
) |Component | Columns

estimators = |
{"preprocessing’, column_trans),
("clf', sSvC())

]
pipe = Pipeline(estimators)
pipe.fit(X train, y_train)
pipe.score(X_test, y_test)
University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 28
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* ~100% accuracy are a great result

— ...and a result that should make you suspicious!

e Atale fromthe road

— Working with our Linked Open Data extension

— Trying to predict the world university rankings
— With data from DBpedia

* Goal:
— Understand what makes a top university

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 29
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— Extracts additional attributes from

public knowledge graphs .}’

* e.g., DBpedia

o
* The Linked Open Data extension / Q
/

— Unsupervised (i.e., attributes are created fully automatically)

e Model learned: THE<20 = TOP=true

— False predictor: target variable was included in attributes

 Other examples

— Mark<5 - passed=true
— Sales>1000000 - bestseller=true

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 30
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* By analyzing models
— Rule sets consisting of only one rule
— Decision trees with only one node

Process: learn model, inspect model, remove suspect, repeat
— until the accuracy drops

* By analyzing attributes A , RANKING OF |
! 5§ UNIVERSITIES?
— Compute correlation of each attribute with label v\;-\fORLD
— Correlation near 1 (or -1) marks a suspect grh\fl(lilﬁ%?

Caution: there are also strong (but not false) predictors
— it's not always possible to decide automatically!

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 31
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Unsupported Data Types

* Not every learning operator supports all data types
— Some (e.g., SVM) cannot handle categorical data
— Some (e.g., ID3) cannot handle numeric data
— Dates are difficult for most learners
— Textual values need to be transformed

e Solutions
— Convert categorical to numeric data
— Convert numeric to nominal data (discretization, binning)
— Extract valuable information from dates
— Transform textual attributes to vector representations

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 32
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« Two common ways to encode categorical attributes:

— For ordinal attributes (order is important)
* e.g. Grade=A, A-, B+, B, B-, C+, C, C-

* Assign each distinct value a corresponding number preserving the order

— A=8, A-=7, B+=6, B=5, B-=4, C+=3, C=2, C-=1

ID Grade
371 | A-
433 | B

=

ID Grade
371 |7
433 |5

e Using such a coding schema allows learners to learn valuable rules, e.g.

— grade>6 - excellent_student=true

* Python: OrdinalEncoder

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024
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« Two common ways to encode categorical attributes:

— For nominal attributes (no order)
e e.g. Color=Red, Orange,..., Violet
* One Hot Encoding: For each value v, create a binary “flag” variable C_v,
which is 1 if Color=v, 0 otherwise

ID Color . ID Color_red | Color_orange | Color_yellow
371 | red ‘ 371 |1 0 0
433 | yellow 433 | O 0 1

e Python: OneHotEncoder

e Special case: Binary attribute e.g. student=yes, no
— Student =yes - student_binary =0
— Student=no - student_binary =1

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 34
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* Many values: —

— US State Code (50 values)

— Profession Code (7,000 values,
but only few frequent)

New Hamg

Massachu

Adarmaz

* Approaches:

THE SQU'TH

M\
Vet b\
Y,
TN
H-
\

skt
uuuuu wts N

— manual, with background knowledge
* e.g., group US states

— Use binary attributes

* then apply dimensionality reduction (see later today)

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024
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 Discretization

— Values of the attribute, e.g., age of a person:
* 0,4,12, 16, 16, 18, 24, 26, 30
— Equal-interval binning — for bin width of e.g., 10:

* Binl1:0,4 [-22,10) bin
* Bin2:12,16, 16, 18 [10,20) bin
* Bin 3: 24, 26, 30 [20,+°°) bin

— Equal-frequency binning — for bin density of e.g., 3:

e Binl: 0, 4, 12 [-, 14) bin
* Bin2:16, 16, 18 [14, 21) bin
* Bin 3:24, 26, 30 [21,+] bin

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 36
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Dealing with Date Attributes

* Dates (and times) can be formatted in various ways

— first step: normalize and parse

* Dates have lots of interesting information in them

* Example: analyzing shopping behavior
— time of day
— weekday vs. weekend
— begin vs. end of month
— month itself
— quarter, season

 Python:use, e.g.,, datetime

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 37



Dealing with Textual Attributes

* Preprocessing

Text Cleanup (remove punctuation and HTML tags)

) T

g

Tokenization (break text into single words or N-grams)

Stopword Removal (e.g. the, of, and, to, an, is, that, ...)

