Classification 1

IE500 Data Mining

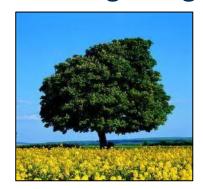
Outline

- Decision Trees
- Overfitting
- Evaluation Metrics
- Naïve Bayes
- Evaluation Methods
- Support Vector Machines
- Artificial Neural Networks
- Hyperparameter Selection

Introduction to Classification

Goal: Learn a model for recognizing a concept, e.g. trees

"tree"



"tree"

"tree"

"not a tree"

"not a tree"

"not a tree"

Introduction to Classification

- Example: learning a new concept, e.g., "Tree"
 - we look at (positive and negative) examples (training data)
 - ...and derive a model e.g., "Trees are big, green plants"

Goal: Classification of unseen instances

approximating examples!

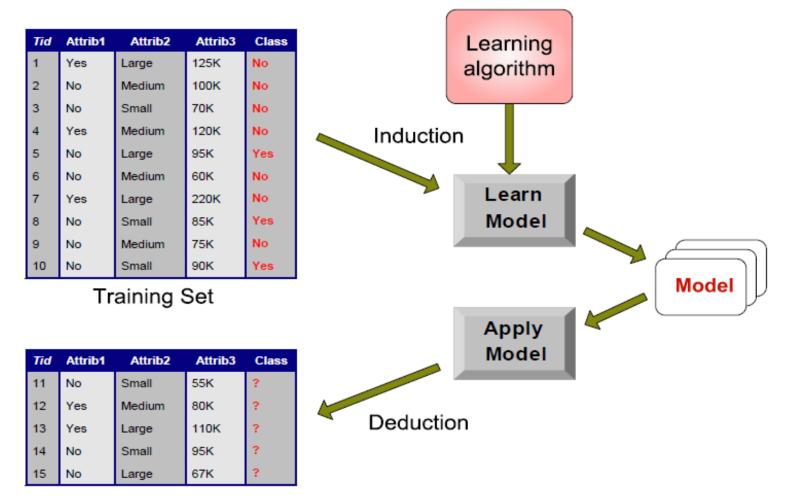
Not guaranteed to be correct or complete!

Warning:

Models are only

"tree?"

The Classification Workflow



Unseen Records

Lazy vs. Eager Learning

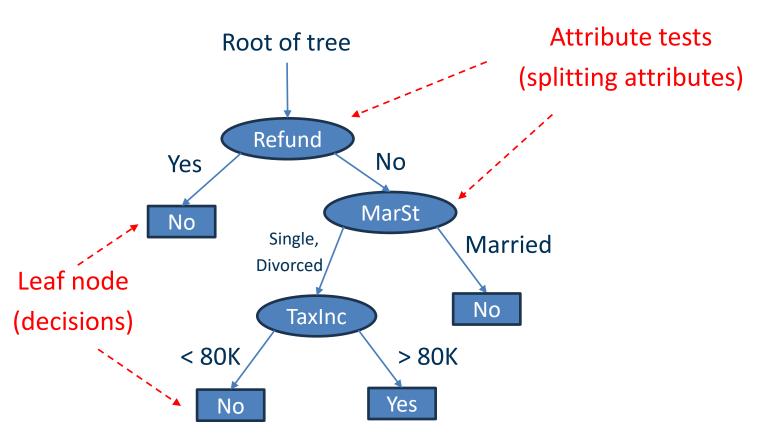
Lazy Learning

- Instance-based learning approaches, like KNN are lazy methods
- Do not build a model
 - "learning" is only performed on demand for unseen records
 - Single goal: Classify unseen records as accurately as possible

Eager Learning

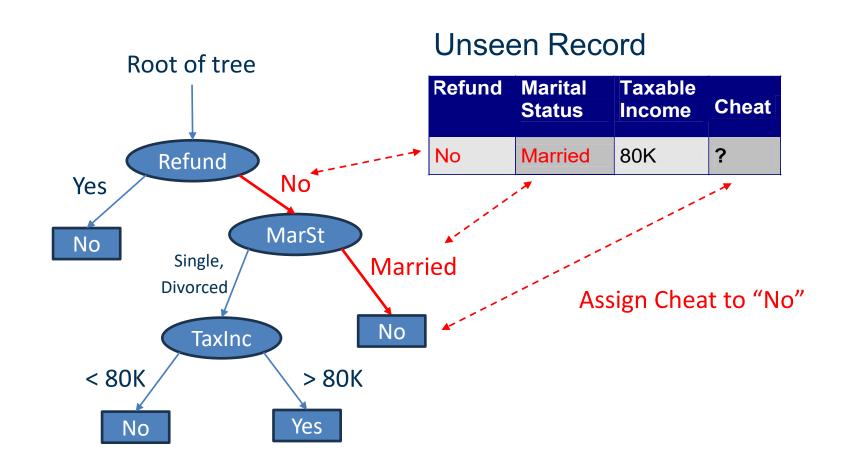
- but actually, we might have <u>two goals</u>
 - 1. classify unseen records
 - 2. understand the application domain as a human
- Eager learning approaches generate models that are (might be) interpretable by humans
- Examples of eager techniques: decision tree learning

