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Outline

• Decision Trees

• Overfitting

• Evaluation Metrics

• Naïve Bayes

• Support Vector Machines

• Artificial Neural Networks 

• Evaluation Methods

• Hyperparameter Selection
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Naïve Bayes 

• Probabilistic classification technique based on Bayes theorem 

– successful, old-school method for various tasks: NLP, recommendation, …

• Goal: Estimate the most probable class label for a given record

• Probabilistic formulation of the classification task:

– consider each attribute and class label as random variables

– given a record with attributes (𝐴1, 𝐴2, … , 𝐴𝑛)
the goal is to find the class C that maximizes the conditional probability 
𝑷 𝑪 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏)

• Example: Should we play golf?

– P(Play=yes | Outlook=rainy, Temperature=cool)

– P(Play=no | Outlook=rainy, Temperature=cool)

• Question: How to estimate these probabilities given training data?
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Bayes Classifier

• Thomas Bayes (1701-1761)
– British mathematician and priest

– tried to formally prove the existence of God

• Bayes Theorem
– important theorem in probability theory

– was only published after Bayes' death
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Bayes Classifier

• Question:
– How likely is class C, given that we observe attributes A

– This is called a conditional probability, denoted 𝑃(𝐶|𝐴)

• e.g.: Given some attributes A, what is the likelihood of a certain class C?

• Bayes Theorem

– Computes one conditional probability 𝑃(𝐶|𝐴) out of another 𝑃(𝐴|𝐶)

– given that the base probabilities 𝑃(𝐴) and 𝑃(𝐶) are known

• Useful in situations where P(C|A) is unknown

– while P(A|C), P(A) and P(C) are known or easy to determine/estimate?
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𝑃 𝐶 𝐴 =
𝑃(𝐴|𝐶) 𝑃(𝐶)

𝑃(𝐴)
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Bayes Classifier

• Prior probability of class C:
– probability of class C before attributes are seen

– we play golf in 70% of all cases -> 𝑃 𝐶 = 0.7

• Posterior probability of class C:
– probability of class C after attributes A is seen

– evidence: It is windy and raining -> 𝑃 𝐶|𝐴 = 0.2
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Estimating the Prior Probability 𝑃(𝐶) 

• The prior probability 𝑃 𝐶𝑗  for 

each class is estimated by 
– counting the records in the training 

set that are labeled with class 𝑃 𝐶𝑗

– dividing the count by the overall 
number of records

• Example:
– P(Play=no) = 5/14

– P(Play=yes) = 9/14
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Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot  High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

Training Data
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Estimating the Class-Conditional 
Probability 𝑷 𝑨|𝑪  
• Naïve Bayes assumes that all attributes are statistically independent

– knowing the value of one attribute says nothing about the value of another

– this independence assumption is almost never correct!

– but … this scheme works well in practice

• The independence assumption allows the joint probability 𝑃(𝐴|𝐶) to be 
reformulated as the product of the individual probabilities 𝑃(𝐴𝑖|𝐶𝑗)

𝑃 𝐴1, 𝐴2, … , 𝐴𝑛 𝐶𝑗 = 𝑃 𝐴1 𝐶𝑗)  ∗ 𝑃 𝐴2 𝐶𝑗)  ∗  … ∗ 𝑃(𝐴3 𝐶𝑗 =  ෑ

𝑖=1

𝑛 

𝑃 𝐴𝑖 𝐶𝑗  

𝑃 Outlook=rainy, Temperature=cool Play=yes = P Outlook = rainy Play = yes)  ∗ 
 P Temperature=cool Play = yes)

• Result: The probabilities 𝑃(𝐴𝑖|𝐶𝑗) for all 𝐴𝑖 and 𝐶𝑗

can be estimated directly from the training data
8
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Estimating the Probabilities 𝑷 𝑨𝒊|𝑪𝒋  

• The probabilities 𝑃(𝐴𝑖|𝐶𝑗) are estimated by 

– Count how often an attribute value co-occurs with 
class 𝐶𝑗

– Divide by the overall number of                                
examples belonging to class 𝐶𝑗

Example:
“Outlook=sunny” occurs on 2/9 examples in class “Yes”

𝑃(Outlook=sunny|Yes) = 2/9
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Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5
Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot  High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No
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Classifying a New Record

• Unseen record

10

Outlook Temp. Humidity Windy Play

Sunny Cool High True ?