Stemming (find the stem of a word)

* User, users, used, using =» Stem: use

m]_ ]

s

]

UNIVERSITY
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from nltk.stem.porter import PorterStemmer

# Stem tokens
stemmer = PorterStemmer()
tokens = ["Jupiter', 'is', 'the', 'largest', 'gas', 'planet’]
stems = []
for item in tokens:
stems.append(stemmer.stem(item))

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024
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Dealing with Textual Attributes

Bag-of-Words

* Each word/term becomes a feature

Feature Generation:

* Order of words/terms is ignored

— Each document is represented by a vector

Dokument
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e Different techniques for vector creation:

— Binary Term Occurrence: Boolean attributes describe whether
or not a term appears in the document (one-hot encoding)

* Python: CountVectorizer(binary=true)

— Term Occurrence: Number of occurrences of a term in the
document (problematic if documents have different length)

* Python: CountVectorizer(binary=false)

— Terms Frequency: Attributes represent the frequency in which
a term appears in the document (humber of occurrences /
number of words in document)

* Python: TfidfVectorizer(use idf=False)
— TF-IDF: see next slide
e Python: TfidfVectorizer
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Dealing with Textual Attributes

* The TF-IDF weight (term frequency—inverse document
frequency) is used to evaluate how important a word is to a
corpus of documents.

— TF: Term Frequency (see last slide) wij = tfij * idf;
N
— IDF: Inverse Document Frequency. idf; = log(d—f_)

N: total number of docs in corpus
df: the number of docs in which t; appears

In scikit-learn:

_ 1+ N
idf; = log 1+ df, +1
l

* Gives more weight to rare words

* Give less weight to common words
(domain-specific stopwords)
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Similarity of Documents

* Jaccard Coefficient

— Similarity measure for vectors consisting of asymmetric binary
attributes

|JAnB| Mq4

|A U B| My +Mqo+Mq4

Jaccard(A,B) =

e Used together with binary term occurrence vectors
(one-hot vectors)
— 1 represents occurrence of specific word
— O represents absence of specific word

— most values are 0 as only small subset of the vocabulary is used in a
document
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Similarity of Documents

* Jaccard Coefficient

— Similarity measure for vectors consisting of asymmetric binary

) T

&

UNIVERSITY
OF MANNHEIM

Data and Web Science Group

attributes
|A N B| Mqq
Jaccard(A,B) = =
|A U B| My +Mqo+Mq4
Saturn is the gas planet | with rings | Jupiter | largest | Roman | god of | sowing
dl 1 1 1 1 1 1 1 0 0 0 0 0 0
d2 0 1 1 1 1 0 0 1 1 0 0 0 0
d3 1 1 1 0 0 0 0 0 0 1 1 1 1

e Jaccard similarities between the documents

— Jaccard(d,, d;) =

— Jaccard(dy, d,) = % = 0.44
3

= 0.27
11
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Similarity of Documents

* Cosine similarity

— Similarity measure for comparing weighted document
vectors such as term-frequency or TF-IDF vectors

cos(dy, d,) = d,® d, where o inndicates vector dot product
U720 T gl _ ~
aeb = ) ab;=a,by +azby + -+ anby
i=1
— Example and [|d[| is the length of the vector

d,=3205000200 ||al||=/21-Llali2

d,=1000000102

d,ed,= 3*1+2*0+0*0+5*0+0*0+0*0+0*0+2*1+0*0+0*2=5
|1d,|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)°> = (42) > =6.481
|1d,|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 05 = (6) 05 = 2.245

cos(d{,d,) = 0.3150
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Imensions

Vector of a few hundred di

— Word embeddings
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Transformer Architecture

* Encoder-only:

— BERT, ALBERT (a lite version of BERT),
RoBERTa (A Robustly Optimized BERT Pretraining Approach)

 Decoder-only:
— LLMs like GPT, LLaMa, ...