Decision Tree Classifiers

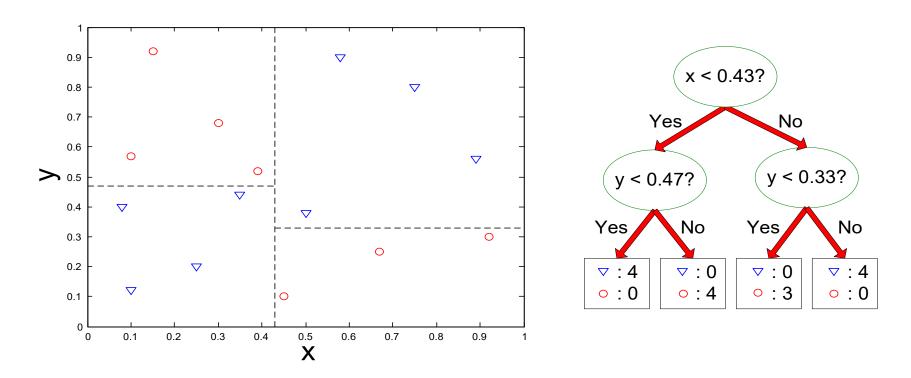


Decision trees encode a procedure for taking a classification decision

Applying a Decision Tree to Unseen Data



Decision Boundary



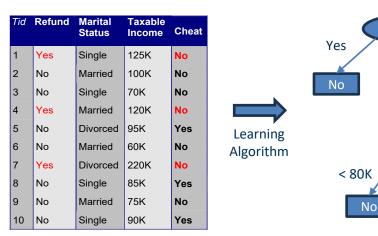
 The decision boundaries are parallel to the axes because the test condition involves a single attribute at-a-time

Learning a Decision Tree

- How to learn a decision tree from training data?
 - Finding an optimal decision tree is NP-hard
 - Tree building algorithms thus use a greedy, top-down, recursive partitioning strategy to induce a reasonable solution
 - also known as: divide and conquer

Many different algorithms have been proposed:

- Hunt's Algorithm
- ID3
- C4.5
- CHAID



Training Data

Model: Decision Tree

Refund

Single,

Divorced

TaxInc

No

MarSt

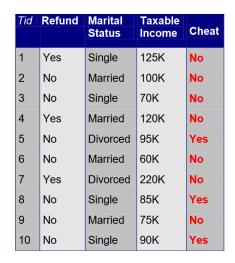
> 80K

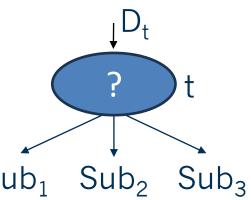
Married

No

Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- Generate leaf node or attribute test:
 - if D_t only contains records that belong to the same class y_t, then t is a leaf node labeled as y_t
 - if D_t contains records that belong to more than one class, use an attribute test to split the data into subsets having a higher purity.
 - for all possible tests: calculate purity of the resulting subsets
 - choose test resulting in highest purity
- Recursively apply this procedure to each subset

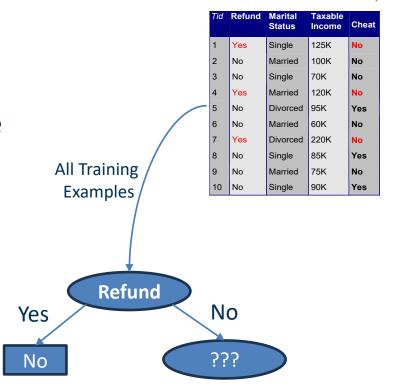




Hunt's Algorithm – Step 1

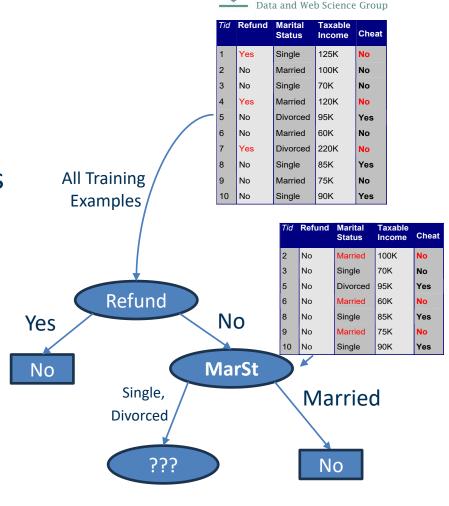
UNIVERSITY
OF MANNHEIM

- We calculate the purity of the resulting subsets for all possible splits
 - Purity of split on Refund
 - Purity of split on Marital Status
 - Purity of split on Taxable Income
- We find the split on Refund to produce the purest subsets



Hunt's Algorithm – Step 2

- We further examine the Refund=No records
- Again, we test all possible splits
- We find the split on Marital Status to produce the purest subsets