Probability of
class “yes” given
the evidence

𝑃(𝑦𝑒𝑠|𝐴) = 𝑃(𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 𝑆𝑢𝑛𝑛𝑦|𝑦𝑒𝑠)

× 𝑃(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝐶𝑜𝑜𝑙|𝑦𝑒𝑠)

× 𝑃(𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 𝐻𝑖𝑔ℎ|𝑦𝑒𝑠)

× 𝑃(𝑊𝑖𝑛𝑑𝑦 = 𝑇𝑟𝑢𝑒|𝑦𝑒𝑠)

×
𝑃(𝑦𝑒𝑠)

𝑃(𝐴)

=

2
9

×
3
9

×
3
9

×
3
9

×
9

14
𝑃(𝐴)

Prior probability of class “yes”

Class-conditional probability of the record

Prior probability of record
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Classifying a New Record

• A new day:
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Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5

Outlook Temp. Humidity Windy Play

Sunny Cool High True ?

Likelihood of the two classes

For “yes” = 2/9  3/9  3/9  3/9  9/14 = 0.0053

For “no” = 3/5  1/5  4/5  3/5  5/14 = 0.0206

Conversion into a probability by normalization:

P(“yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205

P(“no”) = 0.0206 / (0.0053 + 0.0206) = 0.795

Class conditional probability
Prior probability

Choose Maximum
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Handling Numerical Attributes

• Option 1: 
Discretize numerical attributes before learning classifier.
– Temp= 37°C -> “Hot”

– Temp= 21°C -> “Mild”

• Option 2: 
Make assumption that numerical attributes have 
a normal distribution given the class.
– use training data to estimate parameters 

of the distribution 
(e.g., mean and standard deviation)

– once the probability distribution is known, 
it can be used to estimate the conditional 
probability 𝑃(𝐴i|𝐶𝑗) 

12
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Handling Numerical Attributes

• The probability density function for the normal distribution 
is

• It is defined by two parameters:

– Sample mean 𝜇 =
1

𝑛
σ𝑖=1

𝑛 𝑥𝑖

– Standard deviation 𝜎 =
1

𝑛−1
σ𝑖=1

𝑛 𝑥𝑖 − 𝜇 2

• Both parameters can be estimated  from the training data 

13

𝑓 𝑥 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2
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Handling Numerical Attributes

•

• Example calculation:

𝑓 𝑡𝑒𝑚𝑝 = 66 | 𝑦𝑒𝑠 =
1

2𝜋 ∗ 6.2
𝑒

−
66−73 2

2∗(6.2)2 = 0.034
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Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 64, 68,

69, 70,

72,  …

65, 71, 

72, 80,

85,  …

65, 70,

70, 75,

80,  …

70, 85,

90, 91,

95,  …

False 6 2 9 5

Overcast 4 0 True 3 3

Rainy 3 2

Sunny 2/9 3/5  =73  =75  =79  =86 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5  =6.2  =7.9  =10.2  =9.7 True 3/9 3/5

Rainy 3/9 2/5
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Classifying a New Day

• Unseen record

• But note: Some numeric attributes are not normally 
distributed, and you may thus need to choose a different 
probability density function or use discretization

15

Outlook Temp. Humidity Windy Play

Sunny 66 90 true ?

Likelihood of “yes” = 2/9  0.0340  0.0221  3/9  9/14 = 0.000036

Likelihood of “no”  = 3/5  0.0291  0.0380  3/5  5/14 = 0.000136

P(“yes”) = 0.000036 / (0.000036 + 0. 000136) = 20.9%

P(“no”)  = 0.000136 / (0.000036 + 0. 000136) = 79.1%
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Handling Missing Values

• Missing values may occur in training and in unseen 
classification records

• Training: Record is not included into frequency count for 
attribute value-class combination

• Classification: Attribute will be omitted from calculation

– Example: Unseen record
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Outlook Temp. Humidity Windy Play

? Cool High True ?