Feed-forward

* Seq2Seq:

— T-5 (Text-to-Text 5
Transfer Transformer) Sell-Arention

— BART

) T

&

Output
Probabilities

Transformer

| Embedding
Y

[

Positional
Encoding

Embe

Positional
Encoding
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j—

A

Layer Normalization

O

Feed-forward
Layer Normalization

©)

Encoder-Decoder-
Attention
A

Layer Normalization

Self-Attention

last
encoder
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* Datasets with large number of attributes

 Examples:
— Text classification
— Image classification
— Genome classification

e (notonly a) scalability problem

— e.g., decision tree:
search all attributes for determining one single split
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* Preprocessing step

Idea: only use valuable features

— “feature”: machine learning terminology for “attribute”

e Basic heuristics: remove nominal attributes...
— Which have more than p% identical values
* Example: millionaire=false

— Which have more than p% different values

* Example: names, IDs

Basic heuristics: remove numerical attributes
— Which have little variation, i.e., standard deviation <s
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* Basic Distinction: Filter vs. Wrapper Methods

* Filter methods
— Use attribute weighting criterion, e.g., Chi?, Information Gain, ...
— Select attributes with highest weights
— Fast (linear in no. of attributes), but not always optimal

 Example:
— X £ = SelectKBest (chi2, k=20) .fit transform (X, vy)
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Feature Subset Selection

* Remove redundant attributes
— e.g., temperature in °Cand °F
— e.g., textual features “Barack” and “Obama”

e Method:

— compute pairwise correlations between attributes
— remove highly correlated attributes

* Recap:
— Naive Bayes requires independent attributes
— Will benefit from removing correlated attributes
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* Wrapper methods
— Use classifier internally
— Run with different feature sets
— Select best feature set

 Advantages
— Good feature set for given classifier

e Disadvantages
— Expensive (naively: at least quadratic in number of attributes)
— Heuristics can reduce number of classifier runs
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* Forward selection:
start with empty attribute set

do |
for each attribute {
add attribute to attribute set
compute performance (e.g., accuracy)

}

use attribute set with best performance

} while performance 1ncreases

* Anlearning algorithm is used for computing the performance
— Cross validation is advised
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Feature Subset Selection

e Backward elimination:
start with full attribute set

do {
for each attribute in attribute set {

remove attribute to attribute set
compute performance (e.g., accuracy)

}

use attribute set with best performance

} while performance 1ncreases

* Anlearning algorithm is used for computing the performance

— Cross validation is advised
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e The checkerboard dataset

— Decision tree learners can perfectly learn this!
— But what happens if we apply forward selection here?
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[ (] [ ] [ ® e L ]
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Feature Subset Selection

* Python:

— Forward selection:
SequentialFeatureSelector(direction="'forward’)

— Backward elimination:
SequentialFeatureSelector(direction=backward’)

* If estimator has feature importances:
— RFECV (Recursive feature elimination with cross-validation)

— Just one selection step based on feature importances
e SelectfromModel

University of Mannheim | IE500 Data Mining | Preprocessing | Version 28.10.2024 55


https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.RFECV.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.RFECV.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.SelectFromModel.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.SelectFromModel.html

e
%i?ﬁﬁ; UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Feature Subset Selection

* Further approaches
— Brute Force search
— Evolutionary algorithms

* Trade-off
— Simple heuristics are fast

* But may not be the most effective

— Brute-force is most effective
* But the slowest

— Forward selection, backward elimination, and evolutionary algorithms
* Are often a good compromise
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Principal Component Analysis (PCA)

e So far, we have looked at feature selection methods
— We select a subset of attributes
— No new attributes are created

* PCA creates a (smaller set of) new attributes
— Artificial linear combinations of existing attributes
— As expressive as possible

e Dates back to the pre-computer age
— Invented by Karl Pearson (1857-1936)
— Also known for Pearson's correlation coefficient
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Principal Component Analysis (PCA)