Hunt's Algorithm – Step 3

UNIVERSITY
OF MANNHEIM

Single

Married

Single

Married

Divorced

Married

No

No

No

Taxable Income

125K 100K

70K

120K

95K

60K

No

No

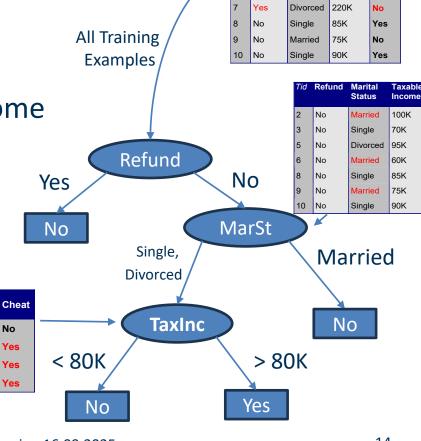
No

Yes

No

Yes

- We further examine the
 - Marital Status=Single or
 - Marital Status= Divorced records
- We find a split on Taxable Income to produce pure subsets
- We stop splitting as no sets containing different classes are left



Tid Refund

No

No

No

No

Marital

Status

Sinale

Sinale

Single

Divorced

Taxable

Income

70K

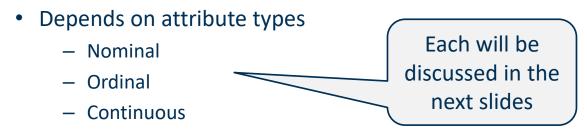
95K

85K

90K

Tree Induction Issues

- Determine how to split the records
 - How to specify the attribute test condition?



- Depends on number of ways to split
 - 2-way split
 - Multi-way split
- How to determine the best split?
- Determine when to stop splitting

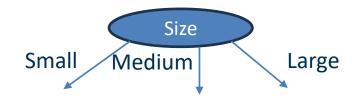
Splitting of Nominal Attributes

Multi-way split: Use as many partitions as distinct values

• Binary split: Divides values into two subsets

Splitting of Ordinal Attributes

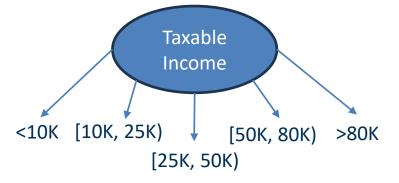
Multi-way split: Use as many partitions as distinct values



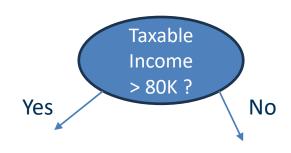
Binary split: Divides values into two subsets
 while keeping the order

Splitting of Continuous Attributes

- Multi-way split: Discretization to form an ordinal attribute
 - equal-interval binning
 - equal-frequency binning
 - binning based on user-provided boundaries

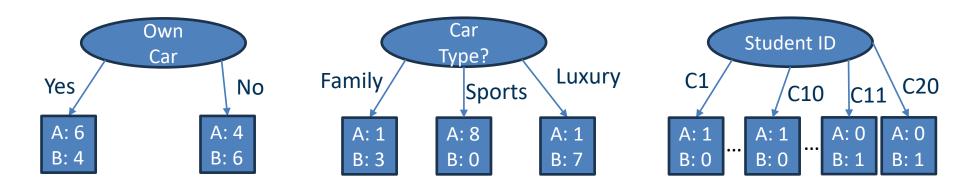


- Binary split: (A < v) or $(A \ge v)$
 - usually sufficient in practice
 - find the best cut (i.e. the best v)
 based on a purity measure (see later)
 - can be computationally expensive



How to determine the Best Split?

- Before splitting the dataset contains:
 - 10 records of class A
 - 10 records of class B



Which attribute test is the best?

How to determine the Best Split?

- Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

A: 5
B: 5

Non-homogeneous

High degree of node impurity

A: 9
B: 1

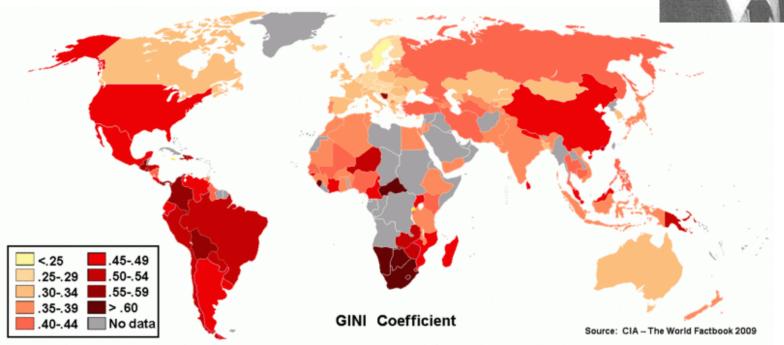
Homogeneous

Low degree of node impurity

- Common measures of node impurity:
 - GINI Index (focus in this lecture)
 - Many other exist as well (e.g. Entropy)

Gini Index

- Named after Corrado Gini (1885-1965)
- Used to measure the distribution of income
 - 1: somebody gets everything
 - 0: everybody gets an equal share



Measure of Impurity: GINI

Gini-based purity measure for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

p(j|t) is the relative frequency of class j at node t

- Minimum (0.0) when all records belong to one class, implying most interesting information $n_c = number$ of classes
- Maximum $(1 \frac{1}{n_c})$ when records are equally distributed among all classes, implying least interesting information