Likelihood of “yes” = 3/9  3/9  3/9  9/14 = 0.0238

Likelihood of “no” = 1/5  4/5  3/5  5/14 = 0.0343

P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%
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The Zero-Frequency Problem

• What if an attribute value doesn’t occur with every class value?
(e.g. no “Outlook = overcast” for class “no”)

– class-conditional probability will be zero! 𝑃 𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡 𝑛𝑜 =
0

5
= 0

• Problem: Posterior probability will also be zero! 𝑃(𝑛𝑜|𝐴) = 0

No matter how likely the other values are!
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Outlook

Yes No

Sunny 2 3

Overcast 4 0

Rainy 3 2

Sunny 2/9 3/5

Overcast 4/9 0/5

Rainy 3/9 2/5

Outlook Temp. Humidity Windy Play

Overcast Cool High True ?

Likelihood of the two classes

For “yes” = 4/9  3/9  3/9  3/9  9/14 = 0.0105

For “no” = 0/5  1/5  4/5  3/5  5/14 = 0.0
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The Zero-Frequency Problem

• Remedy: Add 1 to the count for every attribute 
value-class combination (Laplace Estimator)

• Result: Probabilities will never be zero!
also: stabilizes probability estimates

• Original: 𝑃 Ai C =
𝑁𝑖𝑐

𝑁𝑐
        Laplace: 𝑃 Ai C =

𝑁𝑖𝑐+1

𝑁𝑐+𝑐
    

18

c = number of 
attribute values of A

Outlook

Yes No

Sunny 2 3

Overcast 4 0

Rainy 3 2

Sunny 2/9 3/5

Overcast 4/9 0/5

Rainy 3/9 2/5

Outlook

Yes No

Sunny 2 3

Overcast 4 0

Rainy 3 2

Sunny 3/12 4/8

Overcast 5/12 1/8

Rainy 4/12 3/8

Laplace
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Using Conditional Probabilities for 
Naïve Bayes

19

Python

Classifier is 
quite sure

Classifier is            
not sure
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Decision Boundary of Naive Bayes 
Classifier

• Usually larger coherent areas

• Soft margins with uncertain regions

• Arbitrary (often curved) shapes

20
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Naïve Bayes Discussion

• Naïve Bayes works surprisingly well

– Even if independence assumption is clearly violated

– Classification doesn’t require accurate probability estimates as long as 
maximum probability is assigned to correct class

• Robust to isolated noise points as they will be averaged out

• Robust to irrelevant attributes as 𝑃 Ai C  distributed uniformly for Ai

• Adding too many redundant attributes can cause problems

– Solution: Select attribute subset as Naïve Bayes often works
better with just a fraction of all attributes

• Technical advantages

– learning Naïve Bayes classifiers is computationally cheap                         
(probabilities can be estimated doing one pass over the training data)

– Storing the probabilities does not require a lot of memory

21
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Support Vector Machines

• Support vector machines (SVMs) are algorithms 
for learning linear classifiers for
– Two class problems (a positive and a negative class)

– From examples described by continuous attributes 

• SVMs
– achieve very good results especially for high dimensional data 

– invented by V. Vapnik and his co-workers in 1970s in Russia and 
became known to the West in 1992 

22
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Support Vector Machines

• Find a linear hyperplane (decision boundary) that will 
separate the data

23

B
1
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Which Hyperplane is better?

• Which one is better? B1 or B2? How do you define “better”?

24

B
1

B
2
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Which Hyperplane is better?

• Find hyperplane maximizes the margin to the closest points 
(support vectors) to avoid overfitting => B1 is better than B2

25
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b
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b
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b
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Which Hyperplane is better?

• Find hyperplane maximizes the margin to the closest points 
(support vectors) to avoid overfitting => B1 is better than B2

26
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b
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b
22

margin

support vectors
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Dealing with                                       
Not Linearly Separable Data

• Introduce slack variables in margin computation which 
result in a penalty for each data point that violates decision 
boundary

27
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Nonlinear Support Vector Machines

• What if decision boundary is not linear?