* |dea: transform coordinate system so that
each new coordinate (principal component)
is as expressive as possible
— Expressivity: variance of the variable
— The 1%t, 2nd, 3rd, . PC should account for as much variance as possible

e further PCs can be neglected

original data set output from PCA
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Principal Component Analysis (PCA)

* Principal components
— Are linear combinations of the existing features
* General approach:

— The first component should have as much variance as possible

— The subsequent ones should also have as much variance as possible
* And be perpendicular to the first one

F-s
(=]
]

w
(=]
'

Percentage of explained variances
- (%)
[=] o
]

i 2 3 4 5 6 7 8 9 10
Principal Components
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height/ width/features
examples -
Hours of sleep | Calories burned | Well Rested?
 Feature Subset Selection 4 3,000 No
o 8 2,500 Yi
reduces the width of the dataset =
« Sampling '

reduces the height of the dataset

— i.e., the number of instances

 Trade-off

— Maximum usage of information
— Fast computation

Two approaches
— Stratified sampling respects class distribution
— Kennard-Stone sampling tries to select heterogenous points
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Stratified Sampling

* Stratified sample: Sample each class independently, so that
records of the minority class are present in each sample

— Make sure that each class is represented with approximately
equal proportions in both subsets

— Other attributes may also be considered for stratification
* e.g., gender, age, ...

Whole data

Q00000
@000 00

Training (3/4) Testing (1/4)

@000 @e O
@0000
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Kennard-Stone Sampling

1) Compute pairwise distances of points
2) Add points with largest distance from one another

3) While target sample size not reached
1) For each candidate, find smallest distance to any point in the
sample

2) Add candidate with largest of those smallest distances
Already selected

Add A because A B
largest distance
\# Smallest distance

Already selected
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* This guarantees that heterogeneous data points are added

— i.e., sample gets more diverse

— Includes more corner cases
* But potentially also more outliers

— Distribution may be altered

* Python: Not included in scikit-learn by default

— Need to install separate package "kennard-stone”
* https://pypi.org/project/kennard-stone/
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Kennard-Stone Sampling (Example)

* Pro: alot of rare cases covered
e Con: original distribution gets lost
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Sampling Strategies and
Learning Algorithms

e There are interaction effects
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 Some learning algorithms rely on distributions

— e.g., Naive Bayes

— Usually, stratified sampling works better

 Some rely less on distributions

— And may work better if they see more corner cases

— e.g., Decision Trees

Titanic Dataset
Filter: 50 training examples

Decision Tree

Naive Bayes

Stratified 127 752
Kennard 742 721
Stone
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A Note on Sampling

e Often, the training data in a real-world project
is already a sample
— e.g., sales figures of last month
— To predict the sales figures for the rest of the year

 How representative is that sample?
— What if last month was December? Or February?

e Effect known as selection bias

— Example: phone survey with 3,000 participants,
carried out Monday, 9-17

— Thought experiment: effect of selection bias for prediction,

e.g., with a Naive Bayes classifier
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Summary Data Preprocessing

 Raw data has many problems
— Missing values
— Errors
— High dimensionality
* Good preprocessing is essential for good data mining

— One of the first steps in the pipeline

— Requires lots of experimentation and fine-tuning
* often the most time consuming step of the pipeline
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Prepare Your Data

3% 5% What data scientists spend the most time doing

® Building training sets: 3%
® (Cleaning and organizing data: 60%
® (ollecting data sets; 19%
Mining data for patterns: 9%
® Refining algorithms: 4%
Other: 5%

Source: CrowdFlower Data Science Report 2016: http://visit.crowdflower.com/data-science-report.html
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Questions?
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Literature for this Slideset

* Python:

— Imputation
* https://scikit-learn.org/1.5/modules/impute.html

— Preprocessing
* https://scikit-learn.org/1.5/modules/preprocessing.html

— Text feature extraction

* https://scikit-learn.org/1.5/modules/feature extraction.html#
text-feature-extraction

— Feature Selection
* https://scikit-learn.org/1.5/modules/feature selection.html
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