А	0	A	Δ	1		А	2		А	3
В	6	E	В	5		В	4		В	3
Gini=	0.000	Gi	Gini=0.278 Gini=0.444					Gini=0.5		
Impurity increase										

Examples for Computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

$$P(A) = \frac{0}{6} = 0 P(B) = \frac{6}{6} = 1$$

$$Gini(t) = 1 - P(A)^2 - P(B)^2 = 1 - 0 - 1 = 0$$

$$P(A) = \frac{1}{6} \qquad P(B) = \frac{5}{6}$$

$$Gini(t) = 1 - \left(\frac{1}{6}\right)^2 - \left(\frac{5}{6}\right)^2 = \frac{10}{36} \ 0.278$$

$$P(A) = \frac{2}{6} \qquad P(B) = \frac{4}{6}$$

$$Gini(t) = 1 - \left(\frac{2}{6}\right)^2 - \left(\frac{4}{6}\right)^2 = \frac{16}{36} = 0.444$$

Splitting Based on GINI

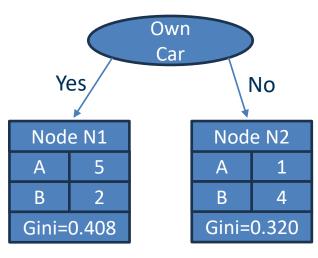
When a node p is split into k partitions (children),
 the quality of split is computed as:

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} \ GINI(i)$$

- where n_i = number of records at child i,
- n = number of records at node p
- Intuition:
 - The GINI index of each partition is weighted according to the partition's size

Computing GINI Split

Split into two partitions



Parent						
А	6					
В	6					
Gini=0.500						

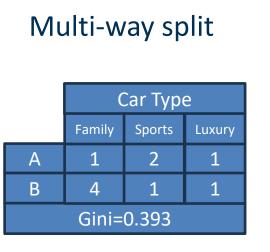
$$GINI_{split} = \frac{7}{12} * 0.408 + \frac{5}{12} * 0.320 = 0.371$$

Purity Gain = impurity measure before splitting - after splitting

$$= 0.500 - 0.371 = 0.129$$

- $-\,$ Purity Gain is used to decide for the best split (highest purity gain or lowest ${\it GINI}_{split}$)
- When using Entropy, then it is called Information Gain

For each distinct attribute value, gather counts for each class



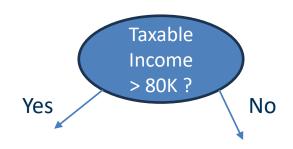
Two-way split (find best partition of values)

	Car Type						
	{Sports, Luxury} Family						
А	3	1					
В	2 4						
Gini=0.400							

	Car Type						
	{Sports} {Family Luxury						
А	2	2					
В	1	5					
Gini=0.419							

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions,
 A < v and A ≥ v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient!
 - Repetition of work



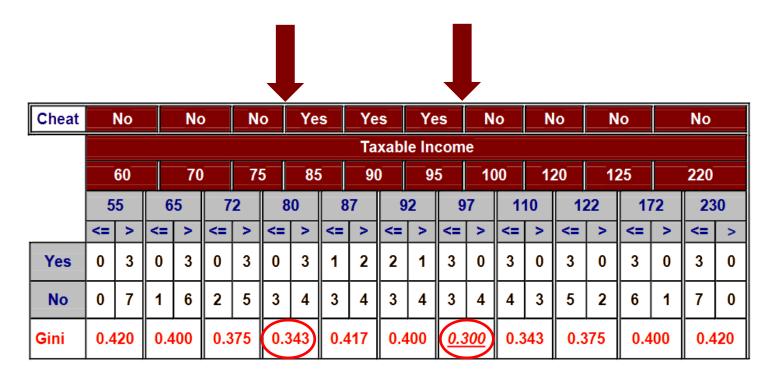
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- Efficient computation:
 - 1. sort the attribute on values
 - linearly scan these values, each time updating the count matrix and computing the gini index
 - 3. choose the split position that has the smallest gini index

Sorted Values
Split Positions

	Taxable Income																					
\longrightarrow		60		70		7	5	85	,	90)	9	5	10	00	12	20	12	25		220	
	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	10	12	22	17	72	23	0
	<=	>	\=	^	<=	>	<=	>	<=	^	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini	0.4	20	0.4	100	0.3	75	0.3	43	0.4	117	0.4	00	<u>0.3</u>	<u>800</u>	0.3	43	0.3	75	0.4	00	0.4	20

 Note: it is enough to compute the GINI for those positions where the label changes!



Discussion of Decision Trees

Advantages:

- Inexpensive to construct
- Fast at classifying unknown records

- Explainable model!
- Easy to interpret by humans for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

Disadvantages:

- Decisions are based only one a single attribute at a time
- Can only represent decision boundaries that are parallel to the axes

Comparing Decision Trees and k-NN

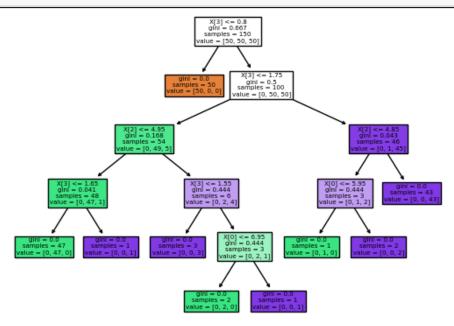
- Decision boundaries
 - k-NN: arbitrary
 - Decision trees: rectangular
- Sensitivity to scales
 - k-NN: needs normalization
 - Decision tree: does not require normalization (recap: Gini splitting)
- Runtime & memory
 - k-NN is more cheap to train, but more expensive for classification
 - Decision tree is more expensive to train,
 but more cheap for classification

Tree Induction in Python

Python from sklearn.tree import DecisionTreeClassifier

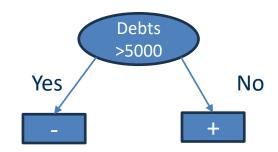
```
# Train classifier
dt_learner = DecisionTreeClassifier(criterion='gini', max_depth=10)
dt_learner.fit(preprocessed_training_data, training_labels)
```

Use classifier to predict labels
prediction = dt_learner.predict(preprocessed_unseen_data)



Practical Issue: Overfitting

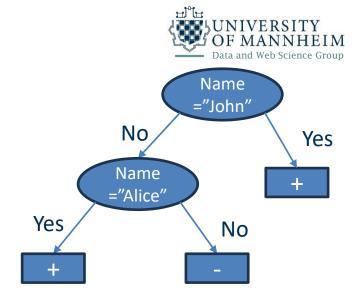
- Example: Predict credit rating
 - possible decision tree:



Name	Net Income	Job status	Debts	Rating
John	40000	employed	0	+
Mary	38000	employed	10000	-
Stephen	21000	self- employed	20000	-
Eric	2000	student	10000	-
Alice	35000	employed	4000	+

Practical Issue: Overfitting

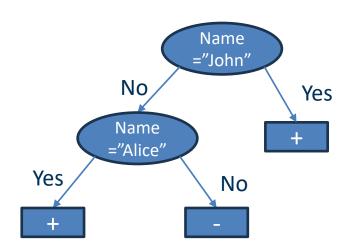
- Example: Predict credit rating
 - Alternative decision tree:

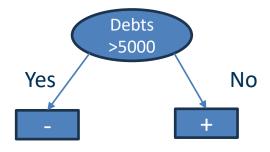


Name	Net Income	Job status	Debts	Rating
John	40000	employed	0	+
Mary	38000	employed	10000	_
Stephen	21000	self- employed	20000	-
Eric	2000	student	10000	-
Alice	35000	employed	4000	+

Practical Issue: Overfitting

- Both trees seem equally good
 - Classify all instances in the training set correctly
- Which one do you prefer?





Occam's Razor

- Named after William of Ockham (1287-1347)
- A fundamental principle of science
 - If you have two theories
 - that explain a phenomenon equally well
 - choose the simpler one

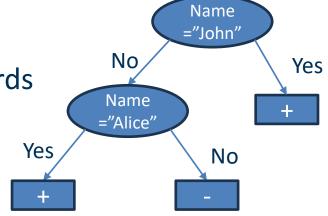
Example:

- Phenomenon: the street is wet
- Theory 1: it has rained
- Theory 2: a beer truck has had an accident, and beer has spilled.
 The truck has been towed, and magpies picked the glass pieces,
 so only the beer remains

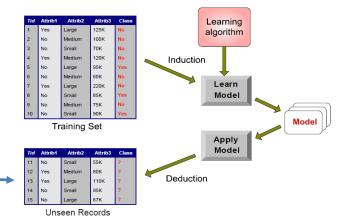
Training and Testing Data

Consider the decision tree again

Our ultimate goal: classify <u>unseen</u> records

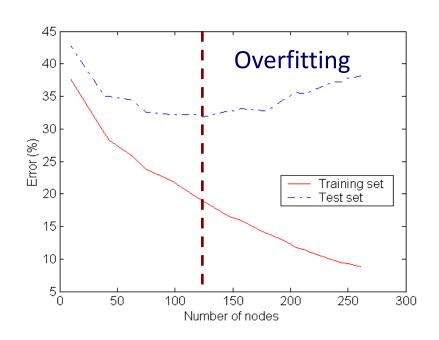


- Assume you measure the performance using the training data
- Conclusion:
 - We need separate data for testing