28
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Nonlinear Support Vector Machines

• Transform data into higher dimensional space

29
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Transform data into higher 
dimensional space - Example

– Transform from 1-D into 2-D
(by adding a y axis which is computed by a simple function) 

30
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Nonlinear Support Vector Machines

• Transformation in higher dimensional space
– Uses so-called Kernel function

– Different variants: polynomial function, radial basis function, …

• Finding a hyperplane in higher dimensional space
– is computationally expensive

– Kernel trick: expensive parts of the calculation can be performed in 
lower dimensional space

• Python: 

34
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Tuning of SVM

• Instead of randomly trying a few kernel and parameters
Hsu et al. proposes a systematic method
1. Linearly scaling each attribute to the range [−1, +1] or [0, 1]

2. Use RBF Kernel 

3. Use cross-validation to find the best parameter C and γ

• trying exponentially growing sequences of C and γ
e.g. 𝐶 = 2−5, 2−3, … ,215  γ=2−15, 2−13, … , 23

4. Use the best parameter C and γ to train the whole training set

5. Test

35

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin:
A Practical Guide to Support Vector Classification

https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
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Artificial Neural Networks (ANN)

• Inspiration
– one of the most powerful super computers in the world

36
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Artificial Neural Networks (ANN)

• Function fitting the training data: 
Output Y is 1 if at least two of the three inputs are equal to 1

37

X1 X2 X3 Y

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

0 0 1 0

0 1 0 0

0 1 1 1

0 0 0 0

X
1

X
2

X
3

Y

Black box

Output

Input
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Artificial Neural Networks (ANN)

38

X1 X2 X3 Y

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

0 0 1 0

0 1 0 0

0 1 1 1

0 0 0 0



X
1

X
2

X
3

Y

Black box

0.3

0.3

0.3 t=0.4

Output

node

Input

nodes

𝑌 = 𝐼 0.3𝑋1 + 0.3𝑋2 + 0.3𝑋3 − 0.4 > 0 

Where 𝐼 𝑧 =  ቊ
1 𝑖𝑓 𝑧 𝑖𝑠 𝑡𝑟𝑢𝑒
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Artificial Neural Networks (ANN)

• Model is an assembly of 
inter-connected nodes (called 
neurons) and weighted links

• Output node sums up each of 
its input values according to 
the weights of its links

• Classification decision:
Compare output node against 
some threshold t
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
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Perceptron Model

𝑌 = 𝐼 ෍ 𝑤𝑖𝑋𝑖 − 𝑡 > 0 
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Multi-Layer Artificial Neural Networks 

40

Input

Layer

Hidden

Layer

Output
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Neuron iInput Output

threshold, t

Training ANN means learning the 
weights of the neurons
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Algorithm for Training ANNs

1. Initialize the weights (w0, w1, …, wk), e.g., random or pre-trained

2. Adjust the weights in such a way that the output of ANN is as 
consistent as possible with class labels of the training examples

– Objective function:  𝐸 = σ𝑖 𝑌𝑖 − 𝑓 𝑤𝑖 , 𝑋𝑖
2

– Find the weights wi’s that minimize the sum of squared error E

– using the back propagation 
algorithm 
(see Tan/Steinbach: Chapter 6.7,
Gemulla: Machine Learning)

– Adjustment factor: learning rate

41

Python
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Overview: Types of                                 
Deep Learning Models

• Convolutional Neural Networks

• Pre-Trained Language Models: BERT

• Generative Models: T5, GPT3, DALL·E

• Instruct Models: ChatGPT, LaMDA

42
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Convolutional Neural Networks 
(CNNs)
• Invented in computer vision

• Combine 

1. Representation learning 
(convolutions and pooling) 

2. Prediction head
(densely connected layers)

• Reduce number
of input features 
via convolutions 
and pooling

• High capacity of 
models requires

– Lots of training data

– Lots of GPU time 

43

representation learning prediction head
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Pre-Trained Language Models

• Introduce pre-training, fine-tuning paradigm
– Pre-trained on large text corpora 

– Model size: BERT-base 110 million parameters 

• Outperform previous models on most NLP tasks

44
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Generative Models

• Use transformer architecture to generate text or images 
based on embeddings of input sequence

• Models for Text
– T5, GPT3 

• Models for Images
– DALL·E, Stable Diffusion

• Pretrained on large
text and image corpora
– Web crawls

– ImageNet, LAION-5B

• Model sizes: 5 to 175 billion parameters
– accessible mostly via APIs

45
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Instruct Language Models

• After being pre-trained on 
large text corpora, instruct 
models are fine-tuned 
with instruction/output pairs

• Show good few-shot performance 
on wide range of task
– BIG-bench collects 200+ tasks

• Models show emergent abilities
– Can perform tasks they were not 

directly trained for

• Prompt design and in-context 
learning determine performance 
of frozen models

46

Wei: Emergent Abilities of Large Language Models. TMLR 2022.
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Model Evaluation

• Central Question:
– How good is a model at classifying unseen records?

(generalization performance)

• Last week: Evaluation Metrics
– How to measure the performance                                                                

of a model?

• This week: Evaluation Methods
– How to obtain reliable estimates?
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Model Evaluation

• How to obtain a reliable estimate of the generalization performance?

• General approach: Split labeled records into                                                       
a training set and a test set

• Never ever test a model on data that was used for training!
– Because model has been fit to training data, evaluating on training data does not 

result in a suitable estimate of the performance on unseen data

– We need to keep training set and test set strictly separate

• Which labeled records to use for training and which for testing?

• Alternative splitting approaches: 
– Holdout Method

– Random Subsampling

– Cross Validation
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Learning Curve

• The learning curve shows how 
accuracy changes with growing 
training set size

• Conclusion: 
– If model performance is low and 

unstable, get more training data

– Use labeled data rather for 
training than testing

• Problem: 
– Labeling additional data is often 

expensive due to manual effort 
involved
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Holdout Method

• The holdout method reserves a certain amount of the labeled data for 
testing and uses the remainder for training

– applied when lots of sample data is available

• Usually: 2/3 for training , 1/3 for testing (or even better 80% / 20%)

• For imbalanced datasets, random samples might not be representative

– few or no records of the minority class (aka positive class) in training or test set
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Stratified Sampling

• Stratified sample: Sample each class independently, so that 
records of the minority class are present in each sample
– Make sure that each class is represented with approximately      

equal proportions in both subsets

– Other attributes may also be considered for stratification

• e.g., gender, age, …
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Whole data
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Random Subsampling

• Holdout estimate can be made more reliable by repeating the process 
with different subsamples

– In each iteration, a certain proportion is randomly selected for training 

– The performance of the different iterations is averaged

• Still not optimal as the different test sets may overlap

– Problem: some outliers might always end up in the test sets

– Problem: important records for learning (red tree) might always be in test sets
52
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Leave One Out

• Iterate over all examples
– Train a model on all examples but the current one

– Evaluate on the current one

• Yields a very accurate estimate

• Uses as much data for training as possible
– But is computationally infeasible in most cases

• Imagine: a dataset with a million instances
– One minute to train a single model

– Leave one out would take almost two years
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Cross-Validation

• Compromise of Leave One Out and decent runtime

• Cross-validation avoids overlapping test sets

– First step: data is split into k subsets of equal size

• Stratification may be applied

– Second step: each subset in turn is used for testing and the remainder for 
training

• This is called k-fold cross-validation

• The error estimates are averaged to yield an overall error estimate
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5-fold cross-validation

Train Train Train Train Test

Train Train Train TrainTest

Train Train TrainTrainTest

Train TrainTrain TrainTest

TrainTrain Train TrainTest

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5
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Cross-Validation

• Frequently used value for k : 10
– Why ten? Extensive experiments have shown that

this is a good choice to get an accurate estimate

– Often the subsets are generated using stratified sampling                     
(to deal with class imbalance)

– Recent works on very large models have lead to a tendency of 
lowering that value (default value in scikit-learn is 5)
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Hyperparameter Selection

• A hyperparameter is a parameter which influences the learning process 
and whose value is set before the learning begins

– pruning thresholds for trees and rules

– gamma and C for SVMs

– learning rate, hidden layers for ANNs

• By contrast, parameters are learned during training / from training data

– weights in an ANN, probabilities in Naïve Bayes, splits in a tree 

• Many methods work poorly with the default hyperparameters 

• How to determine good hyperparameters?

– Manually play around with different hyperparameter settings

– Have your machine automatically test many different settings
(hyperparameter optimization)
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Hyperparameter Optimization

• Goal: Find the combination of hyperparameter values that results in 
learning the model with the lowest generalization error 

• How to determine the parameter value combinations to be tested?