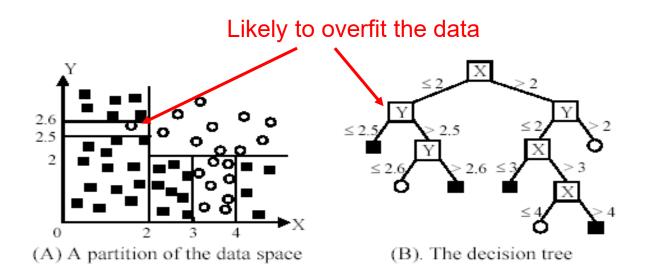
Overfitting: Symptoms and Causes

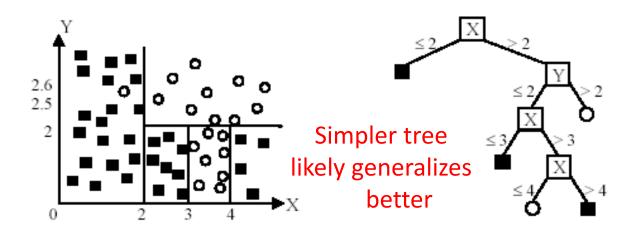
- Symptoms:
 - Decision tree too deep
 - Too many branches
 - Model works well on training set but performs bad on test set
- Typical causes of overfitting
 - Noise / outliers in training data
 - Too little training data
 - High model complexity

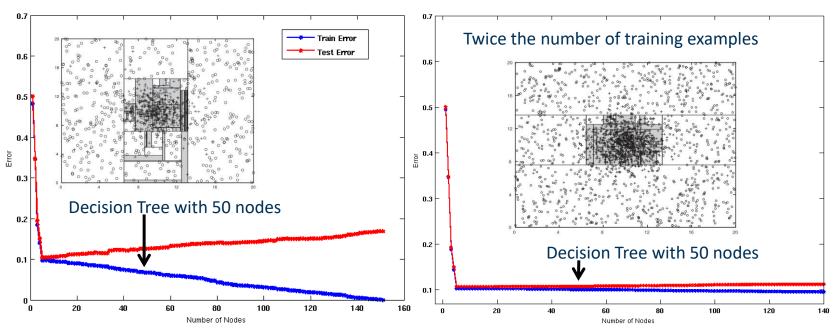


An overfitted model does not **generalize** well to **unseen data**.

Overfitting and Noise







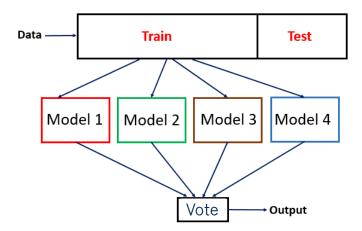
- If training data is under-representative, training errors decrease but testing errors increase on increasing number of nodes
- Increasing the size of training set reduces the difference between training and testing errors at a given number of nodes

How to Prevent Overfitting 2: Pre-Pruning

- Stop the algorithm before tree becomes fully-grown
 - shallower tree potentially generalizes better (Occam's razor)
- Normal stopping conditions for a node (no pruning):
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
- Early stopping conditions (pre-pruning):
 - Stop if number of instances within a leaf node is less than some user-specified threshold (e.g. leaf size < 4)
 - Stop if expanding the current node only slightly improves the impurity measure (e.g. gain < 0.01)
 - Stop splitting at a specific depth (e.g. maxDepth = 5)

How to Prevent Overfitting 3: Ensembles

- Learn different models (base learners)
- Have them vote on the final classification decision



- Idea: Wisdom of the crowds applied to classification
 - A single classifier might focus too much on one aspect
 - Multiple classifiers can focus on different aspects

Algorithms to Learn Tree Ensembles

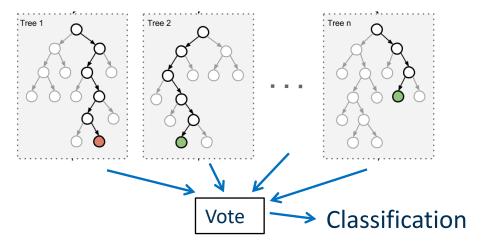
- Random Forest (Breiman 1997)
 - sklearn.ensemble.RandomForestClassifier
- Gradient Tree Boosting (Friedman 1999)
 - sklearn.ensemble.GradientBoostingClassifier
- Gradient Tree Boosting with Regularization
 - XGBoost (extra package)

- Ensembles perform better than e.g. simple decision trees
 - Disadvantage: usually the interpretability is lost due to many trees

Random Forest

Ensemble consisting of a large number of different decision

trees



- Independence of trees achieved by introducing randomness into the learning process
 - only use a random subset of the attributes at each split
 - learn on different random subsets of the data (bagging)

Random Forest

- Random forests usually outperform single decision trees
- Random Forest in Python

```
Python
from sklearn.ensemble import RandomForestClassifier

# Train classifier
forest_estimator = RandomForestClassifier(n_estimators=100, criterion='gini', max_depth=None)
forest_estimator.fit(preprocessed_training_data, training_labels)

# Use classifier to predict labels
prediction = forest_estimator.predict(preprocessed_unseen_data)
```

XGBoost

- A Scalable System for Learning Tree Ensembles
 - Model improvement

Parameters w_i to be learned

- Regularized objective for better model
- Objective Function: $Obj(\Theta) = L(\Theta) + \Omega(\Theta)$

Training Loss

Regularization (complexity of model)

- Optimizing training loss yields good predictive models
- Optimizing regularization yields simple models
 - making predictions stable
- Systems optimizations
 - Out of core computing
 - Parallelization
 - Cache optimization
- Implemented in a extra package "xgboost"

XGBoost

Gradient Tree Boosting

$$- Obj(\Theta) = L(\Theta) + \Omega(\Theta)$$

- We can not use methods such as stochastic gradient descent (SGD)
 - Because of discrete building steps
- Solution: Additive Training (Boosting)
 - Start with a simple model and enhance it in every round

Regularization

— How to define the complexity of a tree?

•
$$\Omega(\Theta) = yT + \frac{1}{2}\lambda \sum_{j=1}^{T} w_j^2$$

Number of leaf scores

Model Evaluation

- Central Question:
 - How good is a model at classifying unseen records?
 (generalization performance)
- This week: Evaluation Metrics
 - How to measure the performance of a model?
- Next week: Evaluation Methods
 - How to obtain reliable estimates?



Confusion Matrix

- Focus on the predictive capability of a model
 - Looking at correctly/incorrectly classified instances
 - Two class problem (positive/negative class)
 - First word: **true**, if prediction is correct (otherwise **false**)
 - Second word: positive or negative (dependent on the predicted label)

		Predicted Class	
		Class=Yes	Class=No
Actual Class	Class=Yes	True Positives	False Negatives
		(TP)	(FN)
	Class=No	False Positives	True Negatives
		(FP)	(TN)

Metrics for Performance Evaluation

Most frequently used metrics:

$$-Accuracy = \frac{TP + TN}{TP + TN + FP + FN} = \frac{Correct\ predictions}{All\ predictions}$$

$$- Error Rate = 1 - Accuracy$$

		Predicted Class	
		Class=Yes	Class=No
Actual Class	Class=Yes	TP	FN
		25	4
	Class=No	FP	TN
		6	15

$$Accuracy = \frac{25 + 15}{25 + 15 + 6 + 4} = 0.8$$

What is a Good Accuracy?

- i.e., when are you done?
 - at 75% accuracy?
 - at 90% accuracy?
 - at 95% accuracy?
- Depends on difficulty of the problem!
- Baseline: naive guessing
 - always predict majority class
- Compare
 - Predicting coin tosses with accuracy of 50%
 - Predicting dice roll with accuracy of 50%
 - Predicting lottery numbers (6 out of 49) with accuracy of 50%

- Classes often have very unequal frequency
 - Fraud detection: 98% transactions OK, 2% fraud
 - E-commerce: 99% surfers don't buy, 1% buy

— ...

- Consider a 2-class problem:
 - Number of negative examples = 9990,
 Number of positive examples = 10
 - if model predicts all examples to belong to the negative class,
 the accuracy is
 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any positive example

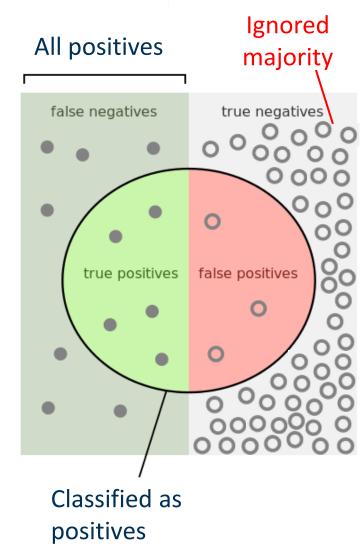
Precision and Recall

How many examples that are classified positive are actually positive?

Which fraction of all positive examples is classified correctly?

$$p = \frac{TP}{TP + FP}$$

$$r = \frac{TP}{TP + FN}$$

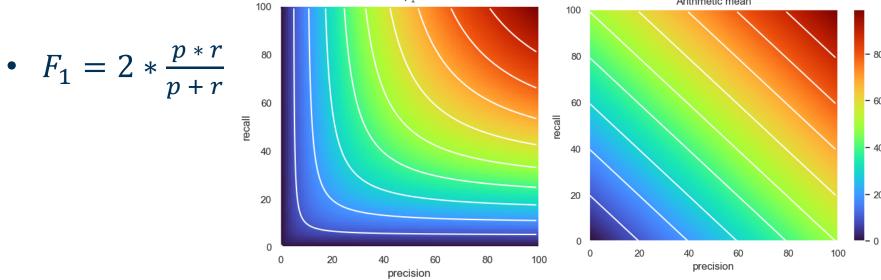


		Predicted Class		
		Class=Yes	Class=No	
Actual Class	Class=Yes	TP	FN	
		1	99	
	Class=No	FP	TN	
		0	1000	

- This confusion matrix gives us
 - precision p = 100%
 - recall r = 1%
- Because we only classified one positive example correctly and no negative examples wrongly
- Thus, we want a measure that
 - combines precision and recall and is large if both values are large

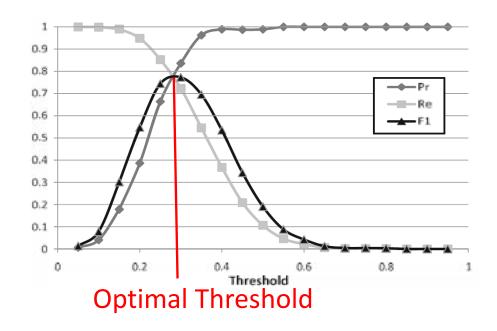
F₁ -Measure

- F₁-score combines precision and recall into one measure
- F₁-score is the harmonic mean of precision and recall
 - The harmonic mean of two numbers tends to be closer to the smaller of the two
 - Thus for the F_1 -score to be large, both p and r must be large



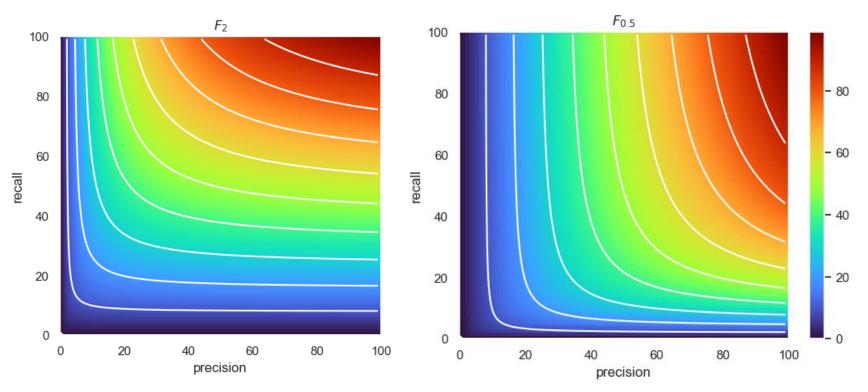
F₁ -Measure Graph

- Low threshold: Low precision, high recall
- Restrictive threshold: High precision, low recall



F_{β} -Measure

- More general $F_{\beta} = (1 + \beta^2) * \frac{p * r}{(\beta^2 * p) + r}$
 - $-\beta=2$ weights recall higher, $\beta=0.5$ weights precision higher



Cost-Sensitive Model Evaluation

- Associate a cost for each error
 - Use case: Credit card fraud

- Predicted Class

 Cost Matrix
 Class=Yes
 Class=No

 Actual Class=Yes
 -1
 100

 Class=No
 1
 0
- it is expensive to miss fraudulent transactions
- false alarms are not too expensive

Model M1		Predicted Class	
		Class=Yes	Class=No
Actual	Class=Yes	162	38
Class	Class=No	160	240

Model M2		Predicted Class	
		Class=Yes	Class=No
Actual Class	Class=Yes	155	45
	Class=No	5	395

Accuracy = 67%

Cost = 3798 ← Better model

Accuracy = 92%

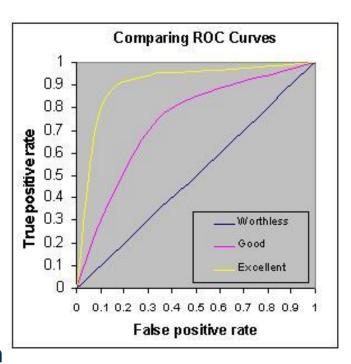
Cost = 4350

ROC Curves

- Some classification algorithms provide confidence scores
 - how sure the algorithms is with its prediction
 - e.g., KNN (the neighbor's vote), Naive Bayes (the probability)
- ROC curves visualize true positive rate and false positive rate in relation to the algorithm's confidence
- Drawing a ROC Curve
 - Sort classifications according to confidence scores (e.g.: fraction of neighbours in k-NN model)
 - Evaluate
 - Correct prediction: draw one step up
 - Incorrect prediction: draw one step to the right

Interpreting ROC Curves

- Best possible result:
 - all correct predictions have higher confidence than all incorrect ones
- The steeper, the better
 - random guessing results in the diagonal
 - so a decent algorithm should result in a curve significantly above the diagonal
- Comparing algorithms:
 - Curve A above curve B means algorithm
 A better than algorithm B
- Measure for comparing models
 - Area under ROC curve (AUC)



Online Lectures

For the exercise

 and exam,
 the online lectures
 are relevant as well

Week	Monday(Offline Lecture)	Online Lecture (see Ilias Course)	Thursday (Exercise)
01.09.2025	no lecture		Introduction to Python (13:45–15:15)
08.09.2025	Introduction to Data Mining (PDF, 3 MB)		Intro
15.09.2025	Preprocessing (PDF, 2 MB)		Preprocessing
22.09.2025	Classification 1	Nearest Centroids	Classification 1
29.09.2025	Classification 2	Comparing Classifiers	Classification 2
06.10.2025	Regression	Ensembles	Regression
13.10.2025	Clustering and Anomalies	Hierarchical Clustering	Clustering
20.10.2025	Feedback on project outlines	Time Series	Time Series
27.10.2025	Association Analysis and Subgroup Discovery	Multi Modal Data	Association Analysis
03.11.2025	Project feedback session		Project Work
10.11.2025	Project feedback session		Project Work
17.11.2025	Project feedback session		Project Work
24.11.2025	Project feedback session		Project Work
01.12.2025	Q&A		Project Presentations

Questions?

Literature for this Slideset

- Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar: Introduction to Data Mining.
 2nd Edition. Pearson.
- Chapter 3: Classification
 - Chapter 3.3: Decision Tree Classifier
 - Chapter 3.4: Overfitting
- Chapter 6.10.6: Random Forests