– Grid Search: Test all combinations in user-defined ranges

– Random Search: Test combinations of random parameter values

• Paper from 2012 (Bergstra and Bengio):
– Grid search may easily miss best parameters

• some hyperparameters are pretty sensitive e.g., 0.02 is a good value, but 0 and 0.05 are not

– Random search often yields better results
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Bergstra & Bengio: Random Search for Hyper-Parameter Optimization, JMLR, 2012
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Hyperparameter Optimization

• Evolutionary Search

– Keep specific parameter values that worked well

• Bayesian optimization

– Hyperparameter tuning as a learning problem:

• Given a set of hyperparameters p, predict evaluation score s of model

• The prediction model is referred to as a surrogate model or oracle

– Training and evaluating an actual model is costly
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https://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/tutorials/tut8_adams_slides.pdf

“test these

hyperparameters, please”

“here’s the performance

of those hyperparameters” Actual ModelSurrogate Model

https://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/tutorials/tut8_adams_slides.pdf
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Hyperparameter Optimization

• Done:
– Which hyperparameter combinations should be tested

– Often hundreds of combinations are tested

• reason for cloud computing

• Now:
– Model Selection: From all learned models M, select the model 

𝑚𝑏𝑒𝑠𝑡 that is expected to generalize best to unseen records

• On which data should the model be tested?
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Model Selection Using a Validation Set 

• Keep data used for model selection strictly separate 
from data used for model evaluation, otherwise:

– Selected model mbest will overfit to test set

– Estimate of generalization error is too optimistic

• Method to find the best model: 

1. Split training set Dtrain into                                          
validation set Dval and training set Dtr

2. Learn models mi on Dtr using different 
hyperparameter value combinations pi

3. Select best parameter values pbest  by testing 
each model mi on the validation set Dval

4. Learn final model mbest on complete Dtrain

using the parameter values pbest 

5. Evaluate mbest on test set in order to get an 
unbiased estimate of its generalization performance
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Model Selection Using Cross-Validation

• But wait, we want to 

1. Make sure that all examples are used for validation once

2. Use as much labeled data as possible for training

• Both goals are met by using cross-validation for model selection
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Nested Cross-Validation

62
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Nested Cross-Validation in Python

63

Python

scikit-learn Documentation: Tuning the hyper-parameters of an estimator
https://scikit-learn.org/stable/modules/grid_search.html

scikit-learn Documentation: Nested versus non-nested cross-validation
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html

https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
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Model Selection - Overview

• For model evaluation with validation set and cross validation 
– Use the test set only once to get one final estimate of the error!

• The more models you train, the better estimate of the error

• Setting: 100 parameter combinations, 5 fold cross validation (inner and outer)
– Validation set: │P│+ 1 = 101 models learned

– Cross Validation: │folds│ * │P│ + 1 = 5 * 100 + 1 = 501 models learned

– Nested Cross Validation: │foldsOuter│ * ((│foldsInner│ * │P│) + 1) =                                             

                                                    5*((5*100)+1) = 2505 models learned
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https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html

Individual Trial # 

Score

https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
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Feature Selection

• Some classification methods automatically                                                            
select the relevant feature subset as part                                                                             
of the learning process

– e.g. Decision Trees, Random Forests, ANNs, SVMs

• The performance of other methods depends
on the subset of the features provided

– e.g. KNN, Naïve Bayes

• Automated feature selection approaches 

– Backward selection: start using all features, remove features, test again

– Forward selection: Find best single feature, add further features, test again

• Use nested cross-validation to estimate the generalization error
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Summary: Hyperparameter and 
Feature Selection
• Hyperparameter selection

– Default: Always run hyperparameter optimization!

– Otherwise you cannot say that a method does not work for a task

• Feature selection

– Default: Check if classification method requires feature selection

– If yes, run automated feature selection

• Model selection

– Default: Use nested cross-validation 

– If computation takes too long: use better hardware, reduce number of folds, 
reduce parameter search space, sample data to reduce size 

– If exact replicability of results is required: Use single train, validation, test split

• If your dataset is imbalanced

– don’t forget to balance your training set, not your test set!
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Online Lectures

• This week additional
material is about
comparing classifiers

• Online lectures are
exercise and exam
relevant
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Questions?
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Literature for this Slideset

• Pang-Ning Tan, Michael Steinbach,                
Anuj Karpatne,Vipin Kumar:           
Introduction to Data Mining. 
2nd Edition. Pearson.

• Chapter 6.4: Naïve Bayes

• Chapter 6.9: Support Vector Machines

• Chapter 6.7 and 6.8:                            
Artificial Neural Networks

• Chapter 3.5: Model Selection 

• Chapter 3.7: Presence of Hyper-Parameters
